summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/uprobes.c
blob: 6c1ff31d99ffeb0d0a28c5ee472bb1865ff23df3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
/*
 * User-space Probes (UProbes) for x86
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2008-2011
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
 */
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/ptrace.h>
#include <linux/uprobes.h>
#include <linux/uaccess.h>

#include <linux/kdebug.h>
#include <asm/processor.h>
#include <asm/insn.h>
#include <asm/mmu_context.h>

/* Post-execution fixups. */

/* Adjust IP back to vicinity of actual insn */
#define UPROBE_FIX_IP		0x01

/* Adjust the return address of a call insn */
#define UPROBE_FIX_CALL		0x02

/* Instruction will modify TF, don't change it */
#define UPROBE_FIX_SETF		0x04

#define UPROBE_FIX_RIP_SI	0x08
#define UPROBE_FIX_RIP_DI	0x10
#define UPROBE_FIX_RIP_BX	0x20
#define UPROBE_FIX_RIP_MASK	\
	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)

#define	UPROBE_TRAP_NR		UINT_MAX

/* Adaptations for mhiramat x86 decoder v14. */
#define OPCODE1(insn)		((insn)->opcode.bytes[0])
#define OPCODE2(insn)		((insn)->opcode.bytes[1])
#define OPCODE3(insn)		((insn)->opcode.bytes[2])
#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)

#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
	 << (row % 32))

/*
 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
 * to keep gcc from statically optimizing it out, as variable_test_bit makes
 * some versions of gcc to think only *(unsigned long*) is used.
 *
 * Opcodes we'll probably never support:
 * 6c-6f - ins,outs. SEGVs if used in userspace
 * e4-e7 - in,out imm. SEGVs if used in userspace
 * ec-ef - in,out acc. SEGVs if used in userspace
 * cc - int3. SIGTRAP if used in userspace
 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
 *	(why we support bound (62) then? it's similar, and similarly unused...)
 * f1 - int1. SIGTRAP if used in userspace
 * f4 - hlt. SEGVs if used in userspace
 * fa - cli. SEGVs if used in userspace
 * fb - sti. SEGVs if used in userspace
 *
 * Opcodes which need some work to be supported:
 * 07,17,1f - pop es/ss/ds
 *	Normally not used in userspace, but would execute if used.
 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
 *	We hesitate to run them under single step since kernel's handling
 *	of userspace single-stepping (TF flag) is fragile.
 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
 *	on the same grounds that they are never used.
 * cd - int N.
 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 *	Not supported since kernel's handling of userspace single-stepping
 *	(TF flag) is fragile.
 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 */
#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
static volatile u32 good_insns_32[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
#else
#define good_insns_32	NULL
#endif

/* Good-instruction tables for 64-bit apps.
 *
 * Genuinely invalid opcodes:
 * 06,07 - formerly push/pop es
 * 0e - formerly push cs
 * 16,17 - formerly push/pop ss
 * 1e,1f - formerly push/pop ds
 * 27,2f,37,3f - formerly daa/das/aaa/aas
 * 60,61 - formerly pusha/popa
 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 * 82 - formerly redundant encoding of Group1
 * 9a - formerly call seg:ofs
 * ce - formerly into
 * d4,d5 - formerly aam/aad
 * d6 - formerly undocumented salc
 * ea - formerly jmp seg:ofs
 *
 * Opcodes we'll probably never support:
 * 6c-6f - ins,outs. SEGVs if used in userspace
 * e4-e7 - in,out imm. SEGVs if used in userspace
 * ec-ef - in,out acc. SEGVs if used in userspace
 * cc - int3. SIGTRAP if used in userspace
 * f1 - int1. SIGTRAP if used in userspace
 * f4 - hlt. SEGVs if used in userspace
 * fa - cli. SEGVs if used in userspace
 * fb - sti. SEGVs if used in userspace
 *
 * Opcodes which need some work to be supported:
 * cd - int N.
 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 *	Not supported since kernel's handling of userspace single-stepping
 *	(TF flag) is fragile.
 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 */
#if defined(CONFIG_X86_64)
static volatile u32 good_insns_64[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
#else
#define good_insns_64	NULL
#endif

/* Using this for both 64-bit and 32-bit apps.
 * Opcodes we don't support:
 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 *	Also encodes tons of other system insns if mod=11.
 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 * 0f 05 - syscall
 * 0f 06 - clts (CPL0 insn)
 * 0f 07 - sysret
 * 0f 08 - invd (CPL0 insn)
 * 0f 09 - wbinvd (CPL0 insn)
 * 0f 0b - ud2
 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 * 0f 34 - sysenter
 * 0f 35 - sysexit
 * 0f 37 - getsec
 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 *	Note: with prefixes, these two opcodes are
 *	extrq/insertq/AVX512 convert vector ops.
 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 *	Why? They are all user-executable.
 */
static volatile u32 good_2byte_insns[256 / 32] = {
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
	/*      ----------------------------------------------         */
	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
	/*      ----------------------------------------------         */
	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
};
#undef W

/*
 * opcodes we may need to refine support for:
 *
 *  0f - 2-byte instructions: For many of these instructions, the validity
 *  depends on the prefix and/or the reg field.  On such instructions, we
 *  just consider the opcode combination valid if it corresponds to any
 *  valid instruction.
 *
 *  8f - Group 1 - only reg = 0 is OK
 *  c6-c7 - Group 11 - only reg = 0 is OK
 *  d9-df - fpu insns with some illegal encodings
 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 *  certain floating-point instructions, such as addsd.
 *
 *  fe - Group 4 - only reg = 0 or 1 is OK
 *  ff - Group 5 - only reg = 0-6 is OK
 *
 * others -- Do we need to support these?
 *
 *  0f - (floating-point?) prefetch instructions
 *  07, 17, 1f - pop es, pop ss, pop ds
 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 *  67 - addr16 prefix
 *  ce - into
 *  f0 - lock prefix
 */

/*
 * TODO:
 * - Where necessary, examine the modrm byte and allow only valid instructions
 * in the different Groups and fpu instructions.
 */

static bool is_prefix_bad(struct insn *insn)
{
	int i;

	for (i = 0; i < insn->prefixes.nbytes; i++) {
		switch (insn->prefixes.bytes[i]) {
		case 0x26:	/* INAT_PFX_ES   */
		case 0x2E:	/* INAT_PFX_CS   */
		case 0x36:	/* INAT_PFX_DS   */
		case 0x3E:	/* INAT_PFX_SS   */
		case 0xF0:	/* INAT_PFX_LOCK */
			return true;
		}
	}
	return false;
}

static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
{
	u32 volatile *good_insns;

	insn_init(insn, auprobe->insn, sizeof(auprobe->insn), x86_64);
	/* has the side-effect of processing the entire instruction */
	insn_get_length(insn);
	if (WARN_ON_ONCE(!insn_complete(insn)))
		return -ENOEXEC;

	if (is_prefix_bad(insn))
		return -ENOTSUPP;

	if (x86_64)
		good_insns = good_insns_64;
	else
		good_insns = good_insns_32;

	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
		return 0;

	if (insn->opcode.nbytes == 2) {
		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
			return 0;
	}

	return -ENOTSUPP;
}

#ifdef CONFIG_X86_64
/*
 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 * immediately.  Otherwise, rewrite the instruction so that it accesses
 * its memory operand indirectly through a scratch register.  Set
 * defparam->fixups accordingly. (The contents of the scratch register
 * will be saved before we single-step the modified instruction,
 * and restored afterward).
 *
 * We do this because a rip-relative instruction can access only a
 * relatively small area (+/- 2 GB from the instruction), and the XOL
 * area typically lies beyond that area.  At least for instructions
 * that store to memory, we can't execute the original instruction
 * and "fix things up" later, because the misdirected store could be
 * disastrous.
 *
 * Some useful facts about rip-relative instructions:
 *
 *  - There's always a modrm byte with bit layout "00 reg 101".
 *  - There's never a SIB byte.
 *  - The displacement is always 4 bytes.
 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 *    has no effect on rip-relative mode. It doesn't make modrm byte
 *    with r/m=101 refer to register 1101 = R13.
 */
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
{
	u8 *cursor;
	u8 reg;
	u8 reg2;

	if (!insn_rip_relative(insn))
		return;

	/*
	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
	 * Clear REX.b bit (extension of MODRM.rm field):
	 * we want to encode low numbered reg, not r8+.
	 */
	if (insn->rex_prefix.nbytes) {
		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
		/* REX byte has 0100wrxb layout, clearing REX.b bit */
		*cursor &= 0xfe;
	}
	/*
	 * Similar treatment for VEX3 prefix.
	 * TODO: add XOP/EVEX treatment when insn decoder supports them
	 */
	if (insn->vex_prefix.nbytes == 3) {
		/*
		 * vex2:     c5    rvvvvLpp   (has no b bit)
		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
		 *   (evex will need setting of both b and x since
		 *   in non-sib encoding evex.x is 4th bit of MODRM.rm)
		 * Setting VEX3.b (setting because it has inverted meaning):
		 */
		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
		*cursor |= 0x20;
	}

	/*
	 * Convert from rip-relative addressing to register-relative addressing
	 * via a scratch register.
	 *
	 * This is tricky since there are insns with modrm byte
	 * which also use registers not encoded in modrm byte:
	 * [i]div/[i]mul: implicitly use dx:ax
	 * shift ops: implicitly use cx
	 * cmpxchg: implicitly uses ax
	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
	 *   Encoding: 0f c7/1 modrm
	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
	 *   Example where none of bx,cx,dx can be used as scratch reg:
	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
	 * [v]pcmpistri: implicitly uses cx, xmm0
	 * [v]pcmpistrm: implicitly uses xmm0
	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
	 *   Evil SSE4.2 string comparison ops from hell.
	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
	 *   and that it can have only register operands, not mem
	 *   (its modrm byte must have mode=11).
	 *   If these restrictions will ever be lifted,
	 *   we'll need code to prevent selection of di as scratch reg!
	 *
	 * Summary: I don't know any insns with modrm byte which
	 * use SI register implicitly. DI register is used only
	 * by one insn (maskmovq) and BX register is used
	 * only by one too (cmpxchg8b).
	 * BP is stack-segment based (may be a problem?).
	 * AX, DX, CX are off-limits (many implicit users).
	 * SP is unusable (it's stack pointer - think about "pop mem";
	 * also, rsp+disp32 needs sib encoding -> insn length change).
	 */

	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
	reg2 = 0xff;		/* Fetch vex.vvvv */
	if (insn->vex_prefix.nbytes == 2)
		reg2 = insn->vex_prefix.bytes[1];
	else if (insn->vex_prefix.nbytes == 3)
		reg2 = insn->vex_prefix.bytes[2];
	/*
	 * TODO: add XOP, EXEV vvvv reading.
	 *
	 * vex.vvvv field is in bits 6-3, bits are inverted.
	 * But in 32-bit mode, high-order bit may be ignored.
	 * Therefore, let's consider only 3 low-order bits.
	 */
	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
	/*
	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
	 *
	 * Choose scratch reg. Order is important: must not select bx
	 * if we can use si (cmpxchg8b case!)
	 */
	if (reg != 6 && reg2 != 6) {
		reg2 = 6;
		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
	} else if (reg != 7 && reg2 != 7) {
		reg2 = 7;
		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
		/* TODO (paranoia): force maskmovq to not use di */
	} else {
		reg2 = 3;
		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
	}
	/*
	 * Point cursor at the modrm byte.  The next 4 bytes are the
	 * displacement.  Beyond the displacement, for some instructions,
	 * is the immediate operand.
	 */
	cursor = auprobe->insn + insn_offset_modrm(insn);
	/*
	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
	 * 89 86 disp32  mov %eax,disp32(%rsi)
	 */
	*cursor = 0x80 | (reg << 3) | reg2;
}

static inline unsigned long *
scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
		return &regs->si;
	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
		return &regs->di;
	return &regs->bx;
}

/*
 * If we're emulating a rip-relative instruction, save the contents
 * of the scratch register and store the target address in that register.
 */
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
		struct uprobe_task *utask = current->utask;
		unsigned long *sr = scratch_reg(auprobe, regs);

		utask->autask.saved_scratch_register = *sr;
		*sr = utask->vaddr + auprobe->defparam.ilen;
	}
}

static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
		struct uprobe_task *utask = current->utask;
		unsigned long *sr = scratch_reg(auprobe, regs);

		*sr = utask->autask.saved_scratch_register;
	}
}
#else /* 32-bit: */
/*
 * No RIP-relative addressing on 32-bit
 */
static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
{
}
static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
}
static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
}
#endif /* CONFIG_X86_64 */

struct uprobe_xol_ops {
	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
};

static inline int sizeof_long(void)
{
	return in_ia32_syscall() ? 4 : 8;
}

static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	riprel_pre_xol(auprobe, regs);
	return 0;
}

static int push_ret_address(struct pt_regs *regs, unsigned long ip)
{
	unsigned long new_sp = regs->sp - sizeof_long();

	if (copy_to_user((void __user *)new_sp, &ip, sizeof_long()))
		return -EFAULT;

	regs->sp = new_sp;
	return 0;
}

/*
 * We have to fix things up as follows:
 *
 * Typically, the new ip is relative to the copied instruction.  We need
 * to make it relative to the original instruction (FIX_IP).  Exceptions
 * are return instructions and absolute or indirect jump or call instructions.
 *
 * If the single-stepped instruction was a call, the return address that
 * is atop the stack is the address following the copied instruction.  We
 * need to make it the address following the original instruction (FIX_CALL).
 *
 * If the original instruction was a rip-relative instruction such as
 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 * We need to restore the contents of the scratch register
 * (FIX_RIP_reg).
 */
static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	riprel_post_xol(auprobe, regs);
	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
		long correction = utask->vaddr - utask->xol_vaddr;
		regs->ip += correction;
	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
		regs->sp += sizeof_long(); /* Pop incorrect return address */
		if (push_ret_address(regs, utask->vaddr + auprobe->defparam.ilen))
			return -ERESTART;
	}
	/* popf; tell the caller to not touch TF */
	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
		utask->autask.saved_tf = true;

	return 0;
}

static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	riprel_post_xol(auprobe, regs);
}

static const struct uprobe_xol_ops default_xol_ops = {
	.pre_xol  = default_pre_xol_op,
	.post_xol = default_post_xol_op,
	.abort	  = default_abort_op,
};

static bool branch_is_call(struct arch_uprobe *auprobe)
{
	return auprobe->branch.opc1 == 0xe8;
}

#define CASE_COND					\
	COND(70, 71, XF(OF))				\
	COND(72, 73, XF(CF))				\
	COND(74, 75, XF(ZF))				\
	COND(78, 79, XF(SF))				\
	COND(7a, 7b, XF(PF))				\
	COND(76, 77, XF(CF) || XF(ZF))			\
	COND(7c, 7d, XF(SF) != XF(OF))			\
	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))

#define COND(op_y, op_n, expr)				\
	case 0x ## op_y: DO((expr) != 0)		\
	case 0x ## op_n: DO((expr) == 0)

#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))

static bool is_cond_jmp_opcode(u8 opcode)
{
	switch (opcode) {
	#define DO(expr)	\
		return true;
	CASE_COND
	#undef	DO

	default:
		return false;
	}
}

static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	unsigned long flags = regs->flags;

	switch (auprobe->branch.opc1) {
	#define DO(expr)	\
		return expr;
	CASE_COND
	#undef	DO

	default:	/* not a conditional jmp */
		return true;
	}
}

#undef	XF
#undef	COND
#undef	CASE_COND

static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
	unsigned long offs = (long)auprobe->branch.offs;

	if (branch_is_call(auprobe)) {
		/*
		 * If it fails we execute this (mangled, see the comment in
		 * branch_clear_offset) insn out-of-line. In the likely case
		 * this should trigger the trap, and the probed application
		 * should die or restart the same insn after it handles the
		 * signal, arch_uprobe_post_xol() won't be even called.
		 *
		 * But there is corner case, see the comment in ->post_xol().
		 */
		if (push_ret_address(regs, new_ip))
			return false;
	} else if (!check_jmp_cond(auprobe, regs)) {
		offs = 0;
	}

	regs->ip = new_ip + offs;
	return true;
}

static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	BUG_ON(!branch_is_call(auprobe));
	/*
	 * We can only get here if branch_emulate_op() failed to push the ret
	 * address _and_ another thread expanded our stack before the (mangled)
	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
	 * We could also restore ->ip and try to call branch_emulate_op() again.
	 */
	regs->sp += sizeof_long();
	return -ERESTART;
}

static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
{
	/*
	 * Turn this insn into "call 1f; 1:", this is what we will execute
	 * out-of-line if ->emulate() fails. We only need this to generate
	 * a trap, so that the probed task receives the correct signal with
	 * the properly filled siginfo.
	 *
	 * But see the comment in ->post_xol(), in the unlikely case it can
	 * succeed. So we need to ensure that the new ->ip can not fall into
	 * the non-canonical area and trigger #GP.
	 *
	 * We could turn it into (say) "pushf", but then we would need to
	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
	 * of ->insn[] for set_orig_insn().
	 */
	memset(auprobe->insn + insn_offset_immediate(insn),
		0, insn->immediate.nbytes);
}

static const struct uprobe_xol_ops branch_xol_ops = {
	.emulate  = branch_emulate_op,
	.post_xol = branch_post_xol_op,
};

/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
{
	u8 opc1 = OPCODE1(insn);
	int i;

	switch (opc1) {
	case 0xeb:	/* jmp 8 */
	case 0xe9:	/* jmp 32 */
	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
		break;

	case 0xe8:	/* call relative */
		branch_clear_offset(auprobe, insn);
		break;

	case 0x0f:
		if (insn->opcode.nbytes != 2)
			return -ENOSYS;
		/*
		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
		 * OPCODE1() of the "short" jmp which checks the same condition.
		 */
		opc1 = OPCODE2(insn) - 0x10;
	default:
		if (!is_cond_jmp_opcode(opc1))
			return -ENOSYS;
	}

	/*
	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
	 * No one uses these insns, reject any branch insns with such prefix.
	 */
	for (i = 0; i < insn->prefixes.nbytes; i++) {
		if (insn->prefixes.bytes[i] == 0x66)
			return -ENOTSUPP;
	}

	auprobe->branch.opc1 = opc1;
	auprobe->branch.ilen = insn->length;
	auprobe->branch.offs = insn->immediate.value;

	auprobe->ops = &branch_xol_ops;
	return 0;
}

/**
 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 * @mm: the probed address space.
 * @arch_uprobe: the probepoint information.
 * @addr: virtual address at which to install the probepoint
 * Return 0 on success or a -ve number on error.
 */
int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
{
	struct insn insn;
	u8 fix_ip_or_call = UPROBE_FIX_IP;
	int ret;

	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
	if (ret)
		return ret;

	ret = branch_setup_xol_ops(auprobe, &insn);
	if (ret != -ENOSYS)
		return ret;

	/*
	 * Figure out which fixups default_post_xol_op() will need to perform,
	 * and annotate defparam->fixups accordingly.
	 */
	switch (OPCODE1(&insn)) {
	case 0x9d:		/* popf */
		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
		break;
	case 0xc3:		/* ret or lret -- ip is correct */
	case 0xcb:
	case 0xc2:
	case 0xca:
	case 0xea:		/* jmp absolute -- ip is correct */
		fix_ip_or_call = 0;
		break;
	case 0x9a:		/* call absolute - Fix return addr, not ip */
		fix_ip_or_call = UPROBE_FIX_CALL;
		break;
	case 0xff:
		switch (MODRM_REG(&insn)) {
		case 2: case 3:			/* call or lcall, indirect */
			fix_ip_or_call = UPROBE_FIX_CALL;
			break;
		case 4: case 5:			/* jmp or ljmp, indirect */
			fix_ip_or_call = 0;
			break;
		}
		/* fall through */
	default:
		riprel_analyze(auprobe, &insn);
	}

	auprobe->defparam.ilen = insn.length;
	auprobe->defparam.fixups |= fix_ip_or_call;

	auprobe->ops = &default_xol_ops;
	return 0;
}

/*
 * arch_uprobe_pre_xol - prepare to execute out of line.
 * @auprobe: the probepoint information.
 * @regs: reflects the saved user state of current task.
 */
int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (auprobe->ops->pre_xol) {
		int err = auprobe->ops->pre_xol(auprobe, regs);
		if (err)
			return err;
	}

	regs->ip = utask->xol_vaddr;
	utask->autask.saved_trap_nr = current->thread.trap_nr;
	current->thread.trap_nr = UPROBE_TRAP_NR;

	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
	regs->flags |= X86_EFLAGS_TF;
	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
		set_task_blockstep(current, false);

	return 0;
}

/*
 * If xol insn itself traps and generates a signal(Say,
 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
 * instruction jumps back to its own address. It is assumed that anything
 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
 *
 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
 */
bool arch_uprobe_xol_was_trapped(struct task_struct *t)
{
	if (t->thread.trap_nr != UPROBE_TRAP_NR)
		return true;

	return false;
}

/*
 * Called after single-stepping. To avoid the SMP problems that can
 * occur when we temporarily put back the original opcode to
 * single-step, we single-stepped a copy of the instruction.
 *
 * This function prepares to resume execution after the single-step.
 */
int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;
	bool send_sigtrap = utask->autask.saved_tf;
	int err = 0;

	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
	current->thread.trap_nr = utask->autask.saved_trap_nr;

	if (auprobe->ops->post_xol) {
		err = auprobe->ops->post_xol(auprobe, regs);
		if (err) {
			/*
			 * Restore ->ip for restart or post mortem analysis.
			 * ->post_xol() must not return -ERESTART unless this
			 * is really possible.
			 */
			regs->ip = utask->vaddr;
			if (err == -ERESTART)
				err = 0;
			send_sigtrap = false;
		}
	}
	/*
	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
	 * so we can get an extra SIGTRAP if we do not clear TF. We need
	 * to examine the opcode to make it right.
	 */
	if (send_sigtrap)
		send_sig(SIGTRAP, current, 0);

	if (!utask->autask.saved_tf)
		regs->flags &= ~X86_EFLAGS_TF;

	return err;
}

/* callback routine for handling exceptions. */
int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
{
	struct die_args *args = data;
	struct pt_regs *regs = args->regs;
	int ret = NOTIFY_DONE;

	/* We are only interested in userspace traps */
	if (regs && !user_mode(regs))
		return NOTIFY_DONE;

	switch (val) {
	case DIE_INT3:
		if (uprobe_pre_sstep_notifier(regs))
			ret = NOTIFY_STOP;

		break;

	case DIE_DEBUG:
		if (uprobe_post_sstep_notifier(regs))
			ret = NOTIFY_STOP;

	default:
		break;
	}

	return ret;
}

/*
 * This function gets called when XOL instruction either gets trapped or
 * the thread has a fatal signal. Reset the instruction pointer to its
 * probed address for the potential restart or for post mortem analysis.
 */
void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	struct uprobe_task *utask = current->utask;

	if (auprobe->ops->abort)
		auprobe->ops->abort(auprobe, regs);

	current->thread.trap_nr = utask->autask.saved_trap_nr;
	regs->ip = utask->vaddr;
	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
	if (!utask->autask.saved_tf)
		regs->flags &= ~X86_EFLAGS_TF;
}

static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	if (auprobe->ops->emulate)
		return auprobe->ops->emulate(auprobe, regs);
	return false;
}

bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
{
	bool ret = __skip_sstep(auprobe, regs);
	if (ret && (regs->flags & X86_EFLAGS_TF))
		send_sig(SIGTRAP, current, 0);
	return ret;
}

unsigned long
arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
{
	int rasize = sizeof_long(), nleft;
	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */

	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
		return -1;

	/* check whether address has been already hijacked */
	if (orig_ret_vaddr == trampoline_vaddr)
		return orig_ret_vaddr;

	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
	if (likely(!nleft))
		return orig_ret_vaddr;

	if (nleft != rasize) {
		pr_err("uprobe: return address clobbered: pid=%d, %%sp=%#lx, "
			"%%ip=%#lx\n", current->pid, regs->sp, regs->ip);

		force_sig_info(SIGSEGV, SEND_SIG_FORCED, current);
	}

	return -1;
}

bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
				struct pt_regs *regs)
{
	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
		return regs->sp < ret->stack;
	else
		return regs->sp <= ret->stack;
}
OpenPOWER on IntegriCloud