1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
|
/*
* Copyright (c) 2015, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
/*
* GK20A does not have dedicated video memory, and to accurately represent this
* fact Nouveau will not create a RAM device for it. Therefore its instmem
* implementation must be done directly on top of system memory, while providing
* coherent read and write operations.
*
* Instmem can be allocated through two means:
* 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory
* pages contiguous to the GPU. This is the preferred way.
* 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically
* contiguous memory.
*
* In both cases CPU read and writes are performed using PRAMIN (i.e. using the
* GPU path) to ensure these operations are coherent for the GPU. This allows us
* to use more "relaxed" allocation parameters when using the DMA API, since we
* never need a kernel mapping.
*/
#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base)
#include "priv.h"
#include <core/memory.h>
#include <core/mm.h>
#include <subdev/fb.h>
#ifdef __KERNEL__
#include <linux/dma-attrs.h>
#include <linux/iommu.h>
#include <nouveau_platform.h>
#endif
#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory)
struct gk20a_instobj {
struct nvkm_memory memory;
struct gk20a_instmem *imem;
struct nvkm_mem mem;
};
/*
* Used for objects allocated using the DMA API
*/
struct gk20a_instobj_dma {
struct gk20a_instobj base;
void *cpuaddr;
dma_addr_t handle;
struct nvkm_mm_node r;
};
/*
* Used for objects flattened using the IOMMU API
*/
struct gk20a_instobj_iommu {
struct gk20a_instobj base;
/* array of base.mem->size pages */
struct page *pages[];
};
struct gk20a_instmem {
struct nvkm_instmem base;
unsigned long lock_flags;
spinlock_t lock;
u64 addr;
/* Only used if IOMMU if present */
struct mutex *mm_mutex;
struct nvkm_mm *mm;
struct iommu_domain *domain;
unsigned long iommu_pgshift;
/* Only used by DMA API */
struct dma_attrs attrs;
};
static enum nvkm_memory_target
gk20a_instobj_target(struct nvkm_memory *memory)
{
return NVKM_MEM_TARGET_HOST;
}
static u64
gk20a_instobj_addr(struct nvkm_memory *memory)
{
return gk20a_instobj(memory)->mem.offset;
}
static u64
gk20a_instobj_size(struct nvkm_memory *memory)
{
return (u64)gk20a_instobj(memory)->mem.size << 12;
}
static void __iomem *
gk20a_instobj_acquire(struct nvkm_memory *memory)
{
struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
unsigned long flags;
spin_lock_irqsave(&imem->lock, flags);
imem->lock_flags = flags;
return NULL;
}
static void
gk20a_instobj_release(struct nvkm_memory *memory)
{
struct gk20a_instmem *imem = gk20a_instobj(memory)->imem;
spin_unlock_irqrestore(&imem->lock, imem->lock_flags);
}
/*
* Use PRAMIN to read/write data and avoid coherency issues.
* PRAMIN uses the GPU path and ensures data will always be coherent.
*
* A dynamic mapping based solution would be desirable in the future, but
* the issue remains of how to maintain coherency efficiently. On ARM it is
* not easy (if possible at all?) to create uncached temporary mappings.
*/
static u32
gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
struct gk20a_instmem *imem = node->imem;
struct nvkm_device *device = imem->base.subdev.device;
u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
u32 data;
if (unlikely(imem->addr != base)) {
nvkm_wr32(device, 0x001700, base >> 16);
imem->addr = base;
}
data = nvkm_rd32(device, 0x700000 + addr);
return data;
}
static void
gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
struct gk20a_instmem *imem = node->imem;
struct nvkm_device *device = imem->base.subdev.device;
u64 base = (node->mem.offset + offset) & 0xffffff00000ULL;
u64 addr = (node->mem.offset + offset) & 0x000000fffffULL;
if (unlikely(imem->addr != base)) {
nvkm_wr32(device, 0x001700, base >> 16);
imem->addr = base;
}
nvkm_wr32(device, 0x700000 + addr, data);
}
static void
gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
nvkm_vm_map_at(vma, offset, &node->mem);
}
static void
gk20a_instobj_dtor_dma(struct gk20a_instobj *_node)
{
struct gk20a_instobj_dma *node = (void *)_node;
struct gk20a_instmem *imem = _node->imem;
struct device *dev = nv_device_base(nv_device(imem));
if (unlikely(!node->cpuaddr))
return;
dma_free_attrs(dev, _node->mem.size << PAGE_SHIFT, node->cpuaddr,
node->handle, &imem->attrs);
}
static void
gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node)
{
struct gk20a_instobj_iommu *node = (void *)_node;
struct gk20a_instmem *imem = _node->imem;
struct nvkm_mm_node *r;
int i;
if (unlikely(list_empty(&_node->mem.regions)))
return;
r = list_first_entry(&_node->mem.regions, struct nvkm_mm_node,
rl_entry);
/* clear bit 34 to unmap pages */
r->offset &= ~BIT(34 - imem->iommu_pgshift);
/* Unmap pages from GPU address space and free them */
for (i = 0; i < _node->mem.size; i++) {
iommu_unmap(imem->domain,
(r->offset + i) << imem->iommu_pgshift, PAGE_SIZE);
__free_page(node->pages[i]);
}
/* Release area from GPU address space */
mutex_lock(imem->mm_mutex);
nvkm_mm_free(imem->mm, &r);
mutex_unlock(imem->mm_mutex);
}
static void *
gk20a_instobj_dtor(struct nvkm_memory *memory)
{
struct gk20a_instobj *node = gk20a_instobj(memory);
struct gk20a_instmem *imem = node->imem;
if (imem->domain)
gk20a_instobj_dtor_iommu(node);
else
gk20a_instobj_dtor_dma(node);
return node;
}
static const struct nvkm_memory_func
gk20a_instobj_func = {
.dtor = gk20a_instobj_dtor,
.target = gk20a_instobj_target,
.addr = gk20a_instobj_addr,
.size = gk20a_instobj_size,
.acquire = gk20a_instobj_acquire,
.release = gk20a_instobj_release,
.rd32 = gk20a_instobj_rd32,
.wr32 = gk20a_instobj_wr32,
.map = gk20a_instobj_map,
};
static int
gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align,
struct gk20a_instobj **_node)
{
struct gk20a_instobj_dma *node;
struct nvkm_subdev *subdev = &imem->base.subdev;
struct device *dev = subdev->device->dev;
if (!(node = kzalloc(sizeof(*node), GFP_KERNEL)))
return -ENOMEM;
*_node = &node->base;
node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT,
&node->handle, GFP_KERNEL,
&imem->attrs);
if (!node->cpuaddr) {
nvkm_error(subdev, "cannot allocate DMA memory\n");
return -ENOMEM;
}
/* alignment check */
if (unlikely(node->handle & (align - 1)))
nvkm_warn(subdev,
"memory not aligned as requested: %pad (0x%x)\n",
&node->handle, align);
/* present memory for being mapped using small pages */
node->r.type = 12;
node->r.offset = node->handle >> 12;
node->r.length = (npages << PAGE_SHIFT) >> 12;
node->base.mem.offset = node->handle;
INIT_LIST_HEAD(&node->base.mem.regions);
list_add_tail(&node->r.rl_entry, &node->base.mem.regions);
return 0;
}
static int
gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align,
struct gk20a_instobj **_node)
{
struct gk20a_instobj_iommu *node;
struct nvkm_subdev *subdev = &imem->base.subdev;
struct nvkm_mm_node *r;
int ret;
int i;
if (!(node = kzalloc(sizeof(*node) +
sizeof( node->pages[0]) * npages, GFP_KERNEL)))
return -ENOMEM;
*_node = &node->base;
/* Allocate backing memory */
for (i = 0; i < npages; i++) {
struct page *p = alloc_page(GFP_KERNEL);
if (p == NULL) {
ret = -ENOMEM;
goto free_pages;
}
node->pages[i] = p;
}
mutex_lock(imem->mm_mutex);
/* Reserve area from GPU address space */
ret = nvkm_mm_head(imem->mm, 0, 1, npages, npages,
align >> imem->iommu_pgshift, &r);
mutex_unlock(imem->mm_mutex);
if (ret) {
nvkm_error(subdev, "virtual space is full!\n");
goto free_pages;
}
/* Map into GPU address space */
for (i = 0; i < npages; i++) {
struct page *p = node->pages[i];
u32 offset = (r->offset + i) << imem->iommu_pgshift;
ret = iommu_map(imem->domain, offset, page_to_phys(p),
PAGE_SIZE, IOMMU_READ | IOMMU_WRITE);
if (ret < 0) {
nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret);
while (i-- > 0) {
offset -= PAGE_SIZE;
iommu_unmap(imem->domain, offset, PAGE_SIZE);
}
goto release_area;
}
}
/* Bit 34 tells that an address is to be resolved through the IOMMU */
r->offset |= BIT(34 - imem->iommu_pgshift);
node->base.mem.offset = ((u64)r->offset) << imem->iommu_pgshift;
INIT_LIST_HEAD(&node->base.mem.regions);
list_add_tail(&r->rl_entry, &node->base.mem.regions);
return 0;
release_area:
mutex_lock(imem->mm_mutex);
nvkm_mm_free(imem->mm, &r);
mutex_unlock(imem->mm_mutex);
free_pages:
for (i = 0; i < npages && node->pages[i] != NULL; i++)
__free_page(node->pages[i]);
return ret;
}
static int
gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero,
struct nvkm_memory **pmemory)
{
struct gk20a_instmem *imem = gk20a_instmem(base);
struct gk20a_instobj *node;
struct nvkm_subdev *subdev = &imem->base.subdev;
int ret;
nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__,
imem->domain ? "IOMMU" : "DMA", size, align);
/* Round size and align to page bounds */
size = max(roundup(size, PAGE_SIZE), PAGE_SIZE);
align = max(roundup(align, PAGE_SIZE), PAGE_SIZE);
if (imem->domain)
ret = gk20a_instobj_ctor_iommu(imem, size >> PAGE_SHIFT,
align, &node);
else
ret = gk20a_instobj_ctor_dma(imem, size >> PAGE_SHIFT,
align, &node);
if (ret)
return ret;
*pmemory = &node->memory;
nvkm_memory_ctor(&gk20a_instobj_func, &node->memory);
node->imem = imem;
/* present memory for being mapped using small pages */
node->mem.size = size >> 12;
node->mem.memtype = 0;
node->mem.page_shift = 12;
nvkm_debug(subdev, "alloc size: 0x%x, align: 0x%x, gaddr: 0x%llx\n",
size, align, node->mem.offset);
return 0;
}
static int
gk20a_instmem_fini(struct nvkm_object *object, bool suspend)
{
struct gk20a_instmem *imem = (void *)object;
imem->addr = ~0ULL;
return nvkm_instmem_fini(&imem->base, suspend);
}
static int
gk20a_instmem_ctor(struct nvkm_object *parent, struct nvkm_object *engine,
struct nvkm_oclass *oclass, void *data, u32 size,
struct nvkm_object **pobject)
{
struct nvkm_device *device = (void *)parent;
struct gk20a_instmem *imem;
int ret;
ret = nvkm_instmem_create(parent, engine, oclass, &imem);
*pobject = nv_object(imem);
if (ret)
return ret;
spin_lock_init(&imem->lock);
if (device->gpu->iommu.domain) {
imem->domain = device->gpu->iommu.domain;
imem->mm = device->gpu->iommu.mm;
imem->iommu_pgshift = device->gpu->iommu.pgshift;
imem->mm_mutex = &device->gpu->iommu.mutex;
nvkm_info(&imem->base.subdev, "using IOMMU\n");
} else {
init_dma_attrs(&imem->attrs);
/*
* We will access instmem through PRAMIN and thus do not need a
* consistent CPU pointer or kernel mapping
*/
dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs);
dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs);
dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs);
dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs);
nvkm_info(&imem->base.subdev, "using DMA API\n");
}
return 0;
}
struct nvkm_oclass *
gk20a_instmem_oclass = &(struct nvkm_instmem_impl) {
.base.handle = NV_SUBDEV(INSTMEM, 0xea),
.base.ofuncs = &(struct nvkm_ofuncs) {
.ctor = gk20a_instmem_ctor,
.dtor = _nvkm_instmem_dtor,
.init = _nvkm_instmem_init,
.fini = gk20a_instmem_fini,
},
.memory_new = gk20a_instobj_new,
.persistent = true,
.zero = false,
}.base;
|