1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
|
// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Clock Protocol
*
* Copyright (C) 2018 ARM Ltd.
*/
#include "common.h"
enum scmi_clock_protocol_cmd {
CLOCK_ATTRIBUTES = 0x3,
CLOCK_DESCRIBE_RATES = 0x4,
CLOCK_RATE_SET = 0x5,
CLOCK_RATE_GET = 0x6,
CLOCK_CONFIG_SET = 0x7,
};
struct scmi_msg_resp_clock_protocol_attributes {
__le16 num_clocks;
u8 max_async_req;
u8 reserved;
};
struct scmi_msg_resp_clock_attributes {
__le32 attributes;
#define CLOCK_ENABLE BIT(0)
u8 name[SCMI_MAX_STR_SIZE];
};
struct scmi_clock_set_config {
__le32 id;
__le32 attributes;
};
struct scmi_msg_clock_describe_rates {
__le32 id;
__le32 rate_index;
};
struct scmi_msg_resp_clock_describe_rates {
__le32 num_rates_flags;
#define NUM_RETURNED(x) ((x) & 0xfff)
#define RATE_DISCRETE(x) !((x) & BIT(12))
#define NUM_REMAINING(x) ((x) >> 16)
struct {
__le32 value_low;
__le32 value_high;
} rate[0];
#define RATE_TO_U64(X) \
({ \
typeof(X) x = (X); \
le32_to_cpu((x).value_low) | (u64)le32_to_cpu((x).value_high) << 32; \
})
};
struct scmi_clock_set_rate {
__le32 flags;
#define CLOCK_SET_ASYNC BIT(0)
#define CLOCK_SET_DELAYED BIT(1)
#define CLOCK_SET_ROUND_UP BIT(2)
#define CLOCK_SET_ROUND_AUTO BIT(3)
__le32 id;
__le32 value_low;
__le32 value_high;
};
struct clock_info {
int num_clocks;
int max_async_req;
struct scmi_clock_info *clk;
};
static int scmi_clock_protocol_attributes_get(const struct scmi_handle *handle,
struct clock_info *ci)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_clock_protocol_attributes *attr;
ret = scmi_one_xfer_init(handle, PROTOCOL_ATTRIBUTES,
SCMI_PROTOCOL_CLOCK, 0, sizeof(*attr), &t);
if (ret)
return ret;
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret) {
ci->num_clocks = le16_to_cpu(attr->num_clocks);
ci->max_async_req = attr->max_async_req;
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_clock_attributes_get(const struct scmi_handle *handle,
u32 clk_id, struct scmi_clock_info *clk)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_clock_attributes *attr;
ret = scmi_one_xfer_init(handle, CLOCK_ATTRIBUTES, SCMI_PROTOCOL_CLOCK,
sizeof(clk_id), sizeof(*attr), &t);
if (ret)
return ret;
*(__le32 *)t->tx.buf = cpu_to_le32(clk_id);
attr = t->rx.buf;
ret = scmi_do_xfer(handle, t);
if (!ret)
memcpy(clk->name, attr->name, SCMI_MAX_STR_SIZE);
else
clk->name[0] = '\0';
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_clock_describe_rates_get(const struct scmi_handle *handle, u32 clk_id,
struct scmi_clock_info *clk)
{
u64 *rate;
int ret, cnt;
bool rate_discrete = false;
u32 tot_rate_cnt = 0, rates_flag;
u16 num_returned, num_remaining;
struct scmi_xfer *t;
struct scmi_msg_clock_describe_rates *clk_desc;
struct scmi_msg_resp_clock_describe_rates *rlist;
ret = scmi_one_xfer_init(handle, CLOCK_DESCRIBE_RATES,
SCMI_PROTOCOL_CLOCK, sizeof(*clk_desc), 0, &t);
if (ret)
return ret;
clk_desc = t->tx.buf;
rlist = t->rx.buf;
do {
clk_desc->id = cpu_to_le32(clk_id);
/* Set the number of rates to be skipped/already read */
clk_desc->rate_index = cpu_to_le32(tot_rate_cnt);
ret = scmi_do_xfer(handle, t);
if (ret)
goto err;
rates_flag = le32_to_cpu(rlist->num_rates_flags);
num_remaining = NUM_REMAINING(rates_flag);
rate_discrete = RATE_DISCRETE(rates_flag);
num_returned = NUM_RETURNED(rates_flag);
if (tot_rate_cnt + num_returned > SCMI_MAX_NUM_RATES) {
dev_err(handle->dev, "No. of rates > MAX_NUM_RATES");
break;
}
if (!rate_discrete) {
clk->range.min_rate = RATE_TO_U64(rlist->rate[0]);
clk->range.max_rate = RATE_TO_U64(rlist->rate[1]);
clk->range.step_size = RATE_TO_U64(rlist->rate[2]);
dev_dbg(handle->dev, "Min %llu Max %llu Step %llu Hz\n",
clk->range.min_rate, clk->range.max_rate,
clk->range.step_size);
break;
}
rate = &clk->list.rates[tot_rate_cnt];
for (cnt = 0; cnt < num_returned; cnt++, rate++) {
*rate = RATE_TO_U64(rlist->rate[cnt]);
dev_dbg(handle->dev, "Rate %llu Hz\n", *rate);
}
tot_rate_cnt += num_returned;
/*
* check for both returned and remaining to avoid infinite
* loop due to buggy firmware
*/
} while (num_returned && num_remaining);
if (rate_discrete)
clk->list.num_rates = tot_rate_cnt;
err:
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_clock_rate_get(const struct scmi_handle *handle, u32 clk_id, u64 *value)
{
int ret;
struct scmi_xfer *t;
ret = scmi_one_xfer_init(handle, CLOCK_RATE_GET, SCMI_PROTOCOL_CLOCK,
sizeof(__le32), sizeof(u64), &t);
if (ret)
return ret;
*(__le32 *)t->tx.buf = cpu_to_le32(clk_id);
ret = scmi_do_xfer(handle, t);
if (!ret) {
__le32 *pval = t->rx.buf;
*value = le32_to_cpu(*pval);
*value |= (u64)le32_to_cpu(*(pval + 1)) << 32;
}
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_clock_rate_set(const struct scmi_handle *handle, u32 clk_id,
u32 config, u64 rate)
{
int ret;
struct scmi_xfer *t;
struct scmi_clock_set_rate *cfg;
ret = scmi_one_xfer_init(handle, CLOCK_RATE_SET, SCMI_PROTOCOL_CLOCK,
sizeof(*cfg), 0, &t);
if (ret)
return ret;
cfg = t->tx.buf;
cfg->flags = cpu_to_le32(config);
cfg->id = cpu_to_le32(clk_id);
cfg->value_low = cpu_to_le32(rate & 0xffffffff);
cfg->value_high = cpu_to_le32(rate >> 32);
ret = scmi_do_xfer(handle, t);
scmi_one_xfer_put(handle, t);
return ret;
}
static int
scmi_clock_config_set(const struct scmi_handle *handle, u32 clk_id, u32 config)
{
int ret;
struct scmi_xfer *t;
struct scmi_clock_set_config *cfg;
ret = scmi_one_xfer_init(handle, CLOCK_CONFIG_SET, SCMI_PROTOCOL_CLOCK,
sizeof(*cfg), 0, &t);
if (ret)
return ret;
cfg = t->tx.buf;
cfg->id = cpu_to_le32(clk_id);
cfg->attributes = cpu_to_le32(config);
ret = scmi_do_xfer(handle, t);
scmi_one_xfer_put(handle, t);
return ret;
}
static int scmi_clock_enable(const struct scmi_handle *handle, u32 clk_id)
{
return scmi_clock_config_set(handle, clk_id, CLOCK_ENABLE);
}
static int scmi_clock_disable(const struct scmi_handle *handle, u32 clk_id)
{
return scmi_clock_config_set(handle, clk_id, 0);
}
static int scmi_clock_count_get(const struct scmi_handle *handle)
{
struct clock_info *ci = handle->clk_priv;
return ci->num_clocks;
}
static const struct scmi_clock_info *
scmi_clock_info_get(const struct scmi_handle *handle, u32 clk_id)
{
struct clock_info *ci = handle->clk_priv;
struct scmi_clock_info *clk = ci->clk + clk_id;
if (!clk->name || !clk->name[0])
return NULL;
return clk;
}
static struct scmi_clk_ops clk_ops = {
.count_get = scmi_clock_count_get,
.info_get = scmi_clock_info_get,
.rate_get = scmi_clock_rate_get,
.rate_set = scmi_clock_rate_set,
.enable = scmi_clock_enable,
.disable = scmi_clock_disable,
};
static int scmi_clock_protocol_init(struct scmi_handle *handle)
{
u32 version;
int clkid, ret;
struct clock_info *cinfo;
scmi_version_get(handle, SCMI_PROTOCOL_CLOCK, &version);
dev_dbg(handle->dev, "Clock Version %d.%d\n",
PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
cinfo = devm_kzalloc(handle->dev, sizeof(*cinfo), GFP_KERNEL);
if (!cinfo)
return -ENOMEM;
scmi_clock_protocol_attributes_get(handle, cinfo);
cinfo->clk = devm_kcalloc(handle->dev, cinfo->num_clocks,
sizeof(*cinfo->clk), GFP_KERNEL);
if (!cinfo->clk)
return -ENOMEM;
for (clkid = 0; clkid < cinfo->num_clocks; clkid++) {
struct scmi_clock_info *clk = cinfo->clk + clkid;
ret = scmi_clock_attributes_get(handle, clkid, clk);
if (!ret)
scmi_clock_describe_rates_get(handle, clkid, clk);
}
handle->clk_ops = &clk_ops;
handle->clk_priv = cinfo;
return 0;
}
static int __init scmi_clock_init(void)
{
return scmi_protocol_register(SCMI_PROTOCOL_CLOCK,
&scmi_clock_protocol_init);
}
subsys_initcall(scmi_clock_init);
|