diff options
Diffstat (limited to 'drivers/usb/wusbcore/wusbhc.h')
-rw-r--r-- | drivers/usb/wusbcore/wusbhc.h | 487 |
1 files changed, 0 insertions, 487 deletions
diff --git a/drivers/usb/wusbcore/wusbhc.h b/drivers/usb/wusbcore/wusbhc.h deleted file mode 100644 index 7681d796ca5b..000000000000 --- a/drivers/usb/wusbcore/wusbhc.h +++ /dev/null @@ -1,487 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * Wireless USB Host Controller - * Common infrastructure for WHCI and HWA WUSB-HC drivers - * - * - * Copyright (C) 2005-2006 Intel Corporation - * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> - * - * This driver implements parts common to all Wireless USB Host - * Controllers (struct wusbhc, embedding a struct usb_hcd) and is used - * by: - * - * - hwahc: HWA, USB-dongle that implements a Wireless USB host - * controller, (Wireless USB 1.0 Host-Wire-Adapter specification). - * - * - whci: WHCI, a PCI card with a wireless host controller - * (Wireless Host Controller Interface 1.0 specification). - * - * Check out the Design-overview.txt file in the source documentation - * for other details on the implementation. - * - * Main blocks: - * - * rh Root Hub emulation (part of the HCD glue) - * - * devconnect Handle all the issues related to device connection, - * authentication, disconnection, timeout, reseting, - * keepalives, etc. - * - * mmc MMC IE broadcasting handling - * - * A host controller driver just initializes its stuff and as part of - * that, creates a 'struct wusbhc' instance that handles all the - * common WUSB mechanisms. Links in the function ops that are specific - * to it and then registers the host controller. Ready to run. - */ - -#ifndef __WUSBHC_H__ -#define __WUSBHC_H__ - -#include <linux/usb.h> -#include <linux/list.h> -#include <linux/mutex.h> -#include <linux/kref.h> -#include <linux/workqueue.h> -#include <linux/usb/hcd.h> -#include <linux/uwb.h> -#include <linux/usb/wusb.h> - -/* - * Time from a WUSB channel stop request to the last transmitted MMC. - * - * This needs to be > 4.096 ms in case no MMCs can be transmitted in - * zone 0. - */ -#define WUSB_CHANNEL_STOP_DELAY_MS 8 -#define WUSB_RETRY_COUNT_MAX 15 -#define WUSB_RETRY_COUNT_INFINITE 0 - -/** - * Wireless USB device - * - * Describe a WUSB device connected to the cluster. This struct - * belongs to the 'struct wusb_port' it is attached to and it is - * responsible for putting and clearing the pointer to it. - * - * Note this "complements" the 'struct usb_device' that the usb_hcd - * keeps for each connected USB device. However, it extends some - * information that is not available (there is no hcpriv ptr in it!) - * *and* most importantly, it's life cycle is different. It is created - * as soon as we get a DN_Connect (connect request notification) from - * the device through the WUSB host controller; the USB stack doesn't - * create the device until we authenticate it. FIXME: this will - * change. - * - * @bos: This is allocated when the BOS descriptors are read from - * the device and freed upon the wusb_dev struct dying. - * @wusb_cap_descr: points into @bos, and has been verified to be size - * safe. - */ -struct wusb_dev { - struct kref refcnt; - struct wusbhc *wusbhc; - struct list_head cack_node; /* Connect-Ack list */ - struct list_head rekey_node; /* GTK rekey list */ - u8 port_idx; - u8 addr; - u8 beacon_type:4; - struct usb_encryption_descriptor ccm1_etd; - struct wusb_ckhdid cdid; - unsigned long entry_ts; - struct usb_bos_descriptor *bos; - struct usb_wireless_cap_descriptor *wusb_cap_descr; - struct uwb_mas_bm availability; - struct work_struct devconnect_acked_work; - struct usb_device *usb_dev; -}; - -#define WUSB_DEV_ADDR_UNAUTH 0x80 - -static inline void wusb_dev_init(struct wusb_dev *wusb_dev) -{ - kref_init(&wusb_dev->refcnt); - /* no need to init the cack_node */ -} - -extern void wusb_dev_destroy(struct kref *_wusb_dev); - -static inline struct wusb_dev *wusb_dev_get(struct wusb_dev *wusb_dev) -{ - kref_get(&wusb_dev->refcnt); - return wusb_dev; -} - -static inline void wusb_dev_put(struct wusb_dev *wusb_dev) -{ - kref_put(&wusb_dev->refcnt, wusb_dev_destroy); -} - -/** - * Wireless USB Host Controller root hub "fake" ports - * (state and device information) - * - * Wireless USB is wireless, so there are no ports; but we - * fake'em. Each RC can connect a max of devices at the same time - * (given in the Wireless Adapter descriptor, bNumPorts or WHCI's - * caps), referred to in wusbhc->ports_max. - * - * See rh.c for more information. - * - * The @status and @change use the same bits as in USB2.0[11.24.2.7], - * so we don't have to do much when getting the port's status. - * - * WUSB1.0[7.1], USB2.0[11.24.2.7.1,fig 11-10], - * include/linux/usb_ch9.h (#define USB_PORT_STAT_*) - */ -struct wusb_port { - u16 status; - u16 change; - struct wusb_dev *wusb_dev; /* connected device's info */ - u32 ptk_tkid; -}; - -/** - * WUSB Host Controller specifics - * - * All fields that are common to all Wireless USB controller types - * (HWA and WHCI) are grouped here. Host Controller - * functions/operations that only deal with general Wireless USB HC - * issues use this data type to refer to the host. - * - * @usb_hcd Instantiation of a USB host controller - * (initialized by upper layer [HWA=HC or WHCI]. - * - * @dev Device that implements this; initialized by the - * upper layer (HWA-HC, WHCI...); this device should - * have a refcount. - * - * @trust_timeout After this time without hearing for device - * activity, we consider the device gone and we have to - * re-authenticate. - * - * Can be accessed w/o locking--however, read to a - * local variable then use. - * - * @chid WUSB Cluster Host ID: this is supposed to be a - * unique value that doesn't change across reboots (so - * that your devices do not require re-association). - * - * Read/Write protected by @mutex - * - * @dev_info This array has ports_max elements. It is used to - * give the HC information about the WUSB devices (see - * 'struct wusb_dev_info'). - * - * For HWA we need to allocate it in heap; for WHCI it - * needs to be permanently mapped, so we keep it for - * both and make it easy. Call wusbhc->dev_info_set() - * to update an entry. - * - * @ports_max Number of simultaneous device connections (fake - * ports) this HC will take. Read-only. - * - * @port Array of port status for each fake root port. Guaranteed to - * always be the same length during device existence - * [this allows for some unlocked but referenced reading]. - * - * @mmcies_max Max number of Information Elements this HC can send - * in its MMC. Read-only. - * - * @start Start the WUSB channel. - * - * @stop Stop the WUSB channel after the specified number of - * milliseconds. Channel Stop IEs should be transmitted - * as required by [WUSB] 4.16.2.1. - * - * @mmcie_add HC specific operation (WHCI or HWA) for adding an - * MMCIE. - * - * @mmcie_rm HC specific operation (WHCI or HWA) for removing an - * MMCIE. - * - * @set_ptk: Set the PTK and enable encryption for a device. Or, if - * the supplied key is NULL, disable encryption for that - * device. - * - * @set_gtk: Set the GTK to be used for all future broadcast packets - * (i.e., MMCs). With some hardware, setting the GTK may start - * MMC transmission. - * - * NOTE: - * - * - If wusb_dev->usb_dev is not NULL, then usb_dev is valid - * (wusb_dev has a refcount on it). Likewise, if usb_dev->wusb_dev - * is not NULL, usb_dev->wusb_dev is valid (usb_dev keeps a - * refcount on it). - * - * Most of the times when you need to use it, it will be non-NULL, - * so there is no real need to check for it (wusb_dev will - * disappear before usb_dev). - * - * - The following fields need to be filled out before calling - * wusbhc_create(): ports_max, mmcies_max, mmcie_{add,rm}. - * - * - there is no wusbhc_init() method, we do everything in - * wusbhc_create(). - * - * - Creation is done in two phases, wusbhc_create() and - * wusbhc_create_b(); b are the parts that need to be called after - * calling usb_hcd_add(&wusbhc->usb_hcd). - */ -struct wusbhc { - struct usb_hcd usb_hcd; /* HAS TO BE 1st */ - struct device *dev; - struct uwb_rc *uwb_rc; - struct uwb_pal pal; - - unsigned trust_timeout; /* in jiffies */ - struct wusb_ckhdid chid; - uint8_t phy_rate; - uint8_t dnts_num_slots; - uint8_t dnts_interval; - uint8_t retry_count; - struct wuie_host_info *wuie_host_info; - - struct mutex mutex; /* locks everything else */ - u16 cluster_id; /* Wireless USB Cluster ID */ - struct wusb_port *port; /* Fake port status handling */ - struct wusb_dev_info *dev_info; /* for Set Device Info mgmt */ - u8 ports_max; - unsigned active:1; /* currently xmit'ing MMCs */ - struct wuie_keep_alive keep_alive_ie; /* protected by mutex */ - struct delayed_work keep_alive_timer; - struct list_head cack_list; /* Connect acknowledging */ - size_t cack_count; /* protected by 'mutex' */ - struct wuie_connect_ack cack_ie; - struct uwb_rsv *rsv; /* cluster bandwidth reservation */ - - struct mutex mmcie_mutex; /* MMC WUIE handling */ - struct wuie_hdr **mmcie; /* WUIE array */ - u8 mmcies_max; - /* FIXME: make wusbhc_ops? */ - int (*start)(struct wusbhc *wusbhc); - void (*stop)(struct wusbhc *wusbhc, int delay); - int (*mmcie_add)(struct wusbhc *wusbhc, u8 interval, u8 repeat_cnt, - u8 handle, struct wuie_hdr *wuie); - int (*mmcie_rm)(struct wusbhc *wusbhc, u8 handle); - int (*dev_info_set)(struct wusbhc *, struct wusb_dev *wusb_dev); - int (*bwa_set)(struct wusbhc *wusbhc, s8 stream_index, - const struct uwb_mas_bm *); - int (*set_ptk)(struct wusbhc *wusbhc, u8 port_idx, - u32 tkid, const void *key, size_t key_size); - int (*set_gtk)(struct wusbhc *wusbhc, - u32 tkid, const void *key, size_t key_size); - int (*set_num_dnts)(struct wusbhc *wusbhc, u8 interval, u8 slots); - - struct { - struct usb_key_descriptor descr; - u8 data[16]; /* GTK key data */ - } __attribute__((packed)) gtk; - u8 gtk_index; - u32 gtk_tkid; - - /* workqueue for WUSB security related tasks. */ - struct workqueue_struct *wq_security; - struct work_struct gtk_rekey_work; - - struct usb_encryption_descriptor *ccm1_etd; -}; - -#define usb_hcd_to_wusbhc(u) container_of((u), struct wusbhc, usb_hcd) - - -extern int wusbhc_create(struct wusbhc *); -extern int wusbhc_b_create(struct wusbhc *); -extern void wusbhc_b_destroy(struct wusbhc *); -extern void wusbhc_destroy(struct wusbhc *); -extern int wusb_dev_sysfs_add(struct wusbhc *, struct usb_device *, - struct wusb_dev *); -extern void wusb_dev_sysfs_rm(struct wusb_dev *); -extern int wusbhc_sec_create(struct wusbhc *); -extern int wusbhc_sec_start(struct wusbhc *); -extern void wusbhc_sec_stop(struct wusbhc *); -extern void wusbhc_sec_destroy(struct wusbhc *); -extern void wusbhc_giveback_urb(struct wusbhc *wusbhc, struct urb *urb, - int status); -void wusbhc_reset_all(struct wusbhc *wusbhc); - -int wusbhc_pal_register(struct wusbhc *wusbhc); -void wusbhc_pal_unregister(struct wusbhc *wusbhc); - -/* - * Return @usb_dev's @usb_hcd (properly referenced) or NULL if gone - * - * @usb_dev: USB device, UNLOCKED and referenced (or otherwise, safe ptr) - * - * This is a safe assumption as @usb_dev->bus is referenced all the - * time during the @usb_dev life cycle. - */ -static inline -struct usb_hcd *usb_hcd_get_by_usb_dev(struct usb_device *usb_dev) -{ - struct usb_hcd *usb_hcd; - usb_hcd = bus_to_hcd(usb_dev->bus); - return usb_get_hcd(usb_hcd); -} - -/* - * Increment the reference count on a wusbhc. - * - * @wusbhc's life cycle is identical to that of the underlying usb_hcd. - */ -static inline struct wusbhc *wusbhc_get(struct wusbhc *wusbhc) -{ - return usb_get_hcd(&wusbhc->usb_hcd) ? wusbhc : NULL; -} - -/* - * Return the wusbhc associated to a @usb_dev - * - * @usb_dev: USB device, UNLOCKED and referenced (or otherwise, safe ptr) - * - * @returns: wusbhc for @usb_dev; NULL if the @usb_dev is being torn down. - * WARNING: referenced at the usb_hcd level, unlocked - * - * FIXME: move offline - */ -static inline struct wusbhc *wusbhc_get_by_usb_dev(struct usb_device *usb_dev) -{ - struct wusbhc *wusbhc = NULL; - struct usb_hcd *usb_hcd; - if (usb_dev->devnum > 1 && !usb_dev->wusb) { - /* but root hubs */ - dev_err(&usb_dev->dev, "devnum %d wusb %d\n", usb_dev->devnum, - usb_dev->wusb); - BUG_ON(usb_dev->devnum > 1 && !usb_dev->wusb); - } - usb_hcd = usb_hcd_get_by_usb_dev(usb_dev); - if (usb_hcd == NULL) - return NULL; - BUG_ON(usb_hcd->wireless == 0); - return wusbhc = usb_hcd_to_wusbhc(usb_hcd); -} - - -static inline void wusbhc_put(struct wusbhc *wusbhc) -{ - usb_put_hcd(&wusbhc->usb_hcd); -} - -int wusbhc_start(struct wusbhc *wusbhc); -void wusbhc_stop(struct wusbhc *wusbhc); -extern int wusbhc_chid_set(struct wusbhc *, const struct wusb_ckhdid *); - -/* Device connect handling */ -extern int wusbhc_devconnect_create(struct wusbhc *); -extern void wusbhc_devconnect_destroy(struct wusbhc *); -extern int wusbhc_devconnect_start(struct wusbhc *wusbhc); -extern void wusbhc_devconnect_stop(struct wusbhc *wusbhc); -extern void wusbhc_handle_dn(struct wusbhc *, u8 srcaddr, - struct wusb_dn_hdr *dn_hdr, size_t size); -extern void __wusbhc_dev_disable(struct wusbhc *wusbhc, u8 port); -extern int wusb_usb_ncb(struct notifier_block *nb, unsigned long val, - void *priv); -extern int wusb_set_dev_addr(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev, - u8 addr); - -/* Wireless USB fake Root Hub methods */ -extern int wusbhc_rh_create(struct wusbhc *); -extern void wusbhc_rh_destroy(struct wusbhc *); - -extern int wusbhc_rh_status_data(struct usb_hcd *, char *); -extern int wusbhc_rh_control(struct usb_hcd *, u16, u16, u16, char *, u16); -extern int wusbhc_rh_start_port_reset(struct usb_hcd *, unsigned); - -/* MMC handling */ -extern int wusbhc_mmcie_create(struct wusbhc *); -extern void wusbhc_mmcie_destroy(struct wusbhc *); -extern int wusbhc_mmcie_set(struct wusbhc *, u8 interval, u8 repeat_cnt, - struct wuie_hdr *); -extern void wusbhc_mmcie_rm(struct wusbhc *, struct wuie_hdr *); - -/* Bandwidth reservation */ -int wusbhc_rsv_establish(struct wusbhc *wusbhc); -void wusbhc_rsv_terminate(struct wusbhc *wusbhc); - -/* - * I've always said - * I wanted a wedding in a church... - * - * but lately I've been thinking about - * the Botanical Gardens. - * - * We could do it by the tulips. - * It'll be beautiful - * - * --Security! - */ -extern int wusb_dev_sec_add(struct wusbhc *, struct usb_device *, - struct wusb_dev *); -extern void wusb_dev_sec_rm(struct wusb_dev *) ; -extern int wusb_dev_4way_handshake(struct wusbhc *, struct wusb_dev *, - struct wusb_ckhdid *ck); -void wusbhc_gtk_rekey(struct wusbhc *wusbhc); -int wusb_dev_update_address(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev); - - -/* WUSB Cluster ID handling */ -extern u8 wusb_cluster_id_get(void); -extern void wusb_cluster_id_put(u8); - -/* - * wusb_port_by_idx - return the port associated to a zero-based port index - * - * NOTE: valid without locking as long as wusbhc is referenced (as the - * number of ports doesn't change). The data pointed to has to - * be verified though :) - */ -static inline struct wusb_port *wusb_port_by_idx(struct wusbhc *wusbhc, - u8 port_idx) -{ - return &wusbhc->port[port_idx]; -} - -/* - * wusb_port_no_to_idx - Convert port number (per usb_dev->portnum) to - * a port_idx. - * - * USB stack USB ports are 1 based!! - * - * NOTE: only valid for WUSB devices!!! - */ -static inline u8 wusb_port_no_to_idx(u8 port_no) -{ - return port_no - 1; -} - -extern struct wusb_dev *__wusb_dev_get_by_usb_dev(struct wusbhc *, - struct usb_device *); - -/* - * Return a referenced wusb_dev given a @usb_dev - * - * Returns NULL if the usb_dev is being torn down. - * - * FIXME: move offline - */ -static inline -struct wusb_dev *wusb_dev_get_by_usb_dev(struct usb_device *usb_dev) -{ - struct wusbhc *wusbhc; - struct wusb_dev *wusb_dev; - wusbhc = wusbhc_get_by_usb_dev(usb_dev); - if (wusbhc == NULL) - return NULL; - mutex_lock(&wusbhc->mutex); - wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, usb_dev); - mutex_unlock(&wusbhc->mutex); - wusbhc_put(wusbhc); - return wusb_dev; -} - -/* Misc */ - -extern struct workqueue_struct *wusbd; -#endif /* #ifndef __WUSBHC_H__ */ |