diff options
Diffstat (limited to 'kernel/sched.c')
| -rw-r--r-- | kernel/sched.c | 1199 | 
1 files changed, 854 insertions, 345 deletions
diff --git a/kernel/sched.c b/kernel/sched.c index a856040c200a..2629c1711fd6 100644 --- a/kernel/sched.c +++ b/kernel/sched.c @@ -168,15 +168,21 @@   */  #define SCALE_PRIO(x, prio) \ -	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE) +	max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE) -static unsigned int task_timeslice(task_t *p) +static unsigned int static_prio_timeslice(int static_prio)  { -	if (p->static_prio < NICE_TO_PRIO(0)) -		return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio); +	if (static_prio < NICE_TO_PRIO(0)) +		return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);  	else -		return SCALE_PRIO(DEF_TIMESLICE, p->static_prio); +		return SCALE_PRIO(DEF_TIMESLICE, static_prio);  } + +static inline unsigned int task_timeslice(task_t *p) +{ +	return static_prio_timeslice(p->static_prio); +} +  #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran)	\  				< (long long) (sd)->cache_hot_time) @@ -184,13 +190,11 @@ static unsigned int task_timeslice(task_t *p)   * These are the runqueue data structures:   */ -#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long)) -  typedef struct runqueue runqueue_t;  struct prio_array {  	unsigned int nr_active; -	unsigned long bitmap[BITMAP_SIZE]; +	DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */  	struct list_head queue[MAX_PRIO];  }; @@ -209,6 +213,7 @@ struct runqueue {  	 * remote CPUs use both these fields when doing load calculation.  	 */  	unsigned long nr_running; +	unsigned long raw_weighted_load;  #ifdef CONFIG_SMP  	unsigned long cpu_load[3];  #endif @@ -239,7 +244,6 @@ struct runqueue {  	task_t *migration_thread;  	struct list_head migration_queue; -	int cpu;  #endif  #ifdef CONFIG_SCHEDSTATS @@ -351,11 +355,30 @@ static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)  #endif /* __ARCH_WANT_UNLOCKED_CTXSW */  /* + * __task_rq_lock - lock the runqueue a given task resides on. + * Must be called interrupts disabled. + */ +static inline runqueue_t *__task_rq_lock(task_t *p) +	__acquires(rq->lock) +{ +	struct runqueue *rq; + +repeat_lock_task: +	rq = task_rq(p); +	spin_lock(&rq->lock); +	if (unlikely(rq != task_rq(p))) { +		spin_unlock(&rq->lock); +		goto repeat_lock_task; +	} +	return rq; +} + +/*   * task_rq_lock - lock the runqueue a given task resides on and disable   * interrupts.  Note the ordering: we can safely lookup the task_rq without   * explicitly disabling preemption.   */ -static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags) +static runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)  	__acquires(rq->lock)  {  	struct runqueue *rq; @@ -371,6 +394,12 @@ repeat_lock_task:  	return rq;  } +static inline void __task_rq_unlock(runqueue_t *rq) +	__releases(rq->lock) +{ +	spin_unlock(&rq->lock); +} +  static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)  	__releases(rq->lock)  { @@ -634,7 +663,7 @@ static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)  }  /* - * effective_prio - return the priority that is based on the static + * __normal_prio - return the priority that is based on the static   * priority but is modified by bonuses/penalties.   *   * We scale the actual sleep average [0 .... MAX_SLEEP_AVG] @@ -647,13 +676,11 @@ static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)   *   * Both properties are important to certain workloads.   */ -static int effective_prio(task_t *p) + +static inline int __normal_prio(task_t *p)  {  	int bonus, prio; -	if (rt_task(p)) -		return p->prio; -  	bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;  	prio = p->static_prio - bonus; @@ -665,6 +692,106 @@ static int effective_prio(task_t *p)  }  /* + * To aid in avoiding the subversion of "niceness" due to uneven distribution + * of tasks with abnormal "nice" values across CPUs the contribution that + * each task makes to its run queue's load is weighted according to its + * scheduling class and "nice" value.  For SCHED_NORMAL tasks this is just a + * scaled version of the new time slice allocation that they receive on time + * slice expiry etc. + */ + +/* + * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE + * If static_prio_timeslice() is ever changed to break this assumption then + * this code will need modification + */ +#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE +#define LOAD_WEIGHT(lp) \ +	(((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO) +#define PRIO_TO_LOAD_WEIGHT(prio) \ +	LOAD_WEIGHT(static_prio_timeslice(prio)) +#define RTPRIO_TO_LOAD_WEIGHT(rp) \ +	(PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp)) + +static void set_load_weight(task_t *p) +{ +	if (has_rt_policy(p)) { +#ifdef CONFIG_SMP +		if (p == task_rq(p)->migration_thread) +			/* +			 * The migration thread does the actual balancing. +			 * Giving its load any weight will skew balancing +			 * adversely. +			 */ +			p->load_weight = 0; +		else +#endif +			p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority); +	} else +		p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio); +} + +static inline void inc_raw_weighted_load(runqueue_t *rq, const task_t *p) +{ +	rq->raw_weighted_load += p->load_weight; +} + +static inline void dec_raw_weighted_load(runqueue_t *rq, const task_t *p) +{ +	rq->raw_weighted_load -= p->load_weight; +} + +static inline void inc_nr_running(task_t *p, runqueue_t *rq) +{ +	rq->nr_running++; +	inc_raw_weighted_load(rq, p); +} + +static inline void dec_nr_running(task_t *p, runqueue_t *rq) +{ +	rq->nr_running--; +	dec_raw_weighted_load(rq, p); +} + +/* + * Calculate the expected normal priority: i.e. priority + * without taking RT-inheritance into account. Might be + * boosted by interactivity modifiers. Changes upon fork, + * setprio syscalls, and whenever the interactivity + * estimator recalculates. + */ +static inline int normal_prio(task_t *p) +{ +	int prio; + +	if (has_rt_policy(p)) +		prio = MAX_RT_PRIO-1 - p->rt_priority; +	else +		prio = __normal_prio(p); +	return prio; +} + +/* + * Calculate the current priority, i.e. the priority + * taken into account by the scheduler. This value might + * be boosted by RT tasks, or might be boosted by + * interactivity modifiers. Will be RT if the task got + * RT-boosted. If not then it returns p->normal_prio. + */ +static int effective_prio(task_t *p) +{ +	p->normal_prio = normal_prio(p); +	/* +	 * If we are RT tasks or we were boosted to RT priority, +	 * keep the priority unchanged. Otherwise, update priority +	 * to the normal priority: +	 */ +	if (!rt_prio(p->prio)) +		return p->normal_prio; +	return p->prio; +} + +/*   * __activate_task - move a task to the runqueue.   */  static void __activate_task(task_t *p, runqueue_t *rq) @@ -674,7 +801,7 @@ static void __activate_task(task_t *p, runqueue_t *rq)  	if (batch_task(p))  		target = rq->expired;  	enqueue_task(p, target); -	rq->nr_running++; +	inc_nr_running(p, rq);  }  /* @@ -683,39 +810,45 @@ static void __activate_task(task_t *p, runqueue_t *rq)  static inline void __activate_idle_task(task_t *p, runqueue_t *rq)  {  	enqueue_task_head(p, rq->active); -	rq->nr_running++; +	inc_nr_running(p, rq);  } +/* + * Recalculate p->normal_prio and p->prio after having slept, + * updating the sleep-average too: + */  static int recalc_task_prio(task_t *p, unsigned long long now)  {  	/* Caller must always ensure 'now >= p->timestamp' */ -	unsigned long long __sleep_time = now - p->timestamp; -	unsigned long sleep_time; +	unsigned long sleep_time = now - p->timestamp;  	if (batch_task(p))  		sleep_time = 0; -	else { -		if (__sleep_time > NS_MAX_SLEEP_AVG) -			sleep_time = NS_MAX_SLEEP_AVG; -		else -			sleep_time = (unsigned long)__sleep_time; -	}  	if (likely(sleep_time > 0)) {  		/* -		 * User tasks that sleep a long time are categorised as -		 * idle. They will only have their sleep_avg increased to a -		 * level that makes them just interactive priority to stay -		 * active yet prevent them suddenly becoming cpu hogs and -		 * starving other processes. +		 * This ceiling is set to the lowest priority that would allow +		 * a task to be reinserted into the active array on timeslice +		 * completion.  		 */ -		if (p->mm && sleep_time > INTERACTIVE_SLEEP(p)) { -				unsigned long ceiling; +		unsigned long ceiling = INTERACTIVE_SLEEP(p); -				ceiling = JIFFIES_TO_NS(MAX_SLEEP_AVG - -					DEF_TIMESLICE); -				if (p->sleep_avg < ceiling) -					p->sleep_avg = ceiling; +		if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) { +			/* +			 * Prevents user tasks from achieving best priority +			 * with one single large enough sleep. +			 */ +			p->sleep_avg = ceiling; +			/* +			 * Using INTERACTIVE_SLEEP() as a ceiling places a +			 * nice(0) task 1ms sleep away from promotion, and +			 * gives it 700ms to round-robin with no chance of +			 * being demoted.  This is more than generous, so +			 * mark this sleep as non-interactive to prevent the +			 * on-runqueue bonus logic from intervening should +			 * this task not receive cpu immediately. +			 */ +			p->sleep_type = SLEEP_NONINTERACTIVE;  		} else {  			/*  			 * Tasks waking from uninterruptible sleep are @@ -723,12 +856,12 @@ static int recalc_task_prio(task_t *p, unsigned long long now)  			 * are likely to be waiting on I/O  			 */  			if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) { -				if (p->sleep_avg >= INTERACTIVE_SLEEP(p)) +				if (p->sleep_avg >= ceiling)  					sleep_time = 0;  				else if (p->sleep_avg + sleep_time >= -						INTERACTIVE_SLEEP(p)) { -					p->sleep_avg = INTERACTIVE_SLEEP(p); -					sleep_time = 0; +					 ceiling) { +						p->sleep_avg = ceiling; +						sleep_time = 0;  				}  			} @@ -742,9 +875,9 @@ static int recalc_task_prio(task_t *p, unsigned long long now)  			 */  			p->sleep_avg += sleep_time; -			if (p->sleep_avg > NS_MAX_SLEEP_AVG) -				p->sleep_avg = NS_MAX_SLEEP_AVG;  		} +		if (p->sleep_avg > NS_MAX_SLEEP_AVG) +			p->sleep_avg = NS_MAX_SLEEP_AVG;  	}  	return effective_prio(p); @@ -805,7 +938,7 @@ static void activate_task(task_t *p, runqueue_t *rq, int local)   */  static void deactivate_task(struct task_struct *p, runqueue_t *rq)  { -	rq->nr_running--; +	dec_nr_running(p, rq);  	dequeue_task(p, p->array);  	p->array = NULL;  } @@ -860,6 +993,12 @@ inline int task_curr(const task_t *p)  	return cpu_curr(task_cpu(p)) == p;  } +/* Used instead of source_load when we know the type == 0 */ +unsigned long weighted_cpuload(const int cpu) +{ +	return cpu_rq(cpu)->raw_weighted_load; +} +  #ifdef CONFIG_SMP  typedef struct {  	struct list_head list; @@ -949,7 +1088,8 @@ void kick_process(task_t *p)  }  /* - * Return a low guess at the load of a migration-source cpu. + * Return a low guess at the load of a migration-source cpu weighted + * according to the scheduling class and "nice" value.   *   * We want to under-estimate the load of migration sources, to   * balance conservatively. @@ -957,24 +1097,36 @@ void kick_process(task_t *p)  static inline unsigned long source_load(int cpu, int type)  {  	runqueue_t *rq = cpu_rq(cpu); -	unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; +  	if (type == 0) -		return load_now; +		return rq->raw_weighted_load; -	return min(rq->cpu_load[type-1], load_now); +	return min(rq->cpu_load[type-1], rq->raw_weighted_load);  }  /* - * Return a high guess at the load of a migration-target cpu + * Return a high guess at the load of a migration-target cpu weighted + * according to the scheduling class and "nice" value.   */  static inline unsigned long target_load(int cpu, int type)  {  	runqueue_t *rq = cpu_rq(cpu); -	unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE; +  	if (type == 0) -		return load_now; +		return rq->raw_weighted_load; + +	return max(rq->cpu_load[type-1], rq->raw_weighted_load); +} + +/* + * Return the average load per task on the cpu's run queue + */ +static inline unsigned long cpu_avg_load_per_task(int cpu) +{ +	runqueue_t *rq = cpu_rq(cpu); +	unsigned long n = rq->nr_running; -	return max(rq->cpu_load[type-1], load_now); +	return n ?  rq->raw_weighted_load / n : SCHED_LOAD_SCALE;  }  /* @@ -1047,7 +1199,7 @@ find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)  	cpus_and(tmp, group->cpumask, p->cpus_allowed);  	for_each_cpu_mask(i, tmp) { -		load = source_load(i, 0); +		load = weighted_cpuload(i);  		if (load < min_load || (load == min_load && i == this_cpu)) {  			min_load = load; @@ -1074,9 +1226,15 @@ static int sched_balance_self(int cpu, int flag)  	struct task_struct *t = current;  	struct sched_domain *tmp, *sd = NULL; -	for_each_domain(cpu, tmp) +	for_each_domain(cpu, tmp) { + 		/* + 	 	 * If power savings logic is enabled for a domain, stop there. + 	 	 */ +		if (tmp->flags & SD_POWERSAVINGS_BALANCE) +			break;  		if (tmp->flags & flag)  			sd = tmp; +	}  	while (sd) {  		cpumask_t span; @@ -1226,17 +1384,19 @@ static int try_to_wake_up(task_t *p, unsigned int state, int sync)  		if (this_sd->flags & SD_WAKE_AFFINE) {  			unsigned long tl = this_load; +			unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu); +  			/*  			 * If sync wakeup then subtract the (maximum possible)  			 * effect of the currently running task from the load  			 * of the current CPU:  			 */  			if (sync) -				tl -= SCHED_LOAD_SCALE; +				tl -= current->load_weight;  			if ((tl <= load && -				tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) || -				100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) { +				tl + target_load(cpu, idx) <= tl_per_task) || +				100*(tl + p->load_weight) <= imbalance*load) {  				/*  				 * This domain has SD_WAKE_AFFINE and  				 * p is cache cold in this domain, and @@ -1353,6 +1513,12 @@ void fastcall sched_fork(task_t *p, int clone_flags)  	 * event cannot wake it up and insert it on the runqueue either.  	 */  	p->state = TASK_RUNNING; + +	/* +	 * Make sure we do not leak PI boosting priority to the child: +	 */ +	p->prio = current->normal_prio; +  	INIT_LIST_HEAD(&p->run_list);  	p->array = NULL;  #ifdef CONFIG_SCHEDSTATS @@ -1432,10 +1598,11 @@ void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)  				__activate_task(p, rq);  			else {  				p->prio = current->prio; +				p->normal_prio = current->normal_prio;  				list_add_tail(&p->run_list, ¤t->run_list);  				p->array = current->array;  				p->array->nr_active++; -				rq->nr_running++; +				inc_nr_running(p, rq);  			}  			set_need_resched();  		} else @@ -1653,7 +1820,8 @@ unsigned long nr_uninterruptible(void)  unsigned long long nr_context_switches(void)  { -	unsigned long long i, sum = 0; +	int i; +	unsigned long long sum = 0;  	for_each_possible_cpu(i)  		sum += cpu_rq(i)->nr_switches; @@ -1691,9 +1859,6 @@ unsigned long nr_active(void)  /*   * double_rq_lock - safely lock two runqueues   * - * We must take them in cpu order to match code in - * dependent_sleeper and wake_dependent_sleeper. - *   * Note this does not disable interrupts like task_rq_lock,   * you need to do so manually before calling.   */ @@ -1705,7 +1870,7 @@ static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)  		spin_lock(&rq1->lock);  		__acquire(rq2->lock);	/* Fake it out ;) */  	} else { -		if (rq1->cpu < rq2->cpu) { +		if (rq1 < rq2) {  			spin_lock(&rq1->lock);  			spin_lock(&rq2->lock);  		} else { @@ -1741,7 +1906,7 @@ static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)  	__acquires(this_rq->lock)  {  	if (unlikely(!spin_trylock(&busiest->lock))) { -		if (busiest->cpu < this_rq->cpu) { +		if (busiest < this_rq) {  			spin_unlock(&this_rq->lock);  			spin_lock(&busiest->lock);  			spin_lock(&this_rq->lock); @@ -1804,9 +1969,9 @@ void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,  	       runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)  {  	dequeue_task(p, src_array); -	src_rq->nr_running--; +	dec_nr_running(p, src_rq);  	set_task_cpu(p, this_cpu); -	this_rq->nr_running++; +	inc_nr_running(p, this_rq);  	enqueue_task(p, this_array);  	p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)  				+ this_rq->timestamp_last_tick; @@ -1853,26 +2018,42 @@ int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,  	return 1;  } +#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)  /* - * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq, - * as part of a balancing operation within "domain". Returns the number of - * tasks moved. + * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted + * load from busiest to this_rq, as part of a balancing operation within + * "domain". Returns the number of tasks moved.   *   * Called with both runqueues locked.   */  static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest, -		      unsigned long max_nr_move, struct sched_domain *sd, -		      enum idle_type idle, int *all_pinned) +		      unsigned long max_nr_move, unsigned long max_load_move, +		      struct sched_domain *sd, enum idle_type idle, +		      int *all_pinned)  {  	prio_array_t *array, *dst_array;  	struct list_head *head, *curr; -	int idx, pulled = 0, pinned = 0; +	int idx, pulled = 0, pinned = 0, this_best_prio, busiest_best_prio; +	int busiest_best_prio_seen; +	int skip_for_load; /* skip the task based on weighted load issues */ +	long rem_load_move;  	task_t *tmp; -	if (max_nr_move == 0) +	if (max_nr_move == 0 || max_load_move == 0)  		goto out; +	rem_load_move = max_load_move;  	pinned = 1; +	this_best_prio = rq_best_prio(this_rq); +	busiest_best_prio = rq_best_prio(busiest); +	/* +	 * Enable handling of the case where there is more than one task +	 * with the best priority.   If the current running task is one +	 * of those with prio==busiest_best_prio we know it won't be moved +	 * and therefore it's safe to override the skip (based on load) of +	 * any task we find with that prio. +	 */ +	busiest_best_prio_seen = busiest_best_prio == busiest->curr->prio;  	/*  	 * We first consider expired tasks. Those will likely not be @@ -1912,7 +2093,17 @@ skip_queue:  	curr = curr->prev; -	if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) { +	/* +	 * To help distribute high priority tasks accross CPUs we don't +	 * skip a task if it will be the highest priority task (i.e. smallest +	 * prio value) on its new queue regardless of its load weight +	 */ +	skip_for_load = tmp->load_weight > rem_load_move; +	if (skip_for_load && idx < this_best_prio) +		skip_for_load = !busiest_best_prio_seen && idx == busiest_best_prio; +	if (skip_for_load || +	    !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) { +		busiest_best_prio_seen |= idx == busiest_best_prio;  		if (curr != head)  			goto skip_queue;  		idx++; @@ -1926,9 +2117,15 @@ skip_queue:  	pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);  	pulled++; +	rem_load_move -= tmp->load_weight; -	/* We only want to steal up to the prescribed number of tasks. */ -	if (pulled < max_nr_move) { +	/* +	 * We only want to steal up to the prescribed number of tasks +	 * and the prescribed amount of weighted load. +	 */ +	if (pulled < max_nr_move && rem_load_move > 0) { +		if (idx < this_best_prio) +			this_best_prio = idx;  		if (curr != head)  			goto skip_queue;  		idx++; @@ -1949,7 +2146,7 @@ out:  /*   * find_busiest_group finds and returns the busiest CPU group within the - * domain. It calculates and returns the number of tasks which should be + * domain. It calculates and returns the amount of weighted load which should be   * moved to restore balance via the imbalance parameter.   */  static struct sched_group * @@ -1959,9 +2156,19 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,  	struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;  	unsigned long max_load, avg_load, total_load, this_load, total_pwr;  	unsigned long max_pull; +	unsigned long busiest_load_per_task, busiest_nr_running; +	unsigned long this_load_per_task, this_nr_running;  	int load_idx; +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +	int power_savings_balance = 1; +	unsigned long leader_nr_running = 0, min_load_per_task = 0; +	unsigned long min_nr_running = ULONG_MAX; +	struct sched_group *group_min = NULL, *group_leader = NULL; +#endif  	max_load = this_load = total_load = total_pwr = 0; +	busiest_load_per_task = busiest_nr_running = 0; +	this_load_per_task = this_nr_running = 0;  	if (idle == NOT_IDLE)  		load_idx = sd->busy_idx;  	else if (idle == NEWLY_IDLE) @@ -1970,16 +2177,19 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,  		load_idx = sd->idle_idx;  	do { -		unsigned long load; +		unsigned long load, group_capacity;  		int local_group;  		int i; +		unsigned long sum_nr_running, sum_weighted_load;  		local_group = cpu_isset(this_cpu, group->cpumask);  		/* Tally up the load of all CPUs in the group */ -		avg_load = 0; +		sum_weighted_load = sum_nr_running = avg_load = 0;  		for_each_cpu_mask(i, group->cpumask) { +			runqueue_t *rq = cpu_rq(i); +  			if (*sd_idle && !idle_cpu(i))  				*sd_idle = 0; @@ -1990,6 +2200,8 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,  				load = source_load(i, load_idx);  			avg_load += load; +			sum_nr_running += rq->nr_running; +			sum_weighted_load += rq->raw_weighted_load;  		}  		total_load += avg_load; @@ -1998,17 +2210,80 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,  		/* Adjust by relative CPU power of the group */  		avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power; +		group_capacity = group->cpu_power / SCHED_LOAD_SCALE; +  		if (local_group) {  			this_load = avg_load;  			this = group; -		} else if (avg_load > max_load) { +			this_nr_running = sum_nr_running; +			this_load_per_task = sum_weighted_load; +		} else if (avg_load > max_load && +			   sum_nr_running > group_capacity) {  			max_load = avg_load;  			busiest = group; +			busiest_nr_running = sum_nr_running; +			busiest_load_per_task = sum_weighted_load;  		} + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +		/* +		 * Busy processors will not participate in power savings +		 * balance. +		 */ + 		if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) + 			goto group_next; + +		/* +		 * If the local group is idle or completely loaded +		 * no need to do power savings balance at this domain +		 */ +		if (local_group && (this_nr_running >= group_capacity || +				    !this_nr_running)) +			power_savings_balance = 0; + + 		/* +		 * If a group is already running at full capacity or idle, +		 * don't include that group in power savings calculations + 		 */ + 		if (!power_savings_balance || sum_nr_running >= group_capacity +		    || !sum_nr_running) + 			goto group_next; + + 		/* +		 * Calculate the group which has the least non-idle load. + 		 * This is the group from where we need to pick up the load + 		 * for saving power + 		 */ + 		if ((sum_nr_running < min_nr_running) || + 		    (sum_nr_running == min_nr_running && +		     first_cpu(group->cpumask) < +		     first_cpu(group_min->cpumask))) { + 			group_min = group; + 			min_nr_running = sum_nr_running; +			min_load_per_task = sum_weighted_load / +						sum_nr_running; + 		} + + 		/* +		 * Calculate the group which is almost near its + 		 * capacity but still has some space to pick up some load + 		 * from other group and save more power + 		 */ + 		if (sum_nr_running <= group_capacity - 1) + 			if (sum_nr_running > leader_nr_running || + 			    (sum_nr_running == leader_nr_running && + 			     first_cpu(group->cpumask) > + 			      first_cpu(group_leader->cpumask))) { + 				group_leader = group; + 				leader_nr_running = sum_nr_running; + 			} + +group_next: +#endif  		group = group->next;  	} while (group != sd->groups); -	if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE) +	if (!busiest || this_load >= max_load || busiest_nr_running == 0)  		goto out_balanced;  	avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr; @@ -2017,6 +2292,7 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,  			100*max_load <= sd->imbalance_pct*this_load)  		goto out_balanced; +	busiest_load_per_task /= busiest_nr_running;  	/*  	 * We're trying to get all the cpus to the average_load, so we don't  	 * want to push ourselves above the average load, nor do we wish to @@ -2028,21 +2304,50 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,  	 * by pulling tasks to us.  Be careful of negative numbers as they'll  	 * appear as very large values with unsigned longs.  	 */ +	if (max_load <= busiest_load_per_task) +		goto out_balanced; + +	/* +	 * In the presence of smp nice balancing, certain scenarios can have +	 * max load less than avg load(as we skip the groups at or below +	 * its cpu_power, while calculating max_load..) +	 */ +	if (max_load < avg_load) { +		*imbalance = 0; +		goto small_imbalance; +	}  	/* Don't want to pull so many tasks that a group would go idle */ -	max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE); +	max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);  	/* How much load to actually move to equalise the imbalance */  	*imbalance = min(max_pull * busiest->cpu_power,  				(avg_load - this_load) * this->cpu_power)  			/ SCHED_LOAD_SCALE; -	if (*imbalance < SCHED_LOAD_SCALE) { -		unsigned long pwr_now = 0, pwr_move = 0; +	/* +	 * if *imbalance is less than the average load per runnable task +	 * there is no gaurantee that any tasks will be moved so we'll have +	 * a think about bumping its value to force at least one task to be +	 * moved +	 */ +	if (*imbalance < busiest_load_per_task) { +		unsigned long pwr_now, pwr_move;  		unsigned long tmp; +		unsigned int imbn; + +small_imbalance: +		pwr_move = pwr_now = 0; +		imbn = 2; +		if (this_nr_running) { +			this_load_per_task /= this_nr_running; +			if (busiest_load_per_task > this_load_per_task) +				imbn = 1; +		} else +			this_load_per_task = SCHED_LOAD_SCALE; -		if (max_load - this_load >= SCHED_LOAD_SCALE*2) { -			*imbalance = 1; +		if (max_load - this_load >= busiest_load_per_task * imbn) { +			*imbalance = busiest_load_per_task;  			return busiest;  		} @@ -2052,39 +2357,47 @@ find_busiest_group(struct sched_domain *sd, int this_cpu,  		 * moving them.  		 */ -		pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load); -		pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load); +		pwr_now += busiest->cpu_power * +			min(busiest_load_per_task, max_load); +		pwr_now += this->cpu_power * +			min(this_load_per_task, this_load);  		pwr_now /= SCHED_LOAD_SCALE;  		/* Amount of load we'd subtract */ -		tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power; +		tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;  		if (max_load > tmp) -			pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE, -							max_load - tmp); +			pwr_move += busiest->cpu_power * +				min(busiest_load_per_task, max_load - tmp);  		/* Amount of load we'd add */  		if (max_load*busiest->cpu_power < -				SCHED_LOAD_SCALE*SCHED_LOAD_SCALE) +				busiest_load_per_task*SCHED_LOAD_SCALE)  			tmp = max_load*busiest->cpu_power/this->cpu_power;  		else -			tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power; -		pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp); +			tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power; +		pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);  		pwr_move /= SCHED_LOAD_SCALE;  		/* Move if we gain throughput */  		if (pwr_move <= pwr_now)  			goto out_balanced; -		*imbalance = 1; -		return busiest; +		*imbalance = busiest_load_per_task;  	} -	/* Get rid of the scaling factor, rounding down as we divide */ -	*imbalance = *imbalance / SCHED_LOAD_SCALE;  	return busiest;  out_balanced: +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +	if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE)) +		goto ret; +	if (this == group_leader && group_leader != group_min) { +		*imbalance = min_load_per_task; +		return group_min; +	} +ret: +#endif  	*imbalance = 0;  	return NULL;  } @@ -2093,18 +2406,21 @@ out_balanced:   * find_busiest_queue - find the busiest runqueue among the cpus in group.   */  static runqueue_t *find_busiest_queue(struct sched_group *group, -	enum idle_type idle) +	enum idle_type idle, unsigned long imbalance)  { -	unsigned long load, max_load = 0; -	runqueue_t *busiest = NULL; +	unsigned long max_load = 0; +	runqueue_t *busiest = NULL, *rqi;  	int i;  	for_each_cpu_mask(i, group->cpumask) { -		load = source_load(i, 0); +		rqi = cpu_rq(i); + +		if (rqi->nr_running == 1 && rqi->raw_weighted_load > imbalance) +			continue; -		if (load > max_load) { -			max_load = load; -			busiest = cpu_rq(i); +		if (rqi->raw_weighted_load > max_load) { +			max_load = rqi->raw_weighted_load; +			busiest = rqi;  		}  	} @@ -2117,6 +2433,7 @@ static runqueue_t *find_busiest_queue(struct sched_group *group,   */  #define MAX_PINNED_INTERVAL	512 +#define minus_1_or_zero(n) ((n) > 0 ? (n) - 1 : 0)  /*   * Check this_cpu to ensure it is balanced within domain. Attempt to move   * tasks if there is an imbalance. @@ -2133,7 +2450,8 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,  	int active_balance = 0;  	int sd_idle = 0; -	if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER) +	if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER && +	    !sched_smt_power_savings)  		sd_idle = 1;  	schedstat_inc(sd, lb_cnt[idle]); @@ -2144,7 +2462,7 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,  		goto out_balanced;  	} -	busiest = find_busiest_queue(group, idle); +	busiest = find_busiest_queue(group, idle, imbalance);  	if (!busiest) {  		schedstat_inc(sd, lb_nobusyq[idle]);  		goto out_balanced; @@ -2164,6 +2482,7 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,  		 */  		double_rq_lock(this_rq, busiest);  		nr_moved = move_tasks(this_rq, this_cpu, busiest, +					minus_1_or_zero(busiest->nr_running),  					imbalance, sd, idle, &all_pinned);  		double_rq_unlock(this_rq, busiest); @@ -2221,7 +2540,8 @@ static int load_balance(int this_cpu, runqueue_t *this_rq,  			sd->balance_interval *= 2;  	} -	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER) +	if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER && +	    !sched_smt_power_savings)  		return -1;  	return nr_moved; @@ -2236,7 +2556,7 @@ out_one_pinned:  			(sd->balance_interval < sd->max_interval))  		sd->balance_interval *= 2; -	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) +	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)  		return -1;  	return 0;  } @@ -2257,7 +2577,7 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,  	int nr_moved = 0;  	int sd_idle = 0; -	if (sd->flags & SD_SHARE_CPUPOWER) +	if (sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)  		sd_idle = 1;  	schedstat_inc(sd, lb_cnt[NEWLY_IDLE]); @@ -2267,7 +2587,7 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,  		goto out_balanced;  	} -	busiest = find_busiest_queue(group, NEWLY_IDLE); +	busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance);  	if (!busiest) {  		schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);  		goto out_balanced; @@ -2282,6 +2602,7 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,  		/* Attempt to move tasks */  		double_lock_balance(this_rq, busiest);  		nr_moved = move_tasks(this_rq, this_cpu, busiest, +					minus_1_or_zero(busiest->nr_running),  					imbalance, sd, NEWLY_IDLE, NULL);  		spin_unlock(&busiest->lock);  	} @@ -2297,7 +2618,7 @@ static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,  out_balanced:  	schedstat_inc(sd, lb_balanced[NEWLY_IDLE]); -	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER) +	if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER && !sched_smt_power_savings)  		return -1;  	sd->nr_balance_failed = 0;  	return 0; @@ -2352,17 +2673,19 @@ static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)  	double_lock_balance(busiest_rq, target_rq);  	/* Search for an sd spanning us and the target CPU. */ -	for_each_domain(target_cpu, sd) +	for_each_domain(target_cpu, sd) {  		if ((sd->flags & SD_LOAD_BALANCE) &&  			cpu_isset(busiest_cpu, sd->span))  				break; +	}  	if (unlikely(sd == NULL))  		goto out;  	schedstat_inc(sd, alb_cnt); -	if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL)) +	if (move_tasks(target_rq, target_cpu, busiest_rq, 1, +			RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE, NULL))  		schedstat_inc(sd, alb_pushed);  	else  		schedstat_inc(sd, alb_failed); @@ -2390,7 +2713,7 @@ static void rebalance_tick(int this_cpu, runqueue_t *this_rq,  	struct sched_domain *sd;  	int i; -	this_load = this_rq->nr_running * SCHED_LOAD_SCALE; +	this_load = this_rq->raw_weighted_load;  	/* Update our load */  	for (i = 0; i < 3; i++) {  		unsigned long new_load = this_load; @@ -2691,48 +3014,35 @@ static inline void wakeup_busy_runqueue(runqueue_t *rq)  		resched_task(rq->idle);  } -static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) +/* + * Called with interrupt disabled and this_rq's runqueue locked. + */ +static void wake_sleeping_dependent(int this_cpu)  {  	struct sched_domain *tmp, *sd = NULL; -	cpumask_t sibling_map;  	int i; -	for_each_domain(this_cpu, tmp) -		if (tmp->flags & SD_SHARE_CPUPOWER) +	for_each_domain(this_cpu, tmp) { +		if (tmp->flags & SD_SHARE_CPUPOWER) {  			sd = tmp; +			break; +		} +	}  	if (!sd)  		return; -	/* -	 * Unlock the current runqueue because we have to lock in -	 * CPU order to avoid deadlocks. Caller knows that we might -	 * unlock. We keep IRQs disabled. -	 */ -	spin_unlock(&this_rq->lock); - -	sibling_map = sd->span; - -	for_each_cpu_mask(i, sibling_map) -		spin_lock(&cpu_rq(i)->lock); -	/* -	 * We clear this CPU from the mask. This both simplifies the -	 * inner loop and keps this_rq locked when we exit: -	 */ -	cpu_clear(this_cpu, sibling_map); - -	for_each_cpu_mask(i, sibling_map) { +	for_each_cpu_mask(i, sd->span) {  		runqueue_t *smt_rq = cpu_rq(i); +		if (i == this_cpu) +			continue; +		if (unlikely(!spin_trylock(&smt_rq->lock))) +			continue; +  		wakeup_busy_runqueue(smt_rq); +		spin_unlock(&smt_rq->lock);  	} - -	for_each_cpu_mask(i, sibling_map) -		spin_unlock(&cpu_rq(i)->lock); -	/* -	 * We exit with this_cpu's rq still held and IRQs -	 * still disabled: -	 */  }  /* @@ -2745,52 +3055,46 @@ static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)  	return p->time_slice * (100 - sd->per_cpu_gain) / 100;  } -static int dependent_sleeper(int this_cpu, runqueue_t *this_rq) +/* + * To minimise lock contention and not have to drop this_rq's runlock we only + * trylock the sibling runqueues and bypass those runqueues if we fail to + * acquire their lock. As we only trylock the normal locking order does not + * need to be obeyed. + */ +static int dependent_sleeper(int this_cpu, runqueue_t *this_rq, task_t *p)  {  	struct sched_domain *tmp, *sd = NULL; -	cpumask_t sibling_map; -	prio_array_t *array;  	int ret = 0, i; -	task_t *p; -	for_each_domain(this_cpu, tmp) -		if (tmp->flags & SD_SHARE_CPUPOWER) +	/* kernel/rt threads do not participate in dependent sleeping */ +	if (!p->mm || rt_task(p)) +		return 0; + +	for_each_domain(this_cpu, tmp) { +		if (tmp->flags & SD_SHARE_CPUPOWER) {  			sd = tmp; +			break; +		} +	}  	if (!sd)  		return 0; -	/* -	 * The same locking rules and details apply as for -	 * wake_sleeping_dependent(): -	 */ -	spin_unlock(&this_rq->lock); -	sibling_map = sd->span; -	for_each_cpu_mask(i, sibling_map) -		spin_lock(&cpu_rq(i)->lock); -	cpu_clear(this_cpu, sibling_map); +	for_each_cpu_mask(i, sd->span) { +		runqueue_t *smt_rq; +		task_t *smt_curr; -	/* -	 * Establish next task to be run - it might have gone away because -	 * we released the runqueue lock above: -	 */ -	if (!this_rq->nr_running) -		goto out_unlock; -	array = this_rq->active; -	if (!array->nr_active) -		array = this_rq->expired; -	BUG_ON(!array->nr_active); +		if (i == this_cpu) +			continue; -	p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next, -		task_t, run_list); +		smt_rq = cpu_rq(i); +		if (unlikely(!spin_trylock(&smt_rq->lock))) +			continue; -	for_each_cpu_mask(i, sibling_map) { -		runqueue_t *smt_rq = cpu_rq(i); -		task_t *smt_curr = smt_rq->curr; +		smt_curr = smt_rq->curr; -		/* Kernel threads do not participate in dependent sleeping */ -		if (!p->mm || !smt_curr->mm || rt_task(p)) -			goto check_smt_task; +		if (!smt_curr->mm) +			goto unlock;  		/*  		 * If a user task with lower static priority than the @@ -2808,49 +3112,24 @@ static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)  			if ((jiffies % DEF_TIMESLICE) >  				(sd->per_cpu_gain * DEF_TIMESLICE / 100))  					ret = 1; -		} else +		} else {  			if (smt_curr->static_prio < p->static_prio &&  				!TASK_PREEMPTS_CURR(p, smt_rq) &&  				smt_slice(smt_curr, sd) > task_timeslice(p))  					ret = 1; - -check_smt_task: -		if ((!smt_curr->mm && smt_curr != smt_rq->idle) || -			rt_task(smt_curr)) -				continue; -		if (!p->mm) { -			wakeup_busy_runqueue(smt_rq); -			continue; -		} - -		/* -		 * Reschedule a lower priority task on the SMT sibling for -		 * it to be put to sleep, or wake it up if it has been put to -		 * sleep for priority reasons to see if it should run now. -		 */ -		if (rt_task(p)) { -			if ((jiffies % DEF_TIMESLICE) > -				(sd->per_cpu_gain * DEF_TIMESLICE / 100)) -					resched_task(smt_curr); -		} else { -			if (TASK_PREEMPTS_CURR(p, smt_rq) && -				smt_slice(p, sd) > task_timeslice(smt_curr)) -					resched_task(smt_curr); -			else -				wakeup_busy_runqueue(smt_rq);  		} +unlock: +		spin_unlock(&smt_rq->lock);  	} -out_unlock: -	for_each_cpu_mask(i, sibling_map) -		spin_unlock(&cpu_rq(i)->lock);  	return ret;  }  #else -static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq) +static inline void wake_sleeping_dependent(int this_cpu)  {  } -static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq) +static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq, +					task_t *p)  {  	return 0;  } @@ -2972,32 +3251,13 @@ need_resched_nonpreemptible:  	cpu = smp_processor_id();  	if (unlikely(!rq->nr_running)) { -go_idle:  		idle_balance(cpu, rq);  		if (!rq->nr_running) {  			next = rq->idle;  			rq->expired_timestamp = 0; -			wake_sleeping_dependent(cpu, rq); -			/* -			 * wake_sleeping_dependent() might have released -			 * the runqueue, so break out if we got new -			 * tasks meanwhile: -			 */ -			if (!rq->nr_running) -				goto switch_tasks; -		} -	} else { -		if (dependent_sleeper(cpu, rq)) { -			next = rq->idle; +			wake_sleeping_dependent(cpu);  			goto switch_tasks;  		} -		/* -		 * dependent_sleeper() releases and reacquires the runqueue -		 * lock, hence go into the idle loop if the rq went -		 * empty meanwhile: -		 */ -		if (unlikely(!rq->nr_running)) -			goto go_idle;  	}  	array = rq->active; @@ -3035,6 +3295,8 @@ go_idle:  		}  	}  	next->sleep_type = SLEEP_NORMAL; +	if (dependent_sleeper(cpu, rq, next)) +		next = rq->idle;  switch_tasks:  	if (next == rq->idle)  		schedstat_inc(rq, sched_goidle); @@ -3478,12 +3740,65 @@ long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)  EXPORT_SYMBOL(sleep_on_timeout); +#ifdef CONFIG_RT_MUTEXES + +/* + * rt_mutex_setprio - set the current priority of a task + * @p: task + * @prio: prio value (kernel-internal form) + * + * This function changes the 'effective' priority of a task. It does + * not touch ->normal_prio like __setscheduler(). + * + * Used by the rt_mutex code to implement priority inheritance logic. + */ +void rt_mutex_setprio(task_t *p, int prio) +{ +	unsigned long flags; +	prio_array_t *array; +	runqueue_t *rq; +	int oldprio; + +	BUG_ON(prio < 0 || prio > MAX_PRIO); + +	rq = task_rq_lock(p, &flags); + +	oldprio = p->prio; +	array = p->array; +	if (array) +		dequeue_task(p, array); +	p->prio = prio; + +	if (array) { +		/* +		 * If changing to an RT priority then queue it +		 * in the active array! +		 */ +		if (rt_task(p)) +			array = rq->active; +		enqueue_task(p, array); +		/* +		 * Reschedule if we are currently running on this runqueue and +		 * our priority decreased, or if we are not currently running on +		 * this runqueue and our priority is higher than the current's +		 */ +		if (task_running(rq, p)) { +			if (p->prio > oldprio) +				resched_task(rq->curr); +		} else if (TASK_PREEMPTS_CURR(p, rq)) +			resched_task(rq->curr); +	} +	task_rq_unlock(rq, &flags); +} + +#endif +  void set_user_nice(task_t *p, long nice)  {  	unsigned long flags;  	prio_array_t *array;  	runqueue_t *rq; -	int old_prio, new_prio, delta; +	int old_prio, delta;  	if (TASK_NICE(p) == nice || nice < -20 || nice > 19)  		return; @@ -3498,22 +3813,25 @@ void set_user_nice(task_t *p, long nice)  	 * it wont have any effect on scheduling until the task is  	 * not SCHED_NORMAL/SCHED_BATCH:  	 */ -	if (rt_task(p)) { +	if (has_rt_policy(p)) {  		p->static_prio = NICE_TO_PRIO(nice);  		goto out_unlock;  	}  	array = p->array; -	if (array) +	if (array) {  		dequeue_task(p, array); +		dec_raw_weighted_load(rq, p); +	} -	old_prio = p->prio; -	new_prio = NICE_TO_PRIO(nice); -	delta = new_prio - old_prio;  	p->static_prio = NICE_TO_PRIO(nice); -	p->prio += delta; +	set_load_weight(p); +	old_prio = p->prio; +	p->prio = effective_prio(p); +	delta = p->prio - old_prio;  	if (array) {  		enqueue_task(p, array); +		inc_raw_weighted_load(rq, p);  		/*  		 * If the task increased its priority or is running and  		 * lowered its priority, then reschedule its CPU: @@ -3524,7 +3842,6 @@ void set_user_nice(task_t *p, long nice)  out_unlock:  	task_rq_unlock(rq, &flags);  } -  EXPORT_SYMBOL(set_user_nice);  /* @@ -3639,16 +3956,15 @@ static void __setscheduler(struct task_struct *p, int policy, int prio)  	BUG_ON(p->array);  	p->policy = policy;  	p->rt_priority = prio; -	if (policy != SCHED_NORMAL && policy != SCHED_BATCH) { -		p->prio = MAX_RT_PRIO-1 - p->rt_priority; -	} else { -		p->prio = p->static_prio; -		/* -		 * SCHED_BATCH tasks are treated as perpetual CPU hogs: -		 */ -		if (policy == SCHED_BATCH) -			p->sleep_avg = 0; -	} +	p->normal_prio = normal_prio(p); +	/* we are holding p->pi_lock already */ +	p->prio = rt_mutex_getprio(p); +	/* +	 * SCHED_BATCH tasks are treated as perpetual CPU hogs: +	 */ +	if (policy == SCHED_BATCH) +		p->sleep_avg = 0; +	set_load_weight(p);  }  /** @@ -3667,6 +3983,8 @@ int sched_setscheduler(struct task_struct *p, int policy,  	unsigned long flags;  	runqueue_t *rq; +	/* may grab non-irq protected spin_locks */ +	BUG_ON(in_interrupt());  recheck:  	/* double check policy once rq lock held */  	if (policy < 0) @@ -3715,14 +4033,20 @@ recheck:  	if (retval)  		return retval;  	/* +	 * make sure no PI-waiters arrive (or leave) while we are +	 * changing the priority of the task: +	 */ +	spin_lock_irqsave(&p->pi_lock, flags); +	/*  	 * To be able to change p->policy safely, the apropriate  	 * runqueue lock must be held.  	 */ -	rq = task_rq_lock(p, &flags); +	rq = __task_rq_lock(p);  	/* recheck policy now with rq lock held */  	if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {  		policy = oldpolicy = -1; -		task_rq_unlock(rq, &flags); +		__task_rq_unlock(rq); +		spin_unlock_irqrestore(&p->pi_lock, flags);  		goto recheck;  	}  	array = p->array; @@ -3743,7 +4067,11 @@ recheck:  		} else if (TASK_PREEMPTS_CURR(p, rq))  			resched_task(rq->curr);  	} -	task_rq_unlock(rq, &flags); +	__task_rq_unlock(rq); +	spin_unlock_irqrestore(&p->pi_lock, flags); + +	rt_mutex_adjust_pi(p); +  	return 0;  }  EXPORT_SYMBOL_GPL(sched_setscheduler); @@ -3765,8 +4093,10 @@ do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)  		read_unlock_irq(&tasklist_lock);  		return -ESRCH;  	} -	retval = sched_setscheduler(p, policy, &lparam); +	get_task_struct(p);  	read_unlock_irq(&tasklist_lock); +	retval = sched_setscheduler(p, policy, &lparam); +	put_task_struct(p);  	return retval;  } @@ -4378,7 +4708,7 @@ void __devinit init_idle(task_t *idle, int cpu)  	idle->timestamp = sched_clock();  	idle->sleep_avg = 0;  	idle->array = NULL; -	idle->prio = MAX_PRIO; +	idle->prio = idle->normal_prio = MAX_PRIO;  	idle->state = TASK_RUNNING;  	idle->cpus_allowed = cpumask_of_cpu(cpu);  	set_task_cpu(idle, cpu); @@ -4474,13 +4804,16 @@ EXPORT_SYMBOL_GPL(set_cpus_allowed);   *   * So we race with normal scheduler movements, but that's OK, as long   * as the task is no longer on this CPU. + * + * Returns non-zero if task was successfully migrated.   */ -static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu) +static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)  {  	runqueue_t *rq_dest, *rq_src; +	int ret = 0;  	if (unlikely(cpu_is_offline(dest_cpu))) -		return; +		return ret;  	rq_src = cpu_rq(src_cpu);  	rq_dest = cpu_rq(dest_cpu); @@ -4508,9 +4841,10 @@ static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)  		if (TASK_PREEMPTS_CURR(p, rq_dest))  			resched_task(rq_dest->curr);  	} - +	ret = 1;  out:  	double_rq_unlock(rq_src, rq_dest); +	return ret;  }  /* @@ -4580,9 +4914,12 @@ wait_to_die:  /* Figure out where task on dead CPU should go, use force if neccessary. */  static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)  { +	runqueue_t *rq; +	unsigned long flags;  	int dest_cpu;  	cpumask_t mask; +restart:  	/* On same node? */  	mask = node_to_cpumask(cpu_to_node(dead_cpu));  	cpus_and(mask, mask, tsk->cpus_allowed); @@ -4594,8 +4931,10 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)  	/* No more Mr. Nice Guy. */  	if (dest_cpu == NR_CPUS) { +		rq = task_rq_lock(tsk, &flags);  		cpus_setall(tsk->cpus_allowed);  		dest_cpu = any_online_cpu(tsk->cpus_allowed); +		task_rq_unlock(rq, &flags);  		/*  		 * Don't tell them about moving exiting tasks or @@ -4607,7 +4946,8 @@ static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)  			       "longer affine to cpu%d\n",  			       tsk->pid, tsk->comm, dead_cpu);  	} -	__migrate_task(tsk, dead_cpu, dest_cpu); +	if (!__migrate_task(tsk, dead_cpu, dest_cpu)) +		goto restart;  }  /* @@ -4734,8 +5074,9 @@ static void migrate_dead_tasks(unsigned int dead_cpu)   * migration_call - callback that gets triggered when a CPU is added.   * Here we can start up the necessary migration thread for the new CPU.   */ -static int migration_call(struct notifier_block *nfb, unsigned long action, -			  void *hcpu) +static int __cpuinit migration_call(struct notifier_block *nfb, +			unsigned long action, +			void *hcpu)  {  	int cpu = (long)hcpu;  	struct task_struct *p; @@ -4805,7 +5146,7 @@ static int migration_call(struct notifier_block *nfb, unsigned long action,  /* Register at highest priority so that task migration (migrate_all_tasks)   * happens before everything else.   */ -static struct notifier_block migration_notifier = { +static struct notifier_block __cpuinitdata migration_notifier = {  	.notifier_call = migration_call,  	.priority = 10  }; @@ -5606,6 +5947,7 @@ static cpumask_t sched_domain_node_span(int node)  }  #endif +int sched_smt_power_savings = 0, sched_mc_power_savings = 0;  /*   * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we   * can switch it on easily if needed. @@ -5621,7 +5963,7 @@ static int cpu_to_cpu_group(int cpu)  #ifdef CONFIG_SCHED_MC  static DEFINE_PER_CPU(struct sched_domain, core_domains); -static struct sched_group sched_group_core[NR_CPUS]; +static struct sched_group *sched_group_core_bycpu[NR_CPUS];  #endif  #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT) @@ -5637,7 +5979,7 @@ static int cpu_to_core_group(int cpu)  #endif  static DEFINE_PER_CPU(struct sched_domain, phys_domains); -static struct sched_group sched_group_phys[NR_CPUS]; +static struct sched_group *sched_group_phys_bycpu[NR_CPUS];  static int cpu_to_phys_group(int cpu)  {  #if defined(CONFIG_SCHED_MC) @@ -5694,13 +6036,74 @@ next_sg:  }  #endif +/* Free memory allocated for various sched_group structures */ +static void free_sched_groups(const cpumask_t *cpu_map) +{ +	int cpu; +#ifdef CONFIG_NUMA +	int i; + +	for_each_cpu_mask(cpu, *cpu_map) { +		struct sched_group *sched_group_allnodes +			= sched_group_allnodes_bycpu[cpu]; +		struct sched_group **sched_group_nodes +			= sched_group_nodes_bycpu[cpu]; + +		if (sched_group_allnodes) { +			kfree(sched_group_allnodes); +			sched_group_allnodes_bycpu[cpu] = NULL; +		} + +		if (!sched_group_nodes) +			continue; + +		for (i = 0; i < MAX_NUMNODES; i++) { +			cpumask_t nodemask = node_to_cpumask(i); +			struct sched_group *oldsg, *sg = sched_group_nodes[i]; + +			cpus_and(nodemask, nodemask, *cpu_map); +			if (cpus_empty(nodemask)) +				continue; + +			if (sg == NULL) +				continue; +			sg = sg->next; +next_sg: +			oldsg = sg; +			sg = sg->next; +			kfree(oldsg); +			if (oldsg != sched_group_nodes[i]) +				goto next_sg; +		} +		kfree(sched_group_nodes); +		sched_group_nodes_bycpu[cpu] = NULL; +	} +#endif +	for_each_cpu_mask(cpu, *cpu_map) { +		if (sched_group_phys_bycpu[cpu]) { +			kfree(sched_group_phys_bycpu[cpu]); +			sched_group_phys_bycpu[cpu] = NULL; +		} +#ifdef CONFIG_SCHED_MC +		if (sched_group_core_bycpu[cpu]) { +			kfree(sched_group_core_bycpu[cpu]); +			sched_group_core_bycpu[cpu] = NULL; +		} +#endif +	} +} +  /*   * Build sched domains for a given set of cpus and attach the sched domains   * to the individual cpus   */ -void build_sched_domains(const cpumask_t *cpu_map) +static int build_sched_domains(const cpumask_t *cpu_map)  {  	int i; +	struct sched_group *sched_group_phys = NULL; +#ifdef CONFIG_SCHED_MC +	struct sched_group *sched_group_core = NULL; +#endif  #ifdef CONFIG_NUMA  	struct sched_group **sched_group_nodes = NULL;  	struct sched_group *sched_group_allnodes = NULL; @@ -5708,11 +6111,11 @@ void build_sched_domains(const cpumask_t *cpu_map)  	/*  	 * Allocate the per-node list of sched groups  	 */ -	sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES, -					   GFP_ATOMIC); +	sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES, +					   GFP_KERNEL);  	if (!sched_group_nodes) {  		printk(KERN_WARNING "Can not alloc sched group node list\n"); -		return; +		return -ENOMEM;  	}  	sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;  #endif @@ -5738,7 +6141,7 @@ void build_sched_domains(const cpumask_t *cpu_map)  				if (!sched_group_allnodes) {  					printk(KERN_WARNING  					"Can not alloc allnodes sched group\n"); -					break; +					goto error;  				}  				sched_group_allnodes_bycpu[i]  						= sched_group_allnodes; @@ -5759,6 +6162,18 @@ void build_sched_domains(const cpumask_t *cpu_map)  		cpus_and(sd->span, sd->span, *cpu_map);  #endif +		if (!sched_group_phys) { +			sched_group_phys +				= kmalloc(sizeof(struct sched_group) * NR_CPUS, +					  GFP_KERNEL); +			if (!sched_group_phys) { +				printk (KERN_WARNING "Can not alloc phys sched" +						     "group\n"); +				goto error; +			} +			sched_group_phys_bycpu[i] = sched_group_phys; +		} +  		p = sd;  		sd = &per_cpu(phys_domains, i);  		group = cpu_to_phys_group(i); @@ -5768,6 +6183,18 @@ void build_sched_domains(const cpumask_t *cpu_map)  		sd->groups = &sched_group_phys[group];  #ifdef CONFIG_SCHED_MC +		if (!sched_group_core) { +			sched_group_core +				= kmalloc(sizeof(struct sched_group) * NR_CPUS, +					  GFP_KERNEL); +			if (!sched_group_core) { +				printk (KERN_WARNING "Can not alloc core sched" +						     "group\n"); +				goto error; +			} +			sched_group_core_bycpu[i] = sched_group_core; +		} +  		p = sd;  		sd = &per_cpu(core_domains, i);  		group = cpu_to_core_group(i); @@ -5851,24 +6278,21 @@ void build_sched_domains(const cpumask_t *cpu_map)  		domainspan = sched_domain_node_span(i);  		cpus_and(domainspan, domainspan, *cpu_map); -		sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); +		sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i); +		if (!sg) { +			printk(KERN_WARNING "Can not alloc domain group for " +				"node %d\n", i); +			goto error; +		}  		sched_group_nodes[i] = sg;  		for_each_cpu_mask(j, nodemask) {  			struct sched_domain *sd;  			sd = &per_cpu(node_domains, j);  			sd->groups = sg; -			if (sd->groups == NULL) { -				/* Turn off balancing if we have no groups */ -				sd->flags = 0; -			} -		} -		if (!sg) { -			printk(KERN_WARNING -			"Can not alloc domain group for node %d\n", i); -			continue;  		}  		sg->cpu_power = 0;  		sg->cpumask = nodemask; +		sg->next = sg;  		cpus_or(covered, covered, nodemask);  		prev = sg; @@ -5887,54 +6311,90 @@ void build_sched_domains(const cpumask_t *cpu_map)  			if (cpus_empty(tmp))  				continue; -			sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL); +			sg = kmalloc_node(sizeof(struct sched_group), +					  GFP_KERNEL, i);  			if (!sg) {  				printk(KERN_WARNING  				"Can not alloc domain group for node %d\n", j); -				break; +				goto error;  			}  			sg->cpu_power = 0;  			sg->cpumask = tmp; +			sg->next = prev->next;  			cpus_or(covered, covered, tmp);  			prev->next = sg;  			prev = sg;  		} -		prev->next = sched_group_nodes[i];  	}  #endif  	/* Calculate CPU power for physical packages and nodes */ +#ifdef CONFIG_SCHED_SMT  	for_each_cpu_mask(i, *cpu_map) { -		int power;  		struct sched_domain *sd; -#ifdef CONFIG_SCHED_SMT  		sd = &per_cpu(cpu_domains, i); -		power = SCHED_LOAD_SCALE; -		sd->groups->cpu_power = power; +		sd->groups->cpu_power = SCHED_LOAD_SCALE; +	}  #endif  #ifdef CONFIG_SCHED_MC +	for_each_cpu_mask(i, *cpu_map) { +		int power; +		struct sched_domain *sd;  		sd = &per_cpu(core_domains, i); -		power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1) +		if (sched_smt_power_savings) +			power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask); +		else +			power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)  					    * SCHED_LOAD_SCALE / 10;  		sd->groups->cpu_power = power; +	} +#endif +	for_each_cpu_mask(i, *cpu_map) { +		struct sched_domain *sd; +#ifdef CONFIG_SCHED_MC  		sd = &per_cpu(phys_domains, i); +		if (i != first_cpu(sd->groups->cpumask)) +			continue; - 		/* - 		 * This has to be < 2 * SCHED_LOAD_SCALE - 		 * Lets keep it SCHED_LOAD_SCALE, so that - 		 * while calculating NUMA group's cpu_power - 		 * we can simply do - 		 *  numa_group->cpu_power += phys_group->cpu_power; - 		 * - 		 * See "only add power once for each physical pkg" - 		 * comment below - 		 */ - 		sd->groups->cpu_power = SCHED_LOAD_SCALE; +		sd->groups->cpu_power = 0; +		if (sched_mc_power_savings || sched_smt_power_savings) { +			int j; + + 			for_each_cpu_mask(j, sd->groups->cpumask) { +				struct sched_domain *sd1; + 				sd1 = &per_cpu(core_domains, j); + 				/* + 			 	 * for each core we will add once + 				 * to the group in physical domain + 			 	 */ +  	 			if (j != first_cpu(sd1->groups->cpumask)) + 					continue; + + 				if (sched_smt_power_savings) +   					sd->groups->cpu_power += sd1->groups->cpu_power; + 				else +   					sd->groups->cpu_power += SCHED_LOAD_SCALE; +   			} + 		} else + 			/* + 			 * This has to be < 2 * SCHED_LOAD_SCALE + 			 * Lets keep it SCHED_LOAD_SCALE, so that + 			 * while calculating NUMA group's cpu_power + 			 * we can simply do + 			 *  numa_group->cpu_power += phys_group->cpu_power; + 			 * + 			 * See "only add power once for each physical pkg" + 			 * comment below + 			 */ + 			sd->groups->cpu_power = SCHED_LOAD_SCALE;  #else +		int power;  		sd = &per_cpu(phys_domains, i); -		power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE * -				(cpus_weight(sd->groups->cpumask)-1) / 10; +		if (sched_smt_power_savings) +			power = SCHED_LOAD_SCALE * cpus_weight(sd->groups->cpumask); +		else +			power = SCHED_LOAD_SCALE;  		sd->groups->cpu_power = power;  #endif  	} @@ -5962,13 +6422,20 @@ void build_sched_domains(const cpumask_t *cpu_map)  	 * Tune cache-hot values:  	 */  	calibrate_migration_costs(cpu_map); + +	return 0; + +error: +	free_sched_groups(cpu_map); +	return -ENOMEM;  }  /*   * Set up scheduler domains and groups.  Callers must hold the hotplug lock.   */ -static void arch_init_sched_domains(const cpumask_t *cpu_map) +static int arch_init_sched_domains(const cpumask_t *cpu_map)  {  	cpumask_t cpu_default_map; +	int err;  	/*  	 * Setup mask for cpus without special case scheduling requirements. @@ -5977,51 +6444,14 @@ static void arch_init_sched_domains(const cpumask_t *cpu_map)  	 */  	cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map); -	build_sched_domains(&cpu_default_map); +	err = build_sched_domains(&cpu_default_map); + +	return err;  }  static void arch_destroy_sched_domains(const cpumask_t *cpu_map)  { -#ifdef CONFIG_NUMA -	int i; -	int cpu; - -	for_each_cpu_mask(cpu, *cpu_map) { -		struct sched_group *sched_group_allnodes -			= sched_group_allnodes_bycpu[cpu]; -		struct sched_group **sched_group_nodes -			= sched_group_nodes_bycpu[cpu]; - -		if (sched_group_allnodes) { -			kfree(sched_group_allnodes); -			sched_group_allnodes_bycpu[cpu] = NULL; -		} - -		if (!sched_group_nodes) -			continue; - -		for (i = 0; i < MAX_NUMNODES; i++) { -			cpumask_t nodemask = node_to_cpumask(i); -			struct sched_group *oldsg, *sg = sched_group_nodes[i]; - -			cpus_and(nodemask, nodemask, *cpu_map); -			if (cpus_empty(nodemask)) -				continue; - -			if (sg == NULL) -				continue; -			sg = sg->next; -next_sg: -			oldsg = sg; -			sg = sg->next; -			kfree(oldsg); -			if (oldsg != sched_group_nodes[i]) -				goto next_sg; -		} -		kfree(sched_group_nodes); -		sched_group_nodes_bycpu[cpu] = NULL; -	} -#endif +	free_sched_groups(cpu_map);  }  /* @@ -6046,9 +6476,10 @@ static void detach_destroy_domains(const cpumask_t *cpu_map)   * correct sched domains   * Call with hotplug lock held   */ -void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2) +int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)  {  	cpumask_t change_map; +	int err = 0;  	cpus_and(*partition1, *partition1, cpu_online_map);  	cpus_and(*partition2, *partition2, cpu_online_map); @@ -6057,10 +6488,86 @@ void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)  	/* Detach sched domains from all of the affected cpus */  	detach_destroy_domains(&change_map);  	if (!cpus_empty(*partition1)) -		build_sched_domains(partition1); -	if (!cpus_empty(*partition2)) -		build_sched_domains(partition2); +		err = build_sched_domains(partition1); +	if (!err && !cpus_empty(*partition2)) +		err = build_sched_domains(partition2); + +	return err; +} + +#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT) +int arch_reinit_sched_domains(void) +{ +	int err; + +	lock_cpu_hotplug(); +	detach_destroy_domains(&cpu_online_map); +	err = arch_init_sched_domains(&cpu_online_map); +	unlock_cpu_hotplug(); + +	return err; +} + +static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt) +{ +	int ret; + +	if (buf[0] != '0' && buf[0] != '1') +		return -EINVAL; + +	if (smt) +		sched_smt_power_savings = (buf[0] == '1'); +	else +		sched_mc_power_savings = (buf[0] == '1'); + +	ret = arch_reinit_sched_domains(); + +	return ret ? ret : count; +} + +int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls) +{ +	int err = 0; +#ifdef CONFIG_SCHED_SMT +	if (smt_capable()) +		err = sysfs_create_file(&cls->kset.kobj, +					&attr_sched_smt_power_savings.attr); +#endif +#ifdef CONFIG_SCHED_MC +	if (!err && mc_capable()) +		err = sysfs_create_file(&cls->kset.kobj, +					&attr_sched_mc_power_savings.attr); +#endif +	return err; +} +#endif + +#ifdef CONFIG_SCHED_MC +static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page) +{ +	return sprintf(page, "%u\n", sched_mc_power_savings); +} +static ssize_t sched_mc_power_savings_store(struct sys_device *dev, const char *buf, size_t count) +{ +	return sched_power_savings_store(buf, count, 0); +} +SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show, +	    sched_mc_power_savings_store); +#endif + +#ifdef CONFIG_SCHED_SMT +static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page) +{ +	return sprintf(page, "%u\n", sched_smt_power_savings); +} +static ssize_t sched_smt_power_savings_store(struct sys_device *dev, const char *buf, size_t count) +{ +	return sched_power_savings_store(buf, count, 1);  } +SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show, +	    sched_smt_power_savings_store); +#endif +  #ifdef CONFIG_HOTPLUG_CPU  /* @@ -6143,7 +6650,6 @@ void __init sched_init(void)  		rq->push_cpu = 0;  		rq->migration_thread = NULL;  		INIT_LIST_HEAD(&rq->migration_queue); -		rq->cpu = i;  #endif  		atomic_set(&rq->nr_iowait, 0); @@ -6158,6 +6664,7 @@ void __init sched_init(void)  		}  	} +	set_load_weight(&init_task);  	/*  	 * The boot idle thread does lazy MMU switching as well:  	 */ @@ -6204,11 +6711,12 @@ void normalize_rt_tasks(void)  	runqueue_t *rq;  	read_lock_irq(&tasklist_lock); -	for_each_process (p) { +	for_each_process(p) {  		if (!rt_task(p))  			continue; -		rq = task_rq_lock(p, &flags); +		spin_lock_irqsave(&p->pi_lock, flags); +		rq = __task_rq_lock(p);  		array = p->array;  		if (array) @@ -6219,7 +6727,8 @@ void normalize_rt_tasks(void)  			resched_task(rq->curr);  		} -		task_rq_unlock(rq, &flags); +		__task_rq_unlock(rq); +		spin_unlock_irqrestore(&p->pi_lock, flags);  	}  	read_unlock_irq(&tasklist_lock);  }  | 

