diff options
Diffstat (limited to 'drivers/usb/wusbcore/devconnect.c')
-rw-r--r-- | drivers/usb/wusbcore/devconnect.c | 1085 |
1 files changed, 0 insertions, 1085 deletions
diff --git a/drivers/usb/wusbcore/devconnect.c b/drivers/usb/wusbcore/devconnect.c deleted file mode 100644 index 1170f8baf608..000000000000 --- a/drivers/usb/wusbcore/devconnect.c +++ /dev/null @@ -1,1085 +0,0 @@ -// SPDX-License-Identifier: GPL-2.0 -/* - * WUSB Wire Adapter: Control/Data Streaming Interface (WUSB[8]) - * Device Connect handling - * - * Copyright (C) 2006 Intel Corporation - * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> - * - * FIXME: docs - * FIXME: this file needs to be broken up, it's grown too big - * - * - * WUSB1.0[7.1, 7.5.1, ] - * - * WUSB device connection is kind of messy. Some background: - * - * When a device wants to connect it scans the UWB radio channels - * looking for a WUSB Channel; a WUSB channel is defined by MMCs - * (Micro Managed Commands or something like that) [see - * Design-overview for more on this] . - * - * So, device scans the radio, finds MMCs and thus a host and checks - * when the next DNTS is. It sends a Device Notification Connect - * (DN_Connect); the host picks it up (through nep.c and notif.c, ends - * up in wusb_devconnect_ack(), which creates a wusb_dev structure in - * wusbhc->port[port_number].wusb_dev), assigns an unauth address - * to the device (this means from 0x80 to 0xfe) and sends, in the MMC - * a Connect Ack Information Element (ConnAck IE). - * - * So now the device now has a WUSB address. From now on, we use - * that to talk to it in the RPipes. - * - * ASSUMPTIONS: - * - * - We use the the as device address the port number where it is - * connected (port 0 doesn't exist). For unauth, it is 128 + that. - * - * ROADMAP: - * - * This file contains the logic for doing that--entry points: - * - * wusb_devconnect_ack() Ack a device until _acked() called. - * Called by notif.c:wusb_handle_dn_connect() - * when a DN_Connect is received. - * - * wusb_devconnect_acked() Ack done, release resources. - * - * wusb_handle_dn_alive() Called by notif.c:wusb_handle_dn() - * for processing a DN_Alive pong from a device. - * - * wusb_handle_dn_disconnect()Called by notif.c:wusb_handle_dn() to - * process a disconnect request from a - * device. - * - * __wusb_dev_disable() Called by rh.c:wusbhc_rh_clear_port_feat() when - * disabling a port. - * - * wusb_devconnect_create() Called when creating the host by - * lc.c:wusbhc_create(). - * - * wusb_devconnect_destroy() Cleanup called removing the host. Called - * by lc.c:wusbhc_destroy(). - * - * Each Wireless USB host maintains a list of DN_Connect requests - * (actually we maintain a list of pending Connect Acks, the - * wusbhc->ca_list). - * - * LIFE CYCLE OF port->wusb_dev - * - * Before the @wusbhc structure put()s the reference it owns for - * port->wusb_dev [and clean the wusb_dev pointer], it needs to - * lock @wusbhc->mutex. - */ - -#include <linux/jiffies.h> -#include <linux/ctype.h> -#include <linux/slab.h> -#include <linux/workqueue.h> -#include <linux/export.h> -#include "wusbhc.h" - -static void wusbhc_devconnect_acked_work(struct work_struct *work); - -static void wusb_dev_free(struct wusb_dev *wusb_dev) -{ - kfree(wusb_dev); -} - -static struct wusb_dev *wusb_dev_alloc(struct wusbhc *wusbhc) -{ - struct wusb_dev *wusb_dev; - - wusb_dev = kzalloc(sizeof(*wusb_dev), GFP_KERNEL); - if (wusb_dev == NULL) - goto err; - - wusb_dev->wusbhc = wusbhc; - - INIT_WORK(&wusb_dev->devconnect_acked_work, wusbhc_devconnect_acked_work); - - return wusb_dev; -err: - wusb_dev_free(wusb_dev); - return NULL; -} - - -/* - * Using the Connect-Ack list, fill out the @wusbhc Connect-Ack WUSB IE - * properly so that it can be added to the MMC. - * - * We just get the @wusbhc->ca_list and fill out the first four ones or - * less (per-spec WUSB1.0[7.5, before T7-38). If the ConnectAck WUSB - * IE is not allocated, we alloc it. - * - * @wusbhc->mutex must be taken - */ -static void wusbhc_fill_cack_ie(struct wusbhc *wusbhc) -{ - unsigned cnt; - struct wusb_dev *dev_itr; - struct wuie_connect_ack *cack_ie; - - cack_ie = &wusbhc->cack_ie; - cnt = 0; - list_for_each_entry(dev_itr, &wusbhc->cack_list, cack_node) { - cack_ie->blk[cnt].CDID = dev_itr->cdid; - cack_ie->blk[cnt].bDeviceAddress = dev_itr->addr; - if (++cnt >= WUIE_ELT_MAX) - break; - } - cack_ie->hdr.bLength = sizeof(cack_ie->hdr) - + cnt * sizeof(cack_ie->blk[0]); -} - -/* - * Register a new device that wants to connect - * - * A new device wants to connect, so we add it to the Connect-Ack - * list. We give it an address in the unauthorized range (bit 8 set); - * user space will have to drive authorization further on. - * - * @dev_addr: address to use for the device (which is also the port - * number). - * - * @wusbhc->mutex must be taken - */ -static struct wusb_dev *wusbhc_cack_add(struct wusbhc *wusbhc, - struct wusb_dn_connect *dnc, - const char *pr_cdid, u8 port_idx) -{ - struct device *dev = wusbhc->dev; - struct wusb_dev *wusb_dev; - int new_connection = wusb_dn_connect_new_connection(dnc); - u8 dev_addr; - int result; - - /* Is it registered already? */ - list_for_each_entry(wusb_dev, &wusbhc->cack_list, cack_node) - if (!memcmp(&wusb_dev->cdid, &dnc->CDID, - sizeof(wusb_dev->cdid))) - return wusb_dev; - /* We don't have it, create an entry, register it */ - wusb_dev = wusb_dev_alloc(wusbhc); - if (wusb_dev == NULL) - return NULL; - wusb_dev_init(wusb_dev); - wusb_dev->cdid = dnc->CDID; - wusb_dev->port_idx = port_idx; - - /* - * Devices are always available within the cluster reservation - * and since the hardware will take the intersection of the - * per-device availability and the cluster reservation, the - * per-device availability can simply be set to always - * available. - */ - bitmap_fill(wusb_dev->availability.bm, UWB_NUM_MAS); - - /* FIXME: handle reconnects instead of assuming connects are - always new. */ - if (1 && new_connection == 0) - new_connection = 1; - if (new_connection) { - dev_addr = (port_idx + 2) | WUSB_DEV_ADDR_UNAUTH; - - dev_info(dev, "Connecting new WUSB device to address %u, " - "port %u\n", dev_addr, port_idx); - - result = wusb_set_dev_addr(wusbhc, wusb_dev, dev_addr); - if (result < 0) - return NULL; - } - wusb_dev->entry_ts = jiffies; - list_add_tail(&wusb_dev->cack_node, &wusbhc->cack_list); - wusbhc->cack_count++; - wusbhc_fill_cack_ie(wusbhc); - - return wusb_dev; -} - -/* - * Remove a Connect-Ack context entry from the HCs view - * - * @wusbhc->mutex must be taken - */ -static void wusbhc_cack_rm(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev) -{ - list_del_init(&wusb_dev->cack_node); - wusbhc->cack_count--; - wusbhc_fill_cack_ie(wusbhc); -} - -/* - * @wusbhc->mutex must be taken */ -static -void wusbhc_devconnect_acked(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev) -{ - wusbhc_cack_rm(wusbhc, wusb_dev); - if (wusbhc->cack_count) - wusbhc_mmcie_set(wusbhc, 0, 0, &wusbhc->cack_ie.hdr); - else - wusbhc_mmcie_rm(wusbhc, &wusbhc->cack_ie.hdr); -} - -static void wusbhc_devconnect_acked_work(struct work_struct *work) -{ - struct wusb_dev *wusb_dev = container_of(work, struct wusb_dev, - devconnect_acked_work); - struct wusbhc *wusbhc = wusb_dev->wusbhc; - - mutex_lock(&wusbhc->mutex); - wusbhc_devconnect_acked(wusbhc, wusb_dev); - mutex_unlock(&wusbhc->mutex); - - wusb_dev_put(wusb_dev); -} - -/* - * Ack a device for connection - * - * FIXME: docs - * - * @pr_cdid: Printable CDID...hex Use @dnc->cdid for the real deal. - * - * So we get the connect ack IE (may have been allocated already), - * find an empty connect block, an empty virtual port, create an - * address with it (see below), make it an unauth addr [bit 7 set] and - * set the MMC. - * - * Addresses: because WUSB hosts have no downstream hubs, we can do a - * 1:1 mapping between 'port number' and device - * address. This simplifies many things, as during this - * initial connect phase the USB stack has no knowledge of - * the device and hasn't assigned an address yet--we know - * USB's choose_address() will use the same heuristics we - * use here, so we can assume which address will be assigned. - * - * USB stack always assigns address 1 to the root hub, so - * to the port number we add 2 (thus virtual port #0 is - * addr #2). - * - * @wusbhc shall be referenced - */ -static -void wusbhc_devconnect_ack(struct wusbhc *wusbhc, struct wusb_dn_connect *dnc, - const char *pr_cdid) -{ - int result; - struct device *dev = wusbhc->dev; - struct wusb_dev *wusb_dev; - struct wusb_port *port; - unsigned idx; - - mutex_lock(&wusbhc->mutex); - - /* Check we are not handling it already */ - for (idx = 0; idx < wusbhc->ports_max; idx++) { - port = wusb_port_by_idx(wusbhc, idx); - if (port->wusb_dev - && memcmp(&dnc->CDID, &port->wusb_dev->cdid, sizeof(dnc->CDID)) == 0) - goto error_unlock; - } - /* Look up those fake ports we have for a free one */ - for (idx = 0; idx < wusbhc->ports_max; idx++) { - port = wusb_port_by_idx(wusbhc, idx); - if ((port->status & USB_PORT_STAT_POWER) - && !(port->status & USB_PORT_STAT_CONNECTION)) - break; - } - if (idx >= wusbhc->ports_max) { - dev_err(dev, "Host controller can't connect more devices " - "(%u already connected); device %s rejected\n", - wusbhc->ports_max, pr_cdid); - /* NOTE: we could send a WUIE_Disconnect here, but we haven't - * event acked, so the device will eventually timeout the - * connection, right? */ - goto error_unlock; - } - - /* Make sure we are using no crypto on that "virtual port" */ - wusbhc->set_ptk(wusbhc, idx, 0, NULL, 0); - - /* Grab a filled in Connect-Ack context, fill out the - * Connect-Ack Wireless USB IE, set the MMC */ - wusb_dev = wusbhc_cack_add(wusbhc, dnc, pr_cdid, idx); - if (wusb_dev == NULL) - goto error_unlock; - result = wusbhc_mmcie_set(wusbhc, 0, 0, &wusbhc->cack_ie.hdr); - if (result < 0) - goto error_unlock; - /* Give the device at least 2ms (WUSB1.0[7.5.1p3]), let's do - * three for a good measure */ - msleep(3); - port->wusb_dev = wusb_dev; - port->status |= USB_PORT_STAT_CONNECTION; - port->change |= USB_PORT_STAT_C_CONNECTION; - /* Now the port status changed to connected; hub_wq will - * pick the change up and try to reset the port to bring it to - * the enabled state--so this process returns up to the stack - * and it calls back into wusbhc_rh_port_reset(). - */ -error_unlock: - mutex_unlock(&wusbhc->mutex); - return; - -} - -/* - * Disconnect a Wireless USB device from its fake port - * - * Marks the port as disconnected so that hub_wq can pick up the change - * and drops our knowledge about the device. - * - * Assumes there is a device connected - * - * @port_index: zero based port number - * - * NOTE: @wusbhc->mutex is locked - * - * WARNING: From here it is not very safe to access anything hanging off - * wusb_dev - */ -static void __wusbhc_dev_disconnect(struct wusbhc *wusbhc, - struct wusb_port *port) -{ - struct wusb_dev *wusb_dev = port->wusb_dev; - - port->status &= ~(USB_PORT_STAT_CONNECTION | USB_PORT_STAT_ENABLE - | USB_PORT_STAT_SUSPEND | USB_PORT_STAT_RESET - | USB_PORT_STAT_LOW_SPEED | USB_PORT_STAT_HIGH_SPEED); - port->change |= USB_PORT_STAT_C_CONNECTION | USB_PORT_STAT_C_ENABLE; - if (wusb_dev) { - dev_dbg(wusbhc->dev, "disconnecting device from port %d\n", wusb_dev->port_idx); - if (!list_empty(&wusb_dev->cack_node)) - list_del_init(&wusb_dev->cack_node); - /* For the one in cack_add() */ - wusb_dev_put(wusb_dev); - } - port->wusb_dev = NULL; - - /* After a device disconnects, change the GTK (see [WUSB] - * section 6.2.11.2). */ - if (wusbhc->active) - wusbhc_gtk_rekey(wusbhc); - - /* The Wireless USB part has forgotten about the device already; now - * hub_wq's timer will pick up the disconnection and remove the USB - * device from the system - */ -} - -/* - * Refresh the list of keep alives to emit in the MMC - * - * We only publish the first four devices that have a coming timeout - * condition. Then when we are done processing those, we go for the - * next ones. We ignore the ones that have timed out already (they'll - * be purged). - * - * This might cause the first devices to timeout the last devices in - * the port array...FIXME: come up with a better algorithm? - * - * Note we can't do much about MMC's ops errors; we hope next refresh - * will kind of handle it. - * - * NOTE: @wusbhc->mutex is locked - */ -static void __wusbhc_keep_alive(struct wusbhc *wusbhc) -{ - struct device *dev = wusbhc->dev; - unsigned cnt; - struct wusb_dev *wusb_dev; - struct wusb_port *wusb_port; - struct wuie_keep_alive *ie = &wusbhc->keep_alive_ie; - unsigned keep_alives, old_keep_alives; - - old_keep_alives = ie->hdr.bLength - sizeof(ie->hdr); - keep_alives = 0; - for (cnt = 0; - keep_alives < WUIE_ELT_MAX && cnt < wusbhc->ports_max; - cnt++) { - unsigned tt = msecs_to_jiffies(wusbhc->trust_timeout); - - wusb_port = wusb_port_by_idx(wusbhc, cnt); - wusb_dev = wusb_port->wusb_dev; - - if (wusb_dev == NULL) - continue; - if (wusb_dev->usb_dev == NULL) - continue; - - if (time_after(jiffies, wusb_dev->entry_ts + tt)) { - dev_err(dev, "KEEPALIVE: device %u timed out\n", - wusb_dev->addr); - __wusbhc_dev_disconnect(wusbhc, wusb_port); - } else if (time_after(jiffies, wusb_dev->entry_ts + tt/3)) { - /* Approaching timeout cut off, need to refresh */ - ie->bDeviceAddress[keep_alives++] = wusb_dev->addr; - } - } - if (keep_alives & 0x1) /* pad to even number ([WUSB] section 7.5.9) */ - ie->bDeviceAddress[keep_alives++] = 0x7f; - ie->hdr.bLength = sizeof(ie->hdr) + - keep_alives*sizeof(ie->bDeviceAddress[0]); - if (keep_alives > 0) - wusbhc_mmcie_set(wusbhc, 10, 5, &ie->hdr); - else if (old_keep_alives != 0) - wusbhc_mmcie_rm(wusbhc, &ie->hdr); -} - -/* - * Do a run through all devices checking for timeouts - */ -static void wusbhc_keep_alive_run(struct work_struct *ws) -{ - struct delayed_work *dw = to_delayed_work(ws); - struct wusbhc *wusbhc = container_of(dw, struct wusbhc, keep_alive_timer); - - mutex_lock(&wusbhc->mutex); - __wusbhc_keep_alive(wusbhc); - mutex_unlock(&wusbhc->mutex); - - queue_delayed_work(wusbd, &wusbhc->keep_alive_timer, - msecs_to_jiffies(wusbhc->trust_timeout / 2)); -} - -/* - * Find the wusb_dev from its device address. - * - * The device can be found directly from the address (see - * wusb_cack_add() for where the device address is set to port_idx - * +2), except when the address is zero. - */ -static struct wusb_dev *wusbhc_find_dev_by_addr(struct wusbhc *wusbhc, u8 addr) -{ - int p; - - if (addr == 0xff) /* unconnected */ - return NULL; - - if (addr > 0) { - int port = (addr & ~0x80) - 2; - if (port < 0 || port >= wusbhc->ports_max) - return NULL; - return wusb_port_by_idx(wusbhc, port)->wusb_dev; - } - - /* Look for the device with address 0. */ - for (p = 0; p < wusbhc->ports_max; p++) { - struct wusb_dev *wusb_dev = wusb_port_by_idx(wusbhc, p)->wusb_dev; - if (wusb_dev && wusb_dev->addr == addr) - return wusb_dev; - } - return NULL; -} - -/* - * Handle a DN_Alive notification (WUSB1.0[7.6.1]) - * - * This just updates the device activity timestamp and then refreshes - * the keep alive IE. - * - * @wusbhc shall be referenced and unlocked - */ -static void wusbhc_handle_dn_alive(struct wusbhc *wusbhc, u8 srcaddr) -{ - struct wusb_dev *wusb_dev; - - mutex_lock(&wusbhc->mutex); - wusb_dev = wusbhc_find_dev_by_addr(wusbhc, srcaddr); - if (wusb_dev == NULL) { - dev_dbg(wusbhc->dev, "ignoring DN_Alive from unconnected device %02x\n", - srcaddr); - } else { - wusb_dev->entry_ts = jiffies; - __wusbhc_keep_alive(wusbhc); - } - mutex_unlock(&wusbhc->mutex); -} - -/* - * Handle a DN_Connect notification (WUSB1.0[7.6.1]) - * - * @wusbhc - * @pkt_hdr - * @size: Size of the buffer where the notification resides; if the - * notification data suggests there should be more data than - * available, an error will be signaled and the whole buffer - * consumed. - * - * @wusbhc->mutex shall be held - */ -static void wusbhc_handle_dn_connect(struct wusbhc *wusbhc, - struct wusb_dn_hdr *dn_hdr, - size_t size) -{ - struct device *dev = wusbhc->dev; - struct wusb_dn_connect *dnc; - char pr_cdid[WUSB_CKHDID_STRSIZE]; - static const char *beacon_behaviour[] = { - "reserved", - "self-beacon", - "directed-beacon", - "no-beacon" - }; - - if (size < sizeof(*dnc)) { - dev_err(dev, "DN CONNECT: short notification (%zu < %zu)\n", - size, sizeof(*dnc)); - return; - } - - dnc = container_of(dn_hdr, struct wusb_dn_connect, hdr); - sprintf(pr_cdid, "%16ph", dnc->CDID.data); - dev_info(dev, "DN CONNECT: device %s @ %x (%s) wants to %s\n", - pr_cdid, - wusb_dn_connect_prev_dev_addr(dnc), - beacon_behaviour[wusb_dn_connect_beacon_behavior(dnc)], - wusb_dn_connect_new_connection(dnc) ? "connect" : "reconnect"); - /* ACK the connect */ - wusbhc_devconnect_ack(wusbhc, dnc, pr_cdid); -} - -/* - * Handle a DN_Disconnect notification (WUSB1.0[7.6.1]) - * - * Device is going down -- do the disconnect. - * - * @wusbhc shall be referenced and unlocked - */ -static void wusbhc_handle_dn_disconnect(struct wusbhc *wusbhc, u8 srcaddr) -{ - struct device *dev = wusbhc->dev; - struct wusb_dev *wusb_dev; - - mutex_lock(&wusbhc->mutex); - wusb_dev = wusbhc_find_dev_by_addr(wusbhc, srcaddr); - if (wusb_dev == NULL) { - dev_dbg(dev, "ignoring DN DISCONNECT from unconnected device %02x\n", - srcaddr); - } else { - dev_info(dev, "DN DISCONNECT: device 0x%02x going down\n", - wusb_dev->addr); - __wusbhc_dev_disconnect(wusbhc, wusb_port_by_idx(wusbhc, - wusb_dev->port_idx)); - } - mutex_unlock(&wusbhc->mutex); -} - -/* - * Handle a Device Notification coming a host - * - * The Device Notification comes from a host (HWA, DWA or WHCI) - * wrapped in a set of headers. Somebody else has peeled off those - * headers for us and we just get one Device Notifications. - * - * Invalid DNs (e.g., too short) are discarded. - * - * @wusbhc shall be referenced - * - * FIXMES: - * - implement priorities as in WUSB1.0[Table 7-55]? - */ -void wusbhc_handle_dn(struct wusbhc *wusbhc, u8 srcaddr, - struct wusb_dn_hdr *dn_hdr, size_t size) -{ - struct device *dev = wusbhc->dev; - - if (size < sizeof(struct wusb_dn_hdr)) { - dev_err(dev, "DN data shorter than DN header (%d < %d)\n", - (int)size, (int)sizeof(struct wusb_dn_hdr)); - return; - } - switch (dn_hdr->bType) { - case WUSB_DN_CONNECT: - wusbhc_handle_dn_connect(wusbhc, dn_hdr, size); - break; - case WUSB_DN_ALIVE: - wusbhc_handle_dn_alive(wusbhc, srcaddr); - break; - case WUSB_DN_DISCONNECT: - wusbhc_handle_dn_disconnect(wusbhc, srcaddr); - break; - case WUSB_DN_MASAVAILCHANGED: - case WUSB_DN_RWAKE: - case WUSB_DN_SLEEP: - /* FIXME: handle these DNs. */ - break; - case WUSB_DN_EPRDY: - /* The hardware handles these. */ - break; - default: - dev_warn(dev, "unknown DN %u (%d octets) from %u\n", - dn_hdr->bType, (int)size, srcaddr); - } -} -EXPORT_SYMBOL_GPL(wusbhc_handle_dn); - -/* - * Disconnect a WUSB device from a the cluster - * - * @wusbhc - * @port Fake port where the device is (wusbhc index, not USB port number). - * - * In Wireless USB, a disconnect is basically telling the device he is - * being disconnected and forgetting about him. - * - * We send the device a Device Disconnect IE (WUSB1.0[7.5.11]) for 100 - * ms and then keep going. - * - * We don't do much in case of error; we always pretend we disabled - * the port and disconnected the device. If physically the request - * didn't get there (many things can fail in the way there), the stack - * will reject the device's communication attempts. - * - * @wusbhc should be refcounted and locked - */ -void __wusbhc_dev_disable(struct wusbhc *wusbhc, u8 port_idx) -{ - int result; - struct device *dev = wusbhc->dev; - struct wusb_dev *wusb_dev; - struct wuie_disconnect *ie; - - wusb_dev = wusb_port_by_idx(wusbhc, port_idx)->wusb_dev; - if (wusb_dev == NULL) { - /* reset no device? ignore */ - dev_dbg(dev, "DISCONNECT: no device at port %u, ignoring\n", - port_idx); - return; - } - __wusbhc_dev_disconnect(wusbhc, wusb_port_by_idx(wusbhc, port_idx)); - - ie = kzalloc(sizeof(*ie), GFP_KERNEL); - if (ie == NULL) - return; - ie->hdr.bLength = sizeof(*ie); - ie->hdr.bIEIdentifier = WUIE_ID_DEVICE_DISCONNECT; - ie->bDeviceAddress = wusb_dev->addr; - result = wusbhc_mmcie_set(wusbhc, 0, 0, &ie->hdr); - if (result < 0) - dev_err(dev, "DISCONNECT: can't set MMC: %d\n", result); - else { - /* At least 6 MMCs, assuming at least 1 MMC per zone. */ - msleep(7*4); - wusbhc_mmcie_rm(wusbhc, &ie->hdr); - } - kfree(ie); -} - -/* - * Walk over the BOS descriptor, verify and grok it - * - * @usb_dev: referenced - * @wusb_dev: referenced and unlocked - * - * The BOS descriptor is defined at WUSB1.0[7.4.1], and it defines a - * "flexible" way to wrap all kinds of descriptors inside an standard - * descriptor (wonder why they didn't use normal descriptors, - * btw). Not like they lack code. - * - * At the end we go to look for the WUSB Device Capabilities - * (WUSB1.0[7.4.1.1]) that is wrapped in a device capability descriptor - * that is part of the BOS descriptor set. That tells us what does the - * device support (dual role, beacon type, UWB PHY rates). - */ -static int wusb_dev_bos_grok(struct usb_device *usb_dev, - struct wusb_dev *wusb_dev, - struct usb_bos_descriptor *bos, size_t desc_size) -{ - ssize_t result; - struct device *dev = &usb_dev->dev; - void *itr, *top; - - /* Walk over BOS capabilities, verify them */ - itr = (void *)bos + sizeof(*bos); - top = itr + desc_size - sizeof(*bos); - while (itr < top) { - struct usb_dev_cap_header *cap_hdr = itr; - size_t cap_size; - u8 cap_type; - if (top - itr < sizeof(*cap_hdr)) { - dev_err(dev, "Device BUG? premature end of BOS header " - "data [offset 0x%02x]: only %zu bytes left\n", - (int)(itr - (void *)bos), top - itr); - result = -ENOSPC; - goto error_bad_cap; - } - cap_size = cap_hdr->bLength; - cap_type = cap_hdr->bDevCapabilityType; - if (cap_size == 0) - break; - if (cap_size > top - itr) { - dev_err(dev, "Device BUG? premature end of BOS data " - "[offset 0x%02x cap %02x %zu bytes]: " - "only %zu bytes left\n", - (int)(itr - (void *)bos), - cap_type, cap_size, top - itr); - result = -EBADF; - goto error_bad_cap; - } - switch (cap_type) { - case USB_CAP_TYPE_WIRELESS_USB: - if (cap_size != sizeof(*wusb_dev->wusb_cap_descr)) - dev_err(dev, "Device BUG? WUSB Capability " - "descriptor is %zu bytes vs %zu " - "needed\n", cap_size, - sizeof(*wusb_dev->wusb_cap_descr)); - else - wusb_dev->wusb_cap_descr = itr; - break; - default: - dev_err(dev, "BUG? Unknown BOS capability 0x%02x " - "(%zu bytes) at offset 0x%02x\n", cap_type, - cap_size, (int)(itr - (void *)bos)); - } - itr += cap_size; - } - result = 0; -error_bad_cap: - return result; -} - -/* - * Add information from the BOS descriptors to the device - * - * @usb_dev: referenced - * @wusb_dev: referenced and unlocked - * - * So what we do is we alloc a space for the BOS descriptor of 64 - * bytes; read the first four bytes which include the wTotalLength - * field (WUSB1.0[T7-26]) and if it fits in those 64 bytes, read the - * whole thing. If not we realloc to that size. - * - * Then we call the groking function, that will fill up - * wusb_dev->wusb_cap_descr, which is what we'll need later on. - */ -static int wusb_dev_bos_add(struct usb_device *usb_dev, - struct wusb_dev *wusb_dev) -{ - ssize_t result; - struct device *dev = &usb_dev->dev; - struct usb_bos_descriptor *bos; - size_t alloc_size = 32, desc_size = 4; - - bos = kmalloc(alloc_size, GFP_KERNEL); - if (bos == NULL) - return -ENOMEM; - result = usb_get_descriptor(usb_dev, USB_DT_BOS, 0, bos, desc_size); - if (result < 4) { - dev_err(dev, "Can't get BOS descriptor or too short: %zd\n", - result); - goto error_get_descriptor; - } - desc_size = le16_to_cpu(bos->wTotalLength); - if (desc_size >= alloc_size) { - kfree(bos); - alloc_size = desc_size; - bos = kmalloc(alloc_size, GFP_KERNEL); - if (bos == NULL) - return -ENOMEM; - } - result = usb_get_descriptor(usb_dev, USB_DT_BOS, 0, bos, desc_size); - if (result < 0 || result != desc_size) { - dev_err(dev, "Can't get BOS descriptor or too short (need " - "%zu bytes): %zd\n", desc_size, result); - goto error_get_descriptor; - } - if (result < sizeof(*bos) - || le16_to_cpu(bos->wTotalLength) != desc_size) { - dev_err(dev, "Can't get BOS descriptor or too short (need " - "%zu bytes): %zd\n", desc_size, result); - goto error_get_descriptor; - } - - result = wusb_dev_bos_grok(usb_dev, wusb_dev, bos, result); - if (result < 0) - goto error_bad_bos; - wusb_dev->bos = bos; - return 0; - -error_bad_bos: -error_get_descriptor: - kfree(bos); - wusb_dev->wusb_cap_descr = NULL; - return result; -} - -static void wusb_dev_bos_rm(struct wusb_dev *wusb_dev) -{ - kfree(wusb_dev->bos); - wusb_dev->wusb_cap_descr = NULL; -}; - -/* - * USB stack's device addition Notifier Callback - * - * Called from drivers/usb/core/hub.c when a new device is added; we - * use this hook to perform certain WUSB specific setup work on the - * new device. As well, it is the first time we can connect the - * wusb_dev and the usb_dev. So we note it down in wusb_dev and take a - * reference that we'll drop. - * - * First we need to determine if the device is a WUSB device (else we - * ignore it). For that we use the speed setting (USB_SPEED_WIRELESS) - * [FIXME: maybe we'd need something more definitive]. If so, we track - * it's usb_busd and from there, the WUSB HC. - * - * Because all WUSB HCs are contained in a 'struct wusbhc', voila, we - * get the wusbhc for the device. - * - * We have a reference on @usb_dev (as we are called at the end of its - * enumeration). - * - * NOTE: @usb_dev locked - */ -static void wusb_dev_add_ncb(struct usb_device *usb_dev) -{ - int result = 0; - struct wusb_dev *wusb_dev; - struct wusbhc *wusbhc; - struct device *dev = &usb_dev->dev; - u8 port_idx; - - if (usb_dev->wusb == 0 || usb_dev->devnum == 1) - return; /* skip non wusb and wusb RHs */ - - usb_set_device_state(usb_dev, USB_STATE_UNAUTHENTICATED); - - wusbhc = wusbhc_get_by_usb_dev(usb_dev); - if (wusbhc == NULL) - goto error_nodev; - mutex_lock(&wusbhc->mutex); - wusb_dev = __wusb_dev_get_by_usb_dev(wusbhc, usb_dev); - port_idx = wusb_port_no_to_idx(usb_dev->portnum); - mutex_unlock(&wusbhc->mutex); - if (wusb_dev == NULL) - goto error_nodev; - wusb_dev->usb_dev = usb_get_dev(usb_dev); - usb_dev->wusb_dev = wusb_dev_get(wusb_dev); - result = wusb_dev_sec_add(wusbhc, usb_dev, wusb_dev); - if (result < 0) { - dev_err(dev, "Cannot enable security: %d\n", result); - goto error_sec_add; - } - /* Now query the device for it's BOS and attach it to wusb_dev */ - result = wusb_dev_bos_add(usb_dev, wusb_dev); - if (result < 0) { - dev_err(dev, "Cannot get BOS descriptors: %d\n", result); - goto error_bos_add; - } - result = wusb_dev_sysfs_add(wusbhc, usb_dev, wusb_dev); - if (result < 0) - goto error_add_sysfs; -out: - wusb_dev_put(wusb_dev); - wusbhc_put(wusbhc); -error_nodev: - return; - -error_add_sysfs: - wusb_dev_bos_rm(wusb_dev); -error_bos_add: - wusb_dev_sec_rm(wusb_dev); -error_sec_add: - mutex_lock(&wusbhc->mutex); - __wusbhc_dev_disconnect(wusbhc, wusb_port_by_idx(wusbhc, port_idx)); - mutex_unlock(&wusbhc->mutex); - goto out; -} - -/* - * Undo all the steps done at connection by the notifier callback - * - * NOTE: @usb_dev locked - */ -static void wusb_dev_rm_ncb(struct usb_device *usb_dev) -{ - struct wusb_dev *wusb_dev = usb_dev->wusb_dev; - - if (usb_dev->wusb == 0 || usb_dev->devnum == 1) - return; /* skip non wusb and wusb RHs */ - - wusb_dev_sysfs_rm(wusb_dev); - wusb_dev_bos_rm(wusb_dev); - wusb_dev_sec_rm(wusb_dev); - wusb_dev->usb_dev = NULL; - usb_dev->wusb_dev = NULL; - wusb_dev_put(wusb_dev); - usb_put_dev(usb_dev); -} - -/* - * Handle notifications from the USB stack (notifier call back) - * - * This is called when the USB stack does a - * usb_{bus,device}_{add,remove}() so we can do WUSB specific - * handling. It is called with [for the case of - * USB_DEVICE_{ADD,REMOVE} with the usb_dev locked. - */ -int wusb_usb_ncb(struct notifier_block *nb, unsigned long val, - void *priv) -{ - int result = NOTIFY_OK; - - switch (val) { - case USB_DEVICE_ADD: - wusb_dev_add_ncb(priv); - break; - case USB_DEVICE_REMOVE: - wusb_dev_rm_ncb(priv); - break; - case USB_BUS_ADD: - /* ignore (for now) */ - case USB_BUS_REMOVE: - break; - default: - WARN_ON(1); - result = NOTIFY_BAD; - } - return result; -} - -/* - * Return a referenced wusb_dev given a @wusbhc and @usb_dev - */ -struct wusb_dev *__wusb_dev_get_by_usb_dev(struct wusbhc *wusbhc, - struct usb_device *usb_dev) -{ - struct wusb_dev *wusb_dev; - u8 port_idx; - - port_idx = wusb_port_no_to_idx(usb_dev->portnum); - BUG_ON(port_idx > wusbhc->ports_max); - wusb_dev = wusb_port_by_idx(wusbhc, port_idx)->wusb_dev; - if (wusb_dev != NULL) /* ops, device is gone */ - wusb_dev_get(wusb_dev); - return wusb_dev; -} -EXPORT_SYMBOL_GPL(__wusb_dev_get_by_usb_dev); - -void wusb_dev_destroy(struct kref *_wusb_dev) -{ - struct wusb_dev *wusb_dev = container_of(_wusb_dev, struct wusb_dev, refcnt); - - list_del_init(&wusb_dev->cack_node); - wusb_dev_free(wusb_dev); -} -EXPORT_SYMBOL_GPL(wusb_dev_destroy); - -/* - * Create all the device connect handling infrastructure - * - * This is basically the device info array, Connect Acknowledgement - * (cack) lists, keep-alive timers (and delayed work thread). - */ -int wusbhc_devconnect_create(struct wusbhc *wusbhc) -{ - wusbhc->keep_alive_ie.hdr.bIEIdentifier = WUIE_ID_KEEP_ALIVE; - wusbhc->keep_alive_ie.hdr.bLength = sizeof(wusbhc->keep_alive_ie.hdr); - INIT_DELAYED_WORK(&wusbhc->keep_alive_timer, wusbhc_keep_alive_run); - - wusbhc->cack_ie.hdr.bIEIdentifier = WUIE_ID_CONNECTACK; - wusbhc->cack_ie.hdr.bLength = sizeof(wusbhc->cack_ie.hdr); - INIT_LIST_HEAD(&wusbhc->cack_list); - - return 0; -} - -/* - * Release all resources taken by the devconnect stuff - */ -void wusbhc_devconnect_destroy(struct wusbhc *wusbhc) -{ - /* no op */ -} - -/* - * wusbhc_devconnect_start - start accepting device connections - * @wusbhc: the WUSB HC - * - * Sets the Host Info IE to accept all new connections. - * - * FIXME: This also enables the keep alives but this is not necessary - * until there are connected and authenticated devices. - */ -int wusbhc_devconnect_start(struct wusbhc *wusbhc) -{ - struct device *dev = wusbhc->dev; - struct wuie_host_info *hi; - int result; - - hi = kzalloc(sizeof(*hi), GFP_KERNEL); - if (hi == NULL) - return -ENOMEM; - - hi->hdr.bLength = sizeof(*hi); - hi->hdr.bIEIdentifier = WUIE_ID_HOST_INFO; - hi->attributes = cpu_to_le16((wusbhc->rsv->stream << 3) | WUIE_HI_CAP_ALL); - hi->CHID = wusbhc->chid; - result = wusbhc_mmcie_set(wusbhc, 0, 0, &hi->hdr); - if (result < 0) { - dev_err(dev, "Cannot add Host Info MMCIE: %d\n", result); - goto error_mmcie_set; - } - wusbhc->wuie_host_info = hi; - - queue_delayed_work(wusbd, &wusbhc->keep_alive_timer, - msecs_to_jiffies(wusbhc->trust_timeout / 2)); - - return 0; - -error_mmcie_set: - kfree(hi); - return result; -} - -/* - * wusbhc_devconnect_stop - stop managing connected devices - * @wusbhc: the WUSB HC - * - * Disconnects any devices still connected, stops the keep alives and - * removes the Host Info IE. - */ -void wusbhc_devconnect_stop(struct wusbhc *wusbhc) -{ - int i; - - mutex_lock(&wusbhc->mutex); - for (i = 0; i < wusbhc->ports_max; i++) { - if (wusbhc->port[i].wusb_dev) - __wusbhc_dev_disconnect(wusbhc, &wusbhc->port[i]); - } - mutex_unlock(&wusbhc->mutex); - - cancel_delayed_work_sync(&wusbhc->keep_alive_timer); - wusbhc_mmcie_rm(wusbhc, &wusbhc->wuie_host_info->hdr); - kfree(wusbhc->wuie_host_info); - wusbhc->wuie_host_info = NULL; -} - -/* - * wusb_set_dev_addr - set the WUSB device address used by the host - * @wusbhc: the WUSB HC the device is connect to - * @wusb_dev: the WUSB device - * @addr: new device address - */ -int wusb_set_dev_addr(struct wusbhc *wusbhc, struct wusb_dev *wusb_dev, u8 addr) -{ - int result; - - wusb_dev->addr = addr; - result = wusbhc->dev_info_set(wusbhc, wusb_dev); - if (result < 0) - dev_err(wusbhc->dev, "device %d: failed to set device " - "address\n", wusb_dev->port_idx); - else - dev_info(wusbhc->dev, "device %d: %s addr %u\n", - wusb_dev->port_idx, - (addr & WUSB_DEV_ADDR_UNAUTH) ? "unauth" : "auth", - wusb_dev->addr); - - return result; -} |