summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/vmwgfx/svga_reg.h
blob: 1b96c2ec07dd45c435cf9e6cd0ab4caf8b551f70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
/**********************************************************
 * Copyright 1998-2009 VMware, Inc.  All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person
 * obtaining a copy of this software and associated documentation
 * files (the "Software"), to deal in the Software without
 * restriction, including without limitation the rights to use, copy,
 * modify, merge, publish, distribute, sublicense, and/or sell copies
 * of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 **********************************************************/

/*
 * svga_reg.h --
 *
 *    Virtual hardware definitions for the VMware SVGA II device.
 */

#ifndef _SVGA_REG_H_
#define _SVGA_REG_H_

/*
 * PCI device IDs.
 */
#define PCI_VENDOR_ID_VMWARE            0x15AD
#define PCI_DEVICE_ID_VMWARE_SVGA2      0x0405

/*
 * Legal values for the SVGA_REG_CURSOR_ON register in old-fashioned
 * cursor bypass mode. This is still supported, but no new guest
 * drivers should use it.
 */
#define SVGA_CURSOR_ON_HIDE            0x0   /* Must be 0 to maintain backward compatibility */
#define SVGA_CURSOR_ON_SHOW            0x1   /* Must be 1 to maintain backward compatibility */
#define SVGA_CURSOR_ON_REMOVE_FROM_FB  0x2   /* Remove the cursor from the framebuffer because we need to see what's under it */
#define SVGA_CURSOR_ON_RESTORE_TO_FB   0x3   /* Put the cursor back in the framebuffer so the user can see it */

/*
 * The maximum framebuffer size that can traced for e.g. guests in VESA mode.
 * The changeMap in the monitor is proportional to this number. Therefore, we'd
 * like to keep it as small as possible to reduce monitor overhead (using
 * SVGA_VRAM_MAX_SIZE for this increases the size of the shared area by over
 * 4k!).
 *
 * NB: For compatibility reasons, this value must be greater than 0xff0000.
 *     See bug 335072.
 */
#define SVGA_FB_MAX_TRACEABLE_SIZE      0x1000000

#define SVGA_MAX_PSEUDOCOLOR_DEPTH      8
#define SVGA_MAX_PSEUDOCOLORS           (1 << SVGA_MAX_PSEUDOCOLOR_DEPTH)
#define SVGA_NUM_PALETTE_REGS           (3 * SVGA_MAX_PSEUDOCOLORS)

#define SVGA_MAGIC         0x900000UL
#define SVGA_MAKE_ID(ver)  (SVGA_MAGIC << 8 | (ver))

/* Version 2 let the address of the frame buffer be unsigned on Win32 */
#define SVGA_VERSION_2     2
#define SVGA_ID_2          SVGA_MAKE_ID(SVGA_VERSION_2)

/* Version 1 has new registers starting with SVGA_REG_CAPABILITIES so
   PALETTE_BASE has moved */
#define SVGA_VERSION_1     1
#define SVGA_ID_1          SVGA_MAKE_ID(SVGA_VERSION_1)

/* Version 0 is the initial version */
#define SVGA_VERSION_0     0
#define SVGA_ID_0          SVGA_MAKE_ID(SVGA_VERSION_0)

/* "Invalid" value for all SVGA IDs. (Version ID, screen object ID, surface ID...) */
#define SVGA_ID_INVALID    0xFFFFFFFF

/* Port offsets, relative to BAR0 */
#define SVGA_INDEX_PORT         0x0
#define SVGA_VALUE_PORT         0x1
#define SVGA_BIOS_PORT          0x2
#define SVGA_IRQSTATUS_PORT     0x8

/*
 * Interrupt source flags for IRQSTATUS_PORT and IRQMASK.
 *
 * Interrupts are only supported when the
 * SVGA_CAP_IRQMASK capability is present.
 */
#define SVGA_IRQFLAG_ANY_FENCE            0x1    /* Any fence was passed */
#define SVGA_IRQFLAG_FIFO_PROGRESS        0x2    /* Made forward progress in the FIFO */
#define SVGA_IRQFLAG_FENCE_GOAL           0x4    /* SVGA_FIFO_FENCE_GOAL reached */

/*
 * Registers
 */

enum {
   SVGA_REG_ID = 0,
   SVGA_REG_ENABLE = 1,
   SVGA_REG_WIDTH = 2,
   SVGA_REG_HEIGHT = 3,
   SVGA_REG_MAX_WIDTH = 4,
   SVGA_REG_MAX_HEIGHT = 5,
   SVGA_REG_DEPTH = 6,
   SVGA_REG_BITS_PER_PIXEL = 7,       /* Current bpp in the guest */
   SVGA_REG_PSEUDOCOLOR = 8,
   SVGA_REG_RED_MASK = 9,
   SVGA_REG_GREEN_MASK = 10,
   SVGA_REG_BLUE_MASK = 11,
   SVGA_REG_BYTES_PER_LINE = 12,
   SVGA_REG_FB_START = 13,            /* (Deprecated) */
   SVGA_REG_FB_OFFSET = 14,
   SVGA_REG_VRAM_SIZE = 15,
   SVGA_REG_FB_SIZE = 16,

   /* ID 0 implementation only had the above registers, then the palette */

   SVGA_REG_CAPABILITIES = 17,
   SVGA_REG_MEM_START = 18,           /* (Deprecated) */
   SVGA_REG_MEM_SIZE = 19,
   SVGA_REG_CONFIG_DONE = 20,         /* Set when memory area configured */
   SVGA_REG_SYNC = 21,                /* See "FIFO Synchronization Registers" */
   SVGA_REG_BUSY = 22,                /* See "FIFO Synchronization Registers" */
   SVGA_REG_GUEST_ID = 23,            /* Set guest OS identifier */
   SVGA_REG_CURSOR_ID = 24,           /* (Deprecated) */
   SVGA_REG_CURSOR_X = 25,            /* (Deprecated) */
   SVGA_REG_CURSOR_Y = 26,            /* (Deprecated) */
   SVGA_REG_CURSOR_ON = 27,           /* (Deprecated) */
   SVGA_REG_HOST_BITS_PER_PIXEL = 28, /* (Deprecated) */
   SVGA_REG_SCRATCH_SIZE = 29,        /* Number of scratch registers */
   SVGA_REG_MEM_REGS = 30,            /* Number of FIFO registers */
   SVGA_REG_NUM_DISPLAYS = 31,        /* (Deprecated) */
   SVGA_REG_PITCHLOCK = 32,           /* Fixed pitch for all modes */
   SVGA_REG_IRQMASK = 33,             /* Interrupt mask */

   /* Legacy multi-monitor support */
   SVGA_REG_NUM_GUEST_DISPLAYS = 34,/* Number of guest displays in X/Y direction */
   SVGA_REG_DISPLAY_ID = 35,        /* Display ID for the following display attributes */
   SVGA_REG_DISPLAY_IS_PRIMARY = 36,/* Whether this is a primary display */
   SVGA_REG_DISPLAY_POSITION_X = 37,/* The display position x */
   SVGA_REG_DISPLAY_POSITION_Y = 38,/* The display position y */
   SVGA_REG_DISPLAY_WIDTH = 39,     /* The display's width */
   SVGA_REG_DISPLAY_HEIGHT = 40,    /* The display's height */

   /* See "Guest memory regions" below. */
   SVGA_REG_GMR_ID = 41,
   SVGA_REG_GMR_DESCRIPTOR = 42,
   SVGA_REG_GMR_MAX_IDS = 43,
   SVGA_REG_GMR_MAX_DESCRIPTOR_LENGTH = 44,

   SVGA_REG_TRACES = 45,            /* Enable trace-based updates even when FIFO is on */
   SVGA_REG_TOP = 46,               /* Must be 1 more than the last register */

   SVGA_PALETTE_BASE = 1024,        /* Base of SVGA color map */
   /* Next 768 (== 256*3) registers exist for colormap */

   SVGA_SCRATCH_BASE = SVGA_PALETTE_BASE + SVGA_NUM_PALETTE_REGS
                                    /* Base of scratch registers */
   /* Next reg[SVGA_REG_SCRATCH_SIZE] registers exist for scratch usage:
      First 4 are reserved for VESA BIOS Extension; any remaining are for
      the use of the current SVGA driver. */
};


/*
 * Guest memory regions (GMRs):
 *
 * This is a new memory mapping feature available in SVGA devices
 * which have the SVGA_CAP_GMR bit set. Previously, there were two
 * fixed memory regions available with which to share data between the
 * device and the driver: the FIFO ('MEM') and the framebuffer. GMRs
 * are our name for an extensible way of providing arbitrary DMA
 * buffers for use between the driver and the SVGA device. They are a
 * new alternative to framebuffer memory, usable for both 2D and 3D
 * graphics operations.
 *
 * Since GMR mapping must be done synchronously with guest CPU
 * execution, we use a new pair of SVGA registers:
 *
 *   SVGA_REG_GMR_ID --
 *
 *     Read/write.
 *     This register holds the 32-bit ID (a small positive integer)
 *     of a GMR to create, delete, or redefine. Writing this register
 *     has no side-effects.
 *
 *   SVGA_REG_GMR_DESCRIPTOR --
 *
 *     Write-only.
 *     Writing this register will create, delete, or redefine the GMR
 *     specified by the above ID register. If this register is zero,
 *     the GMR is deleted. Any pointers into this GMR (including those
 *     currently being processed by FIFO commands) will be
 *     synchronously invalidated.
 *
 *     If this register is nonzero, it must be the physical page
 *     number (PPN) of a data structure which describes the physical
 *     layout of the memory region this GMR should describe. The
 *     descriptor structure will be read synchronously by the SVGA
 *     device when this register is written. The descriptor need not
 *     remain allocated for the lifetime of the GMR.
 *
 *     The guest driver should write SVGA_REG_GMR_ID first, then
 *     SVGA_REG_GMR_DESCRIPTOR.
 *
 *   SVGA_REG_GMR_MAX_IDS --
 *
 *     Read-only.
 *     The SVGA device may choose to support a maximum number of
 *     user-defined GMR IDs. This register holds the number of supported
 *     IDs. (The maximum supported ID plus 1)
 *
 *   SVGA_REG_GMR_MAX_DESCRIPTOR_LENGTH --
 *
 *     Read-only.
 *     The SVGA device may choose to put a limit on the total number
 *     of SVGAGuestMemDescriptor structures it will read when defining
 *     a single GMR.
 *
 * The descriptor structure is an array of SVGAGuestMemDescriptor
 * structures. Each structure may do one of three things:
 *
 *   - Terminate the GMR descriptor list.
 *     (ppn==0, numPages==0)
 *
 *   - Add a PPN or range of PPNs to the GMR's virtual address space.
 *     (ppn != 0, numPages != 0)
 *
 *   - Provide the PPN of the next SVGAGuestMemDescriptor, in order to
 *     support multi-page GMR descriptor tables without forcing the
 *     driver to allocate physically contiguous memory.
 *     (ppn != 0, numPages == 0)
 *
 * Note that each physical page of SVGAGuestMemDescriptor structures
 * can describe at least 2MB of guest memory. If the driver needs to
 * use more than one page of descriptor structures, it must use one of
 * its SVGAGuestMemDescriptors to point to an additional page.  The
 * device will never automatically cross a page boundary.
 *
 * Once the driver has described a GMR, it is immediately available
 * for use via any FIFO command that uses an SVGAGuestPtr structure.
 * These pointers include a GMR identifier plus an offset into that
 * GMR.
 *
 * The driver must check the SVGA_CAP_GMR bit before using the GMR
 * registers.
 */

/*
 * Special GMR IDs, allowing SVGAGuestPtrs to point to framebuffer
 * memory as well.  In the future, these IDs could even be used to
 * allow legacy memory regions to be redefined by the guest as GMRs.
 *
 * Using the guest framebuffer (GFB) at BAR1 for general purpose DMA
 * is being phased out. Please try to use user-defined GMRs whenever
 * possible.
 */
#define SVGA_GMR_NULL         ((uint32) -1)
#define SVGA_GMR_FRAMEBUFFER  ((uint32) -2)  // Guest Framebuffer (GFB)

typedef
struct SVGAGuestMemDescriptor {
   uint32 ppn;
   uint32 numPages;
} SVGAGuestMemDescriptor;

typedef
struct SVGAGuestPtr {
   uint32 gmrId;
   uint32 offset;
} SVGAGuestPtr;


/*
 * SVGAGMRImageFormat --
 *
 *    This is a packed representation of the source 2D image format
 *    for a GMR-to-screen blit. Currently it is defined as an encoding
 *    of the screen's color depth and bits-per-pixel, however, 16 bits
 *    are reserved for future use to identify other encodings (such as
 *    RGBA or higher-precision images).
 *
 *    Currently supported formats:
 *
 *       bpp depth  Format Name
 *       --- -----  -----------
 *        32    24  32-bit BGRX
 *        24    24  24-bit BGR
 *        16    16  RGB 5-6-5
 *        16    15  RGB 5-5-5
 *
 */

typedef
struct SVGAGMRImageFormat {
   union {
      struct {
         uint32 bitsPerPixel : 8;
         uint32 colorDepth   : 8;
         uint32 reserved     : 16;  // Must be zero
      };

      uint32 value;
   };
} SVGAGMRImageFormat;

/*
 * SVGAColorBGRX --
 *
 *    A 24-bit color format (BGRX), which does not depend on the
 *    format of the legacy guest framebuffer (GFB) or the current
 *    GMRFB state.
 */

typedef
struct SVGAColorBGRX {
   union {
      struct {
         uint32 b : 8;
         uint32 g : 8;
         uint32 r : 8;
         uint32 x : 8;  // Unused
      };

      uint32 value;
   };
} SVGAColorBGRX;


/*
 * SVGASignedRect --
 * SVGASignedPoint --
 *
 *    Signed rectangle and point primitives. These are used by the new
 *    2D primitives for drawing to Screen Objects, which can occupy a
 *    signed virtual coordinate space.
 *
 *    SVGASignedRect specifies a half-open interval: the (left, top)
 *    pixel is part of the rectangle, but the (right, bottom) pixel is
 *    not.
 */

typedef
struct SVGASignedRect {
   int32  left;
   int32  top;
   int32  right;
   int32  bottom;
} SVGASignedRect;

typedef
struct SVGASignedPoint {
   int32  x;
   int32  y;
} SVGASignedPoint;


/*
 *  Capabilities
 *
 *  Note the holes in the bitfield. Missing bits have been deprecated,
 *  and must not be reused. Those capabilities will never be reported
 *  by new versions of the SVGA device.
 */

#define SVGA_CAP_NONE               0x00000000
#define SVGA_CAP_RECT_COPY          0x00000002
#define SVGA_CAP_CURSOR             0x00000020
#define SVGA_CAP_CURSOR_BYPASS      0x00000040   // Legacy (Use Cursor Bypass 3 instead)
#define SVGA_CAP_CURSOR_BYPASS_2    0x00000080   // Legacy (Use Cursor Bypass 3 instead)
#define SVGA_CAP_8BIT_EMULATION     0x00000100
#define SVGA_CAP_ALPHA_CURSOR       0x00000200
#define SVGA_CAP_3D                 0x00004000
#define SVGA_CAP_EXTENDED_FIFO      0x00008000
#define SVGA_CAP_MULTIMON           0x00010000   // Legacy multi-monitor support
#define SVGA_CAP_PITCHLOCK          0x00020000
#define SVGA_CAP_IRQMASK            0x00040000
#define SVGA_CAP_DISPLAY_TOPOLOGY   0x00080000   // Legacy multi-monitor support
#define SVGA_CAP_GMR                0x00100000
#define SVGA_CAP_TRACES             0x00200000


/*
 * FIFO register indices.
 *
 * The FIFO is a chunk of device memory mapped into guest physmem.  It
 * is always treated as 32-bit words.
 *
 * The guest driver gets to decide how to partition it between
 * - FIFO registers (there are always at least 4, specifying where the
 *   following data area is and how much data it contains; there may be
 *   more registers following these, depending on the FIFO protocol
 *   version in use)
 * - FIFO data, written by the guest and slurped out by the VMX.
 * These indices are 32-bit word offsets into the FIFO.
 */

enum {
   /*
    * Block 1 (basic registers): The originally defined FIFO registers.
    * These exist and are valid for all versions of the FIFO protocol.
    */

   SVGA_FIFO_MIN = 0,
   SVGA_FIFO_MAX,       /* The distance from MIN to MAX must be at least 10K */
   SVGA_FIFO_NEXT_CMD,
   SVGA_FIFO_STOP,

   /*
    * Block 2 (extended registers): Mandatory registers for the extended
    * FIFO.  These exist if the SVGA caps register includes
    * SVGA_CAP_EXTENDED_FIFO; some of them are valid only if their
    * associated capability bit is enabled.
    *
    * Note that when originally defined, SVGA_CAP_EXTENDED_FIFO implied
    * support only for (FIFO registers) CAPABILITIES, FLAGS, and FENCE.
    * This means that the guest has to test individually (in most cases
    * using FIFO caps) for the presence of registers after this; the VMX
    * can define "extended FIFO" to mean whatever it wants, and currently
    * won't enable it unless there's room for that set and much more.
    */

   SVGA_FIFO_CAPABILITIES = 4,
   SVGA_FIFO_FLAGS,
   // Valid with SVGA_FIFO_CAP_FENCE:
   SVGA_FIFO_FENCE,

   /*
    * Block 3a (optional extended registers): Additional registers for the
    * extended FIFO, whose presence isn't actually implied by
    * SVGA_CAP_EXTENDED_FIFO; these exist if SVGA_FIFO_MIN is high enough to
    * leave room for them.
    *
    * These in block 3a, the VMX currently considers mandatory for the
    * extended FIFO.
    */

   // Valid if exists (i.e. if extended FIFO enabled):
   SVGA_FIFO_3D_HWVERSION,       /* See SVGA3dHardwareVersion in svga3d_reg.h */
   // Valid with SVGA_FIFO_CAP_PITCHLOCK:
   SVGA_FIFO_PITCHLOCK,

   // Valid with SVGA_FIFO_CAP_CURSOR_BYPASS_3:
   SVGA_FIFO_CURSOR_ON,          /* Cursor bypass 3 show/hide register */
   SVGA_FIFO_CURSOR_X,           /* Cursor bypass 3 x register */
   SVGA_FIFO_CURSOR_Y,           /* Cursor bypass 3 y register */
   SVGA_FIFO_CURSOR_COUNT,       /* Incremented when any of the other 3 change */
   SVGA_FIFO_CURSOR_LAST_UPDATED,/* Last time the host updated the cursor */

   // Valid with SVGA_FIFO_CAP_RESERVE:
   SVGA_FIFO_RESERVED,           /* Bytes past NEXT_CMD with real contents */

   /*
    * Valid with SVGA_FIFO_CAP_SCREEN_OBJECT:
    *
    * By default this is SVGA_ID_INVALID, to indicate that the cursor
    * coordinates are specified relative to the virtual root. If this
    * is set to a specific screen ID, cursor position is reinterpreted
    * as a signed offset relative to that screen's origin. This is the
    * only way to place the cursor on a non-rooted screen.
    */
   SVGA_FIFO_CURSOR_SCREEN_ID,

   /*
    * XXX: The gap here, up until SVGA_FIFO_3D_CAPS, can be used for new
    * registers, but this must be done carefully and with judicious use of
    * capability bits, since comparisons based on SVGA_FIFO_MIN aren't
    * enough to tell you whether the register exists: we've shipped drivers
    * and products that used SVGA_FIFO_3D_CAPS but didn't know about some of
    * the earlier ones.  The actual order of introduction was:
    * - PITCHLOCK
    * - 3D_CAPS
    * - CURSOR_* (cursor bypass 3)
    * - RESERVED
    * So, code that wants to know whether it can use any of the
    * aforementioned registers, or anything else added after PITCHLOCK and
    * before 3D_CAPS, needs to reason about something other than
    * SVGA_FIFO_MIN.
    */

   /*
    * 3D caps block space; valid with 3D hardware version >=
    * SVGA3D_HWVERSION_WS6_B1.
    */
   SVGA_FIFO_3D_CAPS      = 32,
   SVGA_FIFO_3D_CAPS_LAST = 32 + 255,

   /*
    * End of VMX's current definition of "extended-FIFO registers".
    * Registers before here are always enabled/disabled as a block; either
    * the extended FIFO is enabled and includes all preceding registers, or
    * it's disabled entirely.
    *
    * Block 3b (truly optional extended registers): Additional registers for
    * the extended FIFO, which the VMX already knows how to enable and
    * disable with correct granularity.
    *
    * Registers after here exist if and only if the guest SVGA driver
    * sets SVGA_FIFO_MIN high enough to leave room for them.
    */

   // Valid if register exists:
   SVGA_FIFO_GUEST_3D_HWVERSION, /* Guest driver's 3D version */
   SVGA_FIFO_FENCE_GOAL,         /* Matching target for SVGA_IRQFLAG_FENCE_GOAL */
   SVGA_FIFO_BUSY,               /* See "FIFO Synchronization Registers" */

   /*
    * Always keep this last.  This defines the maximum number of
    * registers we know about.  At power-on, this value is placed in
    * the SVGA_REG_MEM_REGS register, and we expect the guest driver
    * to allocate this much space in FIFO memory for registers.
    */
    SVGA_FIFO_NUM_REGS
};


/*
 * Definition of registers included in extended FIFO support.
 *
 * The guest SVGA driver gets to allocate the FIFO between registers
 * and data.  It must always allocate at least 4 registers, but old
 * drivers stopped there.
 *
 * The VMX will enable extended FIFO support if and only if the guest
 * left enough room for all registers defined as part of the mandatory
 * set for the extended FIFO.
 *
 * Note that the guest drivers typically allocate the FIFO only at
 * initialization time, not at mode switches, so it's likely that the
 * number of FIFO registers won't change without a reboot.
 *
 * All registers less than this value are guaranteed to be present if
 * svgaUser->fifo.extended is set. Any later registers must be tested
 * individually for compatibility at each use (in the VMX).
 *
 * This value is used only by the VMX, so it can change without
 * affecting driver compatibility; keep it that way?
 */
#define SVGA_FIFO_EXTENDED_MANDATORY_REGS  (SVGA_FIFO_3D_CAPS_LAST + 1)


/*
 * FIFO Synchronization Registers
 *
 *  This explains the relationship between the various FIFO
 *  sync-related registers in IOSpace and in FIFO space.
 *
 *  SVGA_REG_SYNC --
 *
 *       The SYNC register can be used in two different ways by the guest:
 *
 *         1. If the guest wishes to fully sync (drain) the FIFO,
 *            it will write once to SYNC then poll on the BUSY
 *            register. The FIFO is sync'ed once BUSY is zero.
 *
 *         2. If the guest wants to asynchronously wake up the host,
 *            it will write once to SYNC without polling on BUSY.
 *            Ideally it will do this after some new commands have
 *            been placed in the FIFO, and after reading a zero
 *            from SVGA_FIFO_BUSY.
 *
 *       (1) is the original behaviour that SYNC was designed to
 *       support.  Originally, a write to SYNC would implicitly
 *       trigger a read from BUSY. This causes us to synchronously
 *       process the FIFO.
 *
 *       This behaviour has since been changed so that writing SYNC
 *       will *not* implicitly cause a read from BUSY. Instead, it
 *       makes a channel call which asynchronously wakes up the MKS
 *       thread.
 *
 *       New guests can use this new behaviour to implement (2)
 *       efficiently. This lets guests get the host's attention
 *       without waiting for the MKS to poll, which gives us much
 *       better CPU utilization on SMP hosts and on UP hosts while
 *       we're blocked on the host GPU.
 *
 *       Old guests shouldn't notice the behaviour change. SYNC was
 *       never guaranteed to process the entire FIFO, since it was
 *       bounded to a particular number of CPU cycles. Old guests will
 *       still loop on the BUSY register until the FIFO is empty.
 *
 *       Writing to SYNC currently has the following side-effects:
 *
 *         - Sets SVGA_REG_BUSY to TRUE (in the monitor)
 *         - Asynchronously wakes up the MKS thread for FIFO processing
 *         - The value written to SYNC is recorded as a "reason", for
 *           stats purposes.
 *
 *       If SVGA_FIFO_BUSY is available, drivers are advised to only
 *       write to SYNC if SVGA_FIFO_BUSY is FALSE. Drivers should set
 *       SVGA_FIFO_BUSY to TRUE after writing to SYNC. The MKS will
 *       eventually set SVGA_FIFO_BUSY on its own, but this approach
 *       lets the driver avoid sending multiple asynchronous wakeup
 *       messages to the MKS thread.
 *
 *  SVGA_REG_BUSY --
 *
 *       This register is set to TRUE when SVGA_REG_SYNC is written,
 *       and it reads as FALSE when the FIFO has been completely
 *       drained.
 *
 *       Every read from this register causes us to synchronously
 *       process FIFO commands. There is no guarantee as to how many
 *       commands each read will process.
 *
 *       CPU time spent processing FIFO commands will be billed to
 *       the guest.
 *
 *       New drivers should avoid using this register unless they
 *       need to guarantee that the FIFO is completely drained. It
 *       is overkill for performing a sync-to-fence. Older drivers
 *       will use this register for any type of synchronization.
 *
 *  SVGA_FIFO_BUSY --
 *
 *       This register is a fast way for the guest driver to check
 *       whether the FIFO is already being processed. It reads and
 *       writes at normal RAM speeds, with no monitor intervention.
 *
 *       If this register reads as TRUE, the host is guaranteeing that
 *       any new commands written into the FIFO will be noticed before
 *       the MKS goes back to sleep.
 *
 *       If this register reads as FALSE, no such guarantee can be
 *       made.
 *
 *       The guest should use this register to quickly determine
 *       whether or not it needs to wake up the host. If the guest
 *       just wrote a command or group of commands that it would like
 *       the host to begin processing, it should:
 *
 *         1. Read SVGA_FIFO_BUSY. If it reads as TRUE, no further
 *            action is necessary.
 *
 *         2. Write TRUE to SVGA_FIFO_BUSY. This informs future guest
 *            code that we've already sent a SYNC to the host and we
 *            don't need to send a duplicate.
 *
 *         3. Write a reason to SVGA_REG_SYNC. This will send an
 *            asynchronous wakeup to the MKS thread.
 */


/*
 * FIFO Capabilities
 *
 *      Fence -- Fence register and command are supported
 *      Accel Front -- Front buffer only commands are supported
 *      Pitch Lock -- Pitch lock register is supported
 *      Video -- SVGA Video overlay units are supported
 *      Escape -- Escape command is supported
 *
 * XXX: Add longer descriptions for each capability, including a list
 *      of the new features that each capability provides.
 *
 * SVGA_FIFO_CAP_SCREEN_OBJECT --
 *
 *    Provides dynamic multi-screen rendering, for improved Unity and
 *    multi-monitor modes. With Screen Object, the guest can
 *    dynamically create and destroy 'screens', which can represent
 *    Unity windows or virtual monitors. Screen Object also provides
 *    strong guarantees that DMA operations happen only when
 *    guest-initiated. Screen Object deprecates the BAR1 guest
 *    framebuffer (GFB) and all commands that work only with the GFB.
 *
 *    New registers:
 *       FIFO_CURSOR_SCREEN_ID, VIDEO_DATA_GMRID, VIDEO_DST_SCREEN_ID
 *
 *    New 2D commands:
 *       DEFINE_SCREEN, DESTROY_SCREEN, DEFINE_GMRFB, BLIT_GMRFB_TO_SCREEN,
 *       BLIT_SCREEN_TO_GMRFB, ANNOTATION_FILL, ANNOTATION_COPY
 *
 *    New 3D commands:
 *       BLIT_SURFACE_TO_SCREEN
 *
 *    New guarantees:
 *
 *       - The host will not read or write guest memory, including the GFB,
 *         except when explicitly initiated by a DMA command.
 *
 *       - All DMA, including legacy DMA like UPDATE and PRESENT_READBACK,
 *         is guaranteed to complete before any subsequent FENCEs.
 *
 *       - All legacy commands which affect a Screen (UPDATE, PRESENT,
 *         PRESENT_READBACK) as well as new Screen blit commands will
 *         all behave consistently as blits, and memory will be read
 *         or written in FIFO order.
 *
 *         For example, if you PRESENT from one SVGA3D surface to multiple
 *         places on the screen, the data copied will always be from the
 *         SVGA3D surface at the time the PRESENT was issued in the FIFO.
 *         This was not necessarily true on devices without Screen Object.
 *
 *         This means that on devices that support Screen Object, the
 *         PRESENT_READBACK command should not be necessary unless you
 *         actually want to read back the results of 3D rendering into
 *         system memory. (And for that, the BLIT_SCREEN_TO_GMRFB
 *         command provides a strict superset of functionality.)
 *
 *       - When a screen is resized, either using Screen Object commands or
 *         legacy multimon registers, its contents are preserved.
 */

#define SVGA_FIFO_CAP_NONE                  0
#define SVGA_FIFO_CAP_FENCE             (1<<0)
#define SVGA_FIFO_CAP_ACCELFRONT        (1<<1)
#define SVGA_FIFO_CAP_PITCHLOCK         (1<<2)
#define SVGA_FIFO_CAP_VIDEO             (1<<3)
#define SVGA_FIFO_CAP_CURSOR_BYPASS_3   (1<<4)
#define SVGA_FIFO_CAP_ESCAPE            (1<<5)
#define SVGA_FIFO_CAP_RESERVE           (1<<6)
#define SVGA_FIFO_CAP_SCREEN_OBJECT     (1<<7)


/*
 * FIFO Flags
 *
 *      Accel Front -- Driver should use front buffer only commands
 */

#define SVGA_FIFO_FLAG_NONE                 0
#define SVGA_FIFO_FLAG_ACCELFRONT       (1<<0)
#define SVGA_FIFO_FLAG_RESERVED        (1<<31) // Internal use only

/*
 * FIFO reservation sentinel value
 */

#define SVGA_FIFO_RESERVED_UNKNOWN      0xffffffff


/*
 * Video overlay support
 */

#define SVGA_NUM_OVERLAY_UNITS 32


/*
 * Video capabilities that the guest is currently using
 */

#define SVGA_VIDEO_FLAG_COLORKEY        0x0001


/*
 * Offsets for the video overlay registers
 */

enum {
   SVGA_VIDEO_ENABLED = 0,
   SVGA_VIDEO_FLAGS,
   SVGA_VIDEO_DATA_OFFSET,
   SVGA_VIDEO_FORMAT,
   SVGA_VIDEO_COLORKEY,
   SVGA_VIDEO_SIZE,          // Deprecated
   SVGA_VIDEO_WIDTH,
   SVGA_VIDEO_HEIGHT,
   SVGA_VIDEO_SRC_X,
   SVGA_VIDEO_SRC_Y,
   SVGA_VIDEO_SRC_WIDTH,
   SVGA_VIDEO_SRC_HEIGHT,
   SVGA_VIDEO_DST_X,         // Signed int32
   SVGA_VIDEO_DST_Y,         // Signed int32
   SVGA_VIDEO_DST_WIDTH,
   SVGA_VIDEO_DST_HEIGHT,
   SVGA_VIDEO_PITCH_1,
   SVGA_VIDEO_PITCH_2,
   SVGA_VIDEO_PITCH_3,
   SVGA_VIDEO_DATA_GMRID,    // Optional, defaults to SVGA_GMR_FRAMEBUFFER
   SVGA_VIDEO_DST_SCREEN_ID, // Optional, defaults to virtual coords (SVGA_ID_INVALID)
   SVGA_VIDEO_NUM_REGS
};


/*
 * SVGA Overlay Units
 *
 *      width and height relate to the entire source video frame.
 *      srcX, srcY, srcWidth and srcHeight represent subset of the source
 *      video frame to be displayed.
 */

typedef struct SVGAOverlayUnit {
   uint32 enabled;
   uint32 flags;
   uint32 dataOffset;
   uint32 format;
   uint32 colorKey;
   uint32 size;
   uint32 width;
   uint32 height;
   uint32 srcX;
   uint32 srcY;
   uint32 srcWidth;
   uint32 srcHeight;
   int32  dstX;
   int32  dstY;
   uint32 dstWidth;
   uint32 dstHeight;
   uint32 pitches[3];
   uint32 dataGMRId;
   uint32 dstScreenId;
} SVGAOverlayUnit;


/*
 * SVGAScreenObject --
 *
 *    This is a new way to represent a guest's multi-monitor screen or
 *    Unity window. Screen objects are only supported if the
 *    SVGA_FIFO_CAP_SCREEN_OBJECT capability bit is set.
 *
 *    If Screen Objects are supported, they can be used to fully
 *    replace the functionality provided by the framebuffer registers
 *    (SVGA_REG_WIDTH, HEIGHT, etc.) and by SVGA_CAP_DISPLAY_TOPOLOGY.
 *
 *    The screen object is a struct with guaranteed binary
 *    compatibility. New flags can be added, and the struct may grow,
 *    but existing fields must retain their meaning.
 *
 */

#define SVGA_SCREEN_HAS_ROOT    (1 << 0)  // Screen is present in the virtual coord space
#define SVGA_SCREEN_IS_PRIMARY  (1 << 1)  // Guest considers this screen to be 'primary'
#define SVGA_SCREEN_FULLSCREEN_HINT (1 << 2)   // Guest is running a fullscreen app here

typedef
struct SVGAScreenObject {
   uint32 structSize;   // sizeof(SVGAScreenObject)
   uint32 id;
   uint32 flags;
   struct {
      uint32 width;
      uint32 height;
   } size;
   struct {
      int32 x;
      int32 y;
   } root;              // Only used if SVGA_SCREEN_HAS_ROOT is set.
} SVGAScreenObject;


/*
 *  Commands in the command FIFO:
 *
 *  Command IDs defined below are used for the traditional 2D FIFO
 *  communication (not all commands are available for all versions of the
 *  SVGA FIFO protocol).
 *
 *  Note the holes in the command ID numbers: These commands have been
 *  deprecated, and the old IDs must not be reused.
 *
 *  Command IDs from 1000 to 1999 are reserved for use by the SVGA3D
 *  protocol.
 *
 *  Each command's parameters are described by the comments and
 *  structs below.
 */

typedef enum {
   SVGA_CMD_INVALID_CMD           = 0,
   SVGA_CMD_UPDATE                = 1,
   SVGA_CMD_RECT_COPY             = 3,
   SVGA_CMD_DEFINE_CURSOR         = 19,
   SVGA_CMD_DEFINE_ALPHA_CURSOR   = 22,
   SVGA_CMD_UPDATE_VERBOSE        = 25,
   SVGA_CMD_FRONT_ROP_FILL        = 29,
   SVGA_CMD_FENCE                 = 30,
   SVGA_CMD_ESCAPE                = 33,
   SVGA_CMD_DEFINE_SCREEN         = 34,
   SVGA_CMD_DESTROY_SCREEN        = 35,
   SVGA_CMD_DEFINE_GMRFB          = 36,
   SVGA_CMD_BLIT_GMRFB_TO_SCREEN  = 37,
   SVGA_CMD_BLIT_SCREEN_TO_GMRFB  = 38,
   SVGA_CMD_ANNOTATION_FILL       = 39,
   SVGA_CMD_ANNOTATION_COPY       = 40,
   SVGA_CMD_MAX
} SVGAFifoCmdId;

#define SVGA_CMD_MAX_ARGS           64


/*
 * SVGA_CMD_UPDATE --
 *
 *    This is a DMA transfer which copies from the Guest Framebuffer
 *    (GFB) at BAR1 + SVGA_REG_FB_OFFSET to any screens which
 *    intersect with the provided virtual rectangle.
 *
 *    This command does not support using arbitrary guest memory as a
 *    data source- it only works with the pre-defined GFB memory.
 *    This command also does not support signed virtual coordinates.
 *    If you have defined screens (using SVGA_CMD_DEFINE_SCREEN) with
 *    negative root x/y coordinates, the negative portion of those
 *    screens will not be reachable by this command.
 *
 *    This command is not necessary when using framebuffer
 *    traces. Traces are automatically enabled if the SVGA FIFO is
 *    disabled, and you may explicitly enable/disable traces using
 *    SVGA_REG_TRACES. With traces enabled, any write to the GFB will
 *    automatically act as if a subsequent SVGA_CMD_UPDATE was issued.
 *
 *    Traces and SVGA_CMD_UPDATE are the only supported ways to render
 *    pseudocolor screen updates. The newer Screen Object commands
 *    only support true color formats.
 *
 * Availability:
 *    Always available.
 */

typedef
struct {
   uint32 x;
   uint32 y;
   uint32 width;
   uint32 height;
} SVGAFifoCmdUpdate;


/*
 * SVGA_CMD_RECT_COPY --
 *
 *    Perform a rectangular DMA transfer from one area of the GFB to
 *    another, and copy the result to any screens which intersect it.
 *
 * Availability:
 *    SVGA_CAP_RECT_COPY
 */

typedef
struct {
   uint32 srcX;
   uint32 srcY;
   uint32 destX;
   uint32 destY;
   uint32 width;
   uint32 height;
} SVGAFifoCmdRectCopy;


/*
 * SVGA_CMD_DEFINE_CURSOR --
 *
 *    Provide a new cursor image, as an AND/XOR mask.
 *
 *    The recommended way to position the cursor overlay is by using
 *    the SVGA_FIFO_CURSOR_* registers, supported by the
 *    SVGA_FIFO_CAP_CURSOR_BYPASS_3 capability.
 *
 * Availability:
 *    SVGA_CAP_CURSOR
 */

typedef
struct {
   uint32 id;             // Reserved, must be zero.
   uint32 hotspotX;
   uint32 hotspotY;
   uint32 width;
   uint32 height;
   uint32 andMaskDepth;   // Value must be 1 or equal to BITS_PER_PIXEL
   uint32 xorMaskDepth;   // Value must be 1 or equal to BITS_PER_PIXEL
   /*
    * Followed by scanline data for AND mask, then XOR mask.
    * Each scanline is padded to a 32-bit boundary.
   */
} SVGAFifoCmdDefineCursor;


/*
 * SVGA_CMD_DEFINE_ALPHA_CURSOR --
 *
 *    Provide a new cursor image, in 32-bit BGRA format.
 *
 *    The recommended way to position the cursor overlay is by using
 *    the SVGA_FIFO_CURSOR_* registers, supported by the
 *    SVGA_FIFO_CAP_CURSOR_BYPASS_3 capability.
 *
 * Availability:
 *    SVGA_CAP_ALPHA_CURSOR
 */

typedef
struct {
   uint32 id;             // Reserved, must be zero.
   uint32 hotspotX;
   uint32 hotspotY;
   uint32 width;
   uint32 height;
   /* Followed by scanline data */
} SVGAFifoCmdDefineAlphaCursor;


/*
 * SVGA_CMD_UPDATE_VERBOSE --
 *
 *    Just like SVGA_CMD_UPDATE, but also provide a per-rectangle
 *    'reason' value, an opaque cookie which is used by internal
 *    debugging tools. Third party drivers should not use this
 *    command.
 *
 * Availability:
 *    SVGA_CAP_EXTENDED_FIFO
 */

typedef
struct {
   uint32 x;
   uint32 y;
   uint32 width;
   uint32 height;
   uint32 reason;
} SVGAFifoCmdUpdateVerbose;


/*
 * SVGA_CMD_FRONT_ROP_FILL --
 *
 *    This is a hint which tells the SVGA device that the driver has
 *    just filled a rectangular region of the GFB with a solid
 *    color. Instead of reading these pixels from the GFB, the device
 *    can assume that they all equal 'color'. This is primarily used
 *    for remote desktop protocols.
 *
 * Availability:
 *    SVGA_FIFO_CAP_ACCELFRONT
 */

#define  SVGA_ROP_COPY                    0x03

typedef
struct {
   uint32 color;     // In the same format as the GFB
   uint32 x;
   uint32 y;
   uint32 width;
   uint32 height;
   uint32 rop;       // Must be SVGA_ROP_COPY
} SVGAFifoCmdFrontRopFill;


/*
 * SVGA_CMD_FENCE --
 *
 *    Insert a synchronization fence.  When the SVGA device reaches
 *    this command, it will copy the 'fence' value into the
 *    SVGA_FIFO_FENCE register. It will also compare the fence against
 *    SVGA_FIFO_FENCE_GOAL. If the fence matches the goal and the
 *    SVGA_IRQFLAG_FENCE_GOAL interrupt is enabled, the device will
 *    raise this interrupt.
 *
 * Availability:
 *    SVGA_FIFO_FENCE for this command,
 *    SVGA_CAP_IRQMASK for SVGA_FIFO_FENCE_GOAL.
 */

typedef
struct {
   uint32 fence;
} SVGAFifoCmdFence;


/*
 * SVGA_CMD_ESCAPE --
 *
 *    Send an extended or vendor-specific variable length command.
 *    This is used for video overlay, third party plugins, and
 *    internal debugging tools. See svga_escape.h
 *
 * Availability:
 *    SVGA_FIFO_CAP_ESCAPE
 */

typedef
struct {
   uint32 nsid;
   uint32 size;
   /* followed by 'size' bytes of data */
} SVGAFifoCmdEscape;


/*
 * SVGA_CMD_DEFINE_SCREEN --
 *
 *    Define or redefine an SVGAScreenObject. See the description of
 *    SVGAScreenObject above.  The video driver is responsible for
 *    generating new screen IDs. They should be small positive
 *    integers. The virtual device will have an implementation
 *    specific upper limit on the number of screen IDs
 *    supported. Drivers are responsible for recycling IDs. The first
 *    valid ID is zero.
 *
 *    - Interaction with other registers:
 *
 *    For backwards compatibility, when the GFB mode registers (WIDTH,
 *    HEIGHT, PITCHLOCK, BITS_PER_PIXEL) are modified, the SVGA device
 *    deletes all screens other than screen #0, and redefines screen
 *    #0 according to the specified mode. Drivers that use
 *    SVGA_CMD_DEFINE_SCREEN should destroy or redefine screen #0.
 *
 *    If you use screen objects, do not use the legacy multi-mon
 *    registers (SVGA_REG_NUM_GUEST_DISPLAYS, SVGA_REG_DISPLAY_*).
 *
 * Availability:
 *    SVGA_FIFO_CAP_SCREEN_OBJECT
 */

typedef
struct {
   SVGAScreenObject screen;   // Variable-length according to version
} SVGAFifoCmdDefineScreen;


/*
 * SVGA_CMD_DESTROY_SCREEN --
 *
 *    Destroy an SVGAScreenObject. Its ID is immediately available for
 *    re-use.
 *
 * Availability:
 *    SVGA_FIFO_CAP_SCREEN_OBJECT
 */

typedef
struct {
   uint32 screenId;
} SVGAFifoCmdDestroyScreen;


/*
 * SVGA_CMD_DEFINE_GMRFB --
 *
 *    This command sets a piece of SVGA device state called the
 *    Guest Memory Region Framebuffer, or GMRFB. The GMRFB is a
 *    piece of light-weight state which identifies the location and
 *    format of an image in guest memory or in BAR1. The GMRFB has
 *    an arbitrary size, and it doesn't need to match the geometry
 *    of the GFB or any screen object.
 *
 *    The GMRFB can be redefined as often as you like. You could
 *    always use the same GMRFB, you could redefine it before
 *    rendering from a different guest screen, or you could even
 *    redefine it before every blit.
 *
 *    There are multiple ways to use this command. The simplest way is
 *    to use it to move the framebuffer either to elsewhere in the GFB
 *    (BAR1) memory region, or to a user-defined GMR. This lets a
 *    driver use a framebuffer allocated entirely out of normal system
 *    memory, which we encourage.
 *
 *    Another way to use this command is to set up a ring buffer of
 *    updates in GFB memory. If a driver wants to ensure that no
 *    frames are skipped by the SVGA device, it is important that the
 *    driver not modify the source data for a blit until the device is
 *    done processing the command. One efficient way to accomplish
 *    this is to use a ring of small DMA buffers. Each buffer is used
 *    for one blit, then we move on to the next buffer in the
 *    ring. The FENCE mechanism is used to protect each buffer from
 *    re-use until the device is finished with that buffer's
 *    corresponding blit.
 *
 *    This command does not affect the meaning of SVGA_CMD_UPDATE.
 *    UPDATEs always occur from the legacy GFB memory area. This
 *    command has no support for pseudocolor GMRFBs. Currently only
 *    true-color 15, 16, and 24-bit depths are supported. Future
 *    devices may expose capabilities for additional framebuffer
 *    formats.
 *
 *    The default GMRFB value is undefined. Drivers must always send
 *    this command at least once before performing any blit from the
 *    GMRFB.
 *
 * Availability:
 *    SVGA_FIFO_CAP_SCREEN_OBJECT
 */

typedef
struct {
   SVGAGuestPtr        ptr;
   uint32              bytesPerLine;
   SVGAGMRImageFormat  format;
} SVGAFifoCmdDefineGMRFB;


/*
 * SVGA_CMD_BLIT_GMRFB_TO_SCREEN --
 *
 *    This is a guest-to-host blit. It performs a DMA operation to
 *    copy a rectangular region of pixels from the current GMRFB to
 *    one or more Screen Objects.
 *
 *    The destination coordinate may be specified relative to a
 *    screen's origin (if a screen ID is specified) or relative to the
 *    virtual coordinate system's origin (if the screen ID is
 *    SVGA_ID_INVALID). The actual destination may span zero or more
 *    screens, in the case of a virtual destination rect or a rect
 *    which extends off the edge of the specified screen.
 *
 *    This command writes to the screen's "base layer": the underlying
 *    framebuffer which exists below any cursor or video overlays. No
 *    action is necessary to explicitly hide or update any overlays
 *    which exist on top of the updated region.
 *
 *    The SVGA device is guaranteed to finish reading from the GMRFB
 *    by the time any subsequent FENCE commands are reached.
 *
 *    This command consumes an annotation. See the
 *    SVGA_CMD_ANNOTATION_* commands for details.
 *
 * Availability:
 *    SVGA_FIFO_CAP_SCREEN_OBJECT
 */

typedef
struct {
   SVGASignedPoint  srcOrigin;
   SVGASignedRect   destRect;
   uint32           destScreenId;
} SVGAFifoCmdBlitGMRFBToScreen;


/*
 * SVGA_CMD_BLIT_SCREEN_TO_GMRFB --
 *
 *    This is a host-to-guest blit. It performs a DMA operation to
 *    copy a rectangular region of pixels from a single Screen Object
 *    back to the current GMRFB.
 *
 *    Usage note: This command should be used rarely. It will
 *    typically be inefficient, but it is necessary for some types of
 *    synchronization between 3D (GPU) and 2D (CPU) rendering into
 *    overlapping areas of a screen.
 *
 *    The source coordinate is specified relative to a screen's
 *    origin. The provided screen ID must be valid. If any parameters
 *    are invalid, the resulting pixel values are undefined.
 *
 *    This command reads the screen's "base layer". Overlays like
 *    video and cursor are not included, but any data which was sent
 *    using a blit-to-screen primitive will be available, no matter
 *    whether the data's original source was the GMRFB or the 3D
 *    acceleration hardware.
 *
 *    Note that our guest-to-host blits and host-to-guest blits aren't
 *    symmetric in their current implementation. While the parameters
 *    are identical, host-to-guest blits are a lot less featureful.
 *    They do not support clipping: If the source parameters don't
 *    fully fit within a screen, the blit fails. They must originate
 *    from exactly one screen. Virtual coordinates are not directly
 *    supported.
 *
 *    Host-to-guest blits do support the same set of GMRFB formats
 *    offered by guest-to-host blits.
 *
 *    The SVGA device is guaranteed to finish writing to the GMRFB by
 *    the time any subsequent FENCE commands are reached.
 *
 * Availability:
 *    SVGA_FIFO_CAP_SCREEN_OBJECT
 */

typedef
struct {
   SVGASignedPoint  destOrigin;
   SVGASignedRect   srcRect;
   uint32           srcScreenId;
} SVGAFifoCmdBlitScreenToGMRFB;


/*
 * SVGA_CMD_ANNOTATION_FILL --
 *
 *    This is a blit annotation. This command stores a small piece of
 *    device state which is consumed by the next blit-to-screen
 *    command. The state is only cleared by commands which are
 *    specifically documented as consuming an annotation. Other
 *    commands (such as ESCAPEs for debugging) may intervene between
 *    the annotation and its associated blit.
 *
 *    This annotation is a promise about the contents of the next
 *    blit: The video driver is guaranteeing that all pixels in that
 *    blit will have the same value, specified here as a color in
 *    SVGAColorBGRX format.
 *
 *    The SVGA device can still render the blit correctly even if it
 *    ignores this annotation, but the annotation may allow it to
 *    perform the blit more efficiently, for example by ignoring the
 *    source data and performing a fill in hardware.
 *
 *    This annotation is most important for performance when the
 *    user's display is being remoted over a network connection.
 *
 * Availability:
 *    SVGA_FIFO_CAP_SCREEN_OBJECT
 */

typedef
struct {
   SVGAColorBGRX  color;
} SVGAFifoCmdAnnotationFill;


/*
 * SVGA_CMD_ANNOTATION_COPY --
 *
 *    This is a blit annotation. See SVGA_CMD_ANNOTATION_FILL for more
 *    information about annotations.
 *
 *    This annotation is a promise about the contents of the next
 *    blit: The video driver is guaranteeing that all pixels in that
 *    blit will have the same value as those which already exist at an
 *    identically-sized region on the same or a different screen.
 *
 *    Note that the source pixels for the COPY in this annotation are
 *    sampled before applying the anqnotation's associated blit. They
 *    are allowed to overlap with the blit's destination pixels.
 *
 *    The copy source rectangle is specified the same way as the blit
 *    destination: it can be a rectangle which spans zero or more
 *    screens, specified relative to either a screen or to the virtual
 *    coordinate system's origin. If the source rectangle includes
 *    pixels which are not from exactly one screen, the results are
 *    undefined.
 *
 * Availability:
 *    SVGA_FIFO_CAP_SCREEN_OBJECT
 */

typedef
struct {
   SVGASignedPoint  srcOrigin;
   uint32           srcScreenId;
} SVGAFifoCmdAnnotationCopy;

#endif
OpenPOWER on IntegriCloud