| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
IPI registers of Loongson-3 include IPI_SET, IPI_CLEAR, IPI_STATUS,
IPI_EN and IPI_MAILBOX_BUF. Each bit of IPI_STATUS indicate a type of
IPI and IPI_EN indicate whether the IPI is enabled. The sender write 1
to IPI_SET bits generate IPIs in IPI_STATUS, and receiver write 1 to
bits of IPI_CLEAR to clear IPIs. IPI_MAILBOX_BUF are used to deliver
more information about IPIs.
Why we change code in arch/mips/loongson/common/setup.c?
If without this change, when SMP configured, system cannot boot since
it hang at printk() in cgroup_init_early(). The root cause is:
console_trylock()
\-->down_trylock(&console_sem)
\-->raw_spin_unlock_irqrestore(&sem->lock, flags)
\-->_raw_spin_unlock_irqrestore()(SMP/UP have different versions)
\-->__raw_spin_unlock_irqrestore() (following is the SMP case)
\-->do_raw_spin_unlock()
\-->arch_spin_unlock()
\-->nudge_writes()
\-->mb()
\-->wbflush()
\-->__wbflush()
In previous code __wbflush() is initialized in plat_mem_setup(), but
cgroup_init_early() is called before plat_mem_setup(). Therefore, In
this patch we make changes to avoid boot failure.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6638
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Loongson doesn't support DMA address above 4GB traditionally. If memory
is more than 4GB, CONFIG_SWIOTLB and ZONE_DMA32 should be selected. In
this way, DMA pages are allocated below 4GB preferably. However, if low
memory is not enough, high pages are allocated and swiotlb is used for
bouncing.
Moreover, we provide a platform-specific dma_map_ops::set_dma_mask() to
set a device's dma_mask and coherent_dma_mask. We use these masks to
distinguishes an allocated page can be used for DMA directly, or need
swiotlb to bounce.
Recently, we found that 32-bit DMA isn't a hardware bug, but a hardware
configuration issue. So, latest firmware has enable the DMA support as
high as 40-bit. To support all-memory DMA for all devices (besides the
Loongson platform limit, there are still some devices have their own
DMA32 limit), and also to be compatible with old firmware, we keep use
swiotlb.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6636
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
IRQ routing path of Loongson-3:
Devices(most) --> I8259 --> HT Controller --> IRQ Routing Table --> CPU
^
|
Device(legacy devices such as UART) --> Bonito ---|
IRQ Routing Table route 32 INTs to CPU's INT0~INT3(IP2~IP5 of CP0), 32
INTs include 16 HT INTs(mostly), 4 PCI INTs, 1 LPC INT, etc. IP6 is used
for IPI and IP7 is used for internal MIPS timer. LOONGSON_INT_ROUTER_*
are IRQ Routing Table registers.
I8259 IRQs are 1:1 mapped to HT1 INTs. LOONGSON_HT1_* are configuration
registers of HT1 controller.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6634
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Loongson family machines use Hyper-Transport bus for inter-core
connection and device connection. The PCI bus is a subordinate
linked at HT1.
With LEFI firmware interface, We don't need fixup for PCI irq routing
(except providing a VBIOS of the integrated GPU).
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6633
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new UEFI-like firmware interface (LEFI, i.e. Loongson Unified
Firmware Interface) has 3 advantages:
1, Firmware export a physical memory map which is similar to X86's
E820 map, so prom_init_memory() will be more elegant that #ifdef
clauses can be removed.
2, Firmware export a pci irq routing table, we no longer need pci
irq routing fixup in kernel's code.
3, Firmware has a built-in vga bios, and its address is exported,
the linux kernel no longer need an embedded blob.
With the LEFI interface, Loongson-3A/2G and all their successors can use
a unified kernel. All Loongson-based machines support this new interface
except 2E/2F series.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6632
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add four Loongson-3 based machine types:
MACH_LEMOTE_A1004/MACH_LEMOTE_A1201 are laptops;
MACH_LEMOTE_A1101 is mini-itx;
MACH_LEMOTE_A1205 is all-in-one machine.
The most significant differrent between A1004/A1201 and A1101/A1205 is
the laptops have EC but others don't.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6631
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Basic Loongson-3 CPU support include CPU probing and TLB/cache
initializing.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6630
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Loongson-3 is a multi-core MIPS family CPU, it support MIPS64R2 fully.
Loongson-3 has the same IMP field (0x6300) as Loongson-2.
Loongson-3 has a hardware-maintained cache, system software doesn't
need to maintain coherency.
Loongson-3A is the first revision of Loongson-3, and it is the quad-
core version of Loongson-2G. Loongson-3A has a simplified version named
Loongson-2Gq, the main difference between Loongson-3A/2Gq is 3A has two
HyperTransport controller but 2Gq has only one. HT0 is used for cross-
chip interconnection and HT1 is used to link PCI bus. Therefore, 2Gq
cannot support NUMA but 3A can. For software, Loongson-2Gq is simply
identified as Loongson-3A.
Exsisting Loongson family CPUs:
Loongson-1: Loongson-1A, Loongson-1B, they are 32-bit MIPS CPUs.
Loongson-2: Loongson-2E, Loongson-2F, Loongson-2G, they are 64-bit
single-core MIPS CPUs.
Loongson-3: Loongson-3A(including so-called Loongson-2Gq), they are
64-bit multi-core MIPS CPUs.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Signed-off-by: Hongliang Tao <taohl@lemote.com>
Signed-off-by: Hua Yan <yanh@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6629/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
And there are more CPUs or configurations that want to provide special
per-CPU information in /proc/cpuinfo. So I think there needs to be a
hook mechanism, such as a notifier.
This is a first cut only; I need to think about what sort of looking
the notifier needs to have. But I'd appreciate testing on MT hardware!
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
Cc: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6066/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Loongson-1 is a 32-bit MIPS CPU and Loongson-2/3 are 64-bit MIPS CPUs,
and both Loongson-2/3 has the same PRID IMP filed (0x6300). As a
result, renaming PRID_IMP_LOONGSON1 and PRID_IMP_LOONGSON2 to
PRID_IMP_LOONGSON_32 and PRID_IMP_LOONGSON_64 will make more sense.
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Tested-by: Alex Smith <alex.smith@imgtec.com>
Reviewed-by: Alex Smith <alex.smith@imgtec.com>
Cc: John Crispin <john@phrozen.org>
Cc: Steven J. Hill <Steven.Hill@imgtec.com>
Cc: Aurelien Jarno <aurelien@aurel32.net>
Cc: linux-mips@linux-mips.org
Cc: Fuxin Zhang <zhangfx@lemote.com>
Cc: Zhangjin Wu <wuzhangjin@gmail.com>
Patchwork: https://patchwork.linux-mips.org/patch/6552/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a few Belkin F7Dxxxx entries, with F7D4401 sourced from online
documentation and the "F7D7302" being observed. F7D3301, F7D3302, and
F7D4302 are reasonable guesses which are unlikely to cause
mis-detection.
Signed-off-by: Cody P Schafer <devel@codyps.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Cc: linux-mips@linux-mips.org
Cc: zajec5@gmail.com
Cc: Cody P Schafer <devel@codyps.com>
Patchwork: https://patchwork.linux-mips.org/patch/6594/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds board detection for the Siemens SE505v2 and the led gpio
configuration. This board does not have any buttons.
This is based on OpenWrt broadcom-diag and Manuel Munz's nvram dump.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Cc: linux-mips@linux-mips.org
Cc: zajec5@gmail.com
Patchwork: https://patchwork.linux-mips.org/patch/6593/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Linksys WRT54G/GS/GL family uses the same boardtype numbers, and
the same gpio configuration. The boardtype numbers are changing with
the hardware versions, but these hardware numbers are different or each
model.
Detect them all as one device, this also worked in OpenWrt.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Cc: linux-mips@linux-mips.org
Cc: zajec5@gmail.com
Patchwork: https://patchwork.linux-mips.org/patch/6591/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The M5150 core is a 32-bit MIPS RISC which implements the
MIPS Architecture Release-5 in a 5-stage pipeline.
In addition, it includes the MIPS Architecture Virtualization Module
that enables virtualization of operating systems,
which provides a scalable, trusted, and secure execution environment.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6596/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
| |
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6595/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
| |
Merge the db1200.h and db1300.h headers into their only users.
Signed-off-by: Manuel Lauss <manuel.lauss@gmail.com>
Cc: Linux-MIPS <linux-mips@linux-mips.org>
Patchwork: https://patchwork.linux-mips.org/patch/6660/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
| |
Setting DMA_MAYBE_COHERENT gives a platform the opportunity to select
use of cache ops at boot.
Signed-off-by: Manuel Lauss <manuel.lauss@gmail.com>
Cc: Linux-MIPS <linux-mips@linux-mips.org>
Patchwork: https://patchwork.linux-mips.org/patch/6575/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
| |
Allow secondary cores to program their segment control registers
during smp bootstrap code. This enables EVA on Malta SMP
configurations
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The 'ememsize' variable is used to denote the real RAM which is
present on the Malta board. This is different compared to 'memsize'
which is capped to 256MB. The 'ememsize' is used to get the actual
physical memory when setting up the Malta memory layout. This only
makes sense in case the core operates in the EVA mode, and it's
ignored otherwise.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
| |
Add a spaces.h file for Malta to override certain memory macros
when operating in EVA mode.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Malta board aliases 0x80000000 - 0xffffffff to 0x00000000
- 0x7fffffff ignoring the 256 MB IO hole in 0x10000000.
The physical memory is shifted to 0x80000000 so up to 2GB
can be used. Kuseg is expanded to 3GB (due to board limitations
only 2GB can be accessed) and lowmem (kernel space) is expanded to 2GB.
The Segment Control registers are programmed as follows:
Virtual memory Physical memory Mapping
0x00000000 - 0x7fffffff 0x80000000 - 0xfffffffff MUSUK (kuseg)
0x80000000 - 0x9fffffff 0x00000000 - 0x1ffffffff MUSUK (kseg0)
0xa0000000 - 0xbf000000 0x00000000 - 0x1ffffffff MUSUK (kseg1)
0xc0000000 - 0xdfffffff - MK (kseg2)
0xe0000000 - 0xffffffff - MK (kseg3)
The location of exception vectors remain the same since 0xbfc00000
(traditional exception base) still maps to 0x1fc00000 physical.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
| |
A core in EVA mode can have any possible segment mapping, so the
default free_initmem_default() function may not always work as expected.
Therefore, add a callback that platforms can use to free up the init section.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
| |
The MIPS *Aptiv family uses bit 28 in Config5 CP0 register to
indicate whether the core supports EVA or not.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
| |
This will allow platforms to use an alternative way to get
the physical address of a symbol.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
| |
Add EVA cache flushing functions similar to non-EVA configurations.
Because the cache may or may not contain user virtual addresses, we
need to use the 'cache' or 'cachee' instruction based on whether we
flush the cache on behalf of kernel or user respectively.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
| |
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
| |
Build code to invalidate an address range in the instruction cache
using the Hit Invalidate cache operation.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
| |
A MIPS specific csum_and_copy_from_user function is necessary because
the generic one from include/net/checksum.h will not work for EVA.
This is because the generic one will link to symbols from lib/checksum.c
which are not EVA aware.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
| |
In EVA mode, different instructions need to be used to read/write
from kernel and userland. In non-EVA mode, there is no functional
difference. The current address limit is checked to decide the
type of operation that will be performed.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
|
|
| |
The 'copy_user' symbol can be used to copy from or to
userland so we will use two different symbols for these
operations. This makes no difference in the existing code,
but when the core is operating in EVA mode, different instructions
need to be used to read and write to userland address space.
The old function has also been renamed to 'copy_kernel' to denote
that it is suitable for copy data to and from kernel space.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
|
| |
The str*_user functions are used to securely access NULL terminated
strings from userland. Therefore, it's necessary to use the appropriate
EVA function. However, if the string is in kernel space, then the normal
instructions are being used to access it. The __str*_kernel_asm and
__str*_user_asm symbols are the same for non-EVA mode so there is no
functional change for the non-EVA kernels.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Use the EVA specific functions from memcpy.S to perform
userspace operations. When get_fs() == get_ds() the usual load/store
instructions are used because the destination address is located in
the kernel address space region. Otherwise, the EVA specifc load/store
instructions are used which will go through th TLB to perform the virtual
to physical translation for the userspace address.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
| |
The {get,put}_user_asm functions can be used to load data from
kernel or the user address space so rename them to avoid
confusion.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
| |
Use the EVA instruction wrappers from asm.h to perform
read/write operations from userland.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
| |
ulb, ulh, ulw are macros which emulate unaligned access for MIPS.
However, no such macros exist for EVA mode, so the only way to do
EVA unaligned accesses is in the ADE exception handler. As a result
of which, disable these macros for EVA.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
| |
Similar to __get_user_* functions, move common code to
__put_user_*_common so it can be shared among similar users.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
| |
In preparation for EVA support, an instruction argument is needed
for the __get_user_asm{,_ll32} functions to allow instruction overrides in
EVA mode. Even though EVA only works for MIPS 32-bit, both codepaths are
changed (32-bit and 64-bit) for consistency reasons.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
| |
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
| |
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
| |
Use LLE/SCE instructions for performing an address translation for
userspace when EVA is enabled.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
| |
EVA uses specific instructions for accessing user memory.
Instead of polluting the kernel with numerous #ifdef CONFIG_EVA
we add wrappers for all the instructions that need special
handling when EVA is enabled.
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
| |
EVA can use the PREFE instruction to perform the virtual address
translation using the user mapping of the address rather than the
kernel mapping.
Signed-off-by: Leonid Yegoshin <Leonid.Yegoshin@imgtec.com>
Signed-off-by: Markos Chandras <markos.chandras@imgtec.com>
|
|
|
|
|
|
|
|
|
|
|
| |
Add a CPU_P5600 case to various switch statements, doing the same thing
as for CPU_PROAPTIV.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Reviewed-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6408/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
| |
Add a Processor ID and CPU type for the MIPS P5600 core.
Signed-off-by: James Hogan <james.hogan@imgtec.com>
Reviewed-by: Markos Chandras <markos.chandras@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6407/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch extends sigcontext in order to hold the most significant 64
bits of each vector register in addition to the MSA control & status
register. The least significant 64 bits are already saved as the scalar
FP context. This makes things a little awkward since the least & most
significant 64 bits of each vector register are not contiguous in
memory. Thus the copy_u & insert instructions are used to transfer the
values of the most significant 64 bits via GP registers.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6533/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for context switching the MSA vector registers.
These 128 bit vector registers are aliased with the FP registers - an
FP register accesses the least significant bits of the vector register
with which it is aliased (ie. the register with the same index). Due to
both this & the requirement that the scalar FPU must be 64-bit (FR=1) if
enabled at the same time as MSA the kernel will enable MSA & scalar FP
at the same time for tasks which use MSA. If we restore the MSA vector
context then we might as well enable the scalar FPU since the reason it
was left disabled was to allow for lazy FP context restoring - but we
just restored the FP context as it's a subset of the vector context. If
we restore the FP context and have previously used MSA then we have to
restore the whole vector context anyway (see comment in
enable_restore_fp_context for details) so similarly we might as well
enable MSA.
Thus if a task does not use MSA then it will continue to behave as
without this patch - the scalar FP context will be saved & restored as
usual. But if a task executes an MSA instruction then it will save &
restore the vector context forever more.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6431/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adds support for probing the MSAP bit within the Config3
register in order to detect the presence of the MSA ASE. Presence of the
ASE will be indicated in /proc/cpuinfo. The value of the MSA
implementation register will be displayed at boot to aid debugging and
verification of a correct setup, as is done for the FPU.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6430/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces definitions for the MSA control registers and
functions which allow access to both the control & vector registers. If
the toolchain being used to build the kernel includes support for MSA
then this patch will make use of that support & use MSA instructions
directly. However toolchain support for MSA is very new & far from a
point where it can be reasonably expected that everyone building the
kernel uses a toolchain with support. Thus fallbacks using .word
assembler directives are also provided for now as a temporary measure.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6429/
Patchwork: https://patchwork.linux-mips.org/patch/6607/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When saving or restoring scalar FP context we want to access the least
significant 64 bits of each FP register. When the FP registers are 64
bits wide that is trivially the start of the registers value in memory.
However when the FP registers are wider this equivalence will no longer
be true for big endian systems. Define a new set of offset macros for
the least significant 64 bits of each saved FP register within thread
context, and make use of them when saving and restoring scalar FP
context.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6428/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|
|
|
|
|
|
|
|
|
|
|
| |
The hard-coded offsets mentioned in this comment seem to not exist
anymore, so remove mention of them from the comment.
Signed-off-by: Paul Burton <paul.burton@imgtec.com>
Reviewed-by: Qais Yousef <qais.yousef@imgtec.com>
Cc: linux-mips@linux-mips.org
Patchwork: https://patchwork.linux-mips.org/patch/6421/
Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
|