diff options
Diffstat (limited to 'drivers/net/ethernet/neterion/s2io.c')
-rw-r--r-- | drivers/net/ethernet/neterion/s2io.c | 8674 |
1 files changed, 8674 insertions, 0 deletions
diff --git a/drivers/net/ethernet/neterion/s2io.c b/drivers/net/ethernet/neterion/s2io.c new file mode 100644 index 000000000000..277d48b0800a --- /dev/null +++ b/drivers/net/ethernet/neterion/s2io.c @@ -0,0 +1,8674 @@ +/************************************************************************ + * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC + * Copyright(c) 2002-2010 Exar Corp. + * + * This software may be used and distributed according to the terms of + * the GNU General Public License (GPL), incorporated herein by reference. + * Drivers based on or derived from this code fall under the GPL and must + * retain the authorship, copyright and license notice. This file is not + * a complete program and may only be used when the entire operating + * system is licensed under the GPL. + * See the file COPYING in this distribution for more information. + * + * Credits: + * Jeff Garzik : For pointing out the improper error condition + * check in the s2io_xmit routine and also some + * issues in the Tx watch dog function. Also for + * patiently answering all those innumerable + * questions regaring the 2.6 porting issues. + * Stephen Hemminger : Providing proper 2.6 porting mechanism for some + * macros available only in 2.6 Kernel. + * Francois Romieu : For pointing out all code part that were + * deprecated and also styling related comments. + * Grant Grundler : For helping me get rid of some Architecture + * dependent code. + * Christopher Hellwig : Some more 2.6 specific issues in the driver. + * + * The module loadable parameters that are supported by the driver and a brief + * explanation of all the variables. + * + * rx_ring_num : This can be used to program the number of receive rings used + * in the driver. + * rx_ring_sz: This defines the number of receive blocks each ring can have. + * This is also an array of size 8. + * rx_ring_mode: This defines the operation mode of all 8 rings. The valid + * values are 1, 2. + * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. + * tx_fifo_len: This too is an array of 8. Each element defines the number of + * Tx descriptors that can be associated with each corresponding FIFO. + * intr_type: This defines the type of interrupt. The values can be 0(INTA), + * 2(MSI_X). Default value is '2(MSI_X)' + * lro_max_pkts: This parameter defines maximum number of packets can be + * aggregated as a single large packet + * napi: This parameter used to enable/disable NAPI (polling Rx) + * Possible values '1' for enable and '0' for disable. Default is '1' + * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO) + * Possible values '1' for enable and '0' for disable. Default is '0' + * vlan_tag_strip: This can be used to enable or disable vlan stripping. + * Possible values '1' for enable , '0' for disable. + * Default is '2' - which means disable in promisc mode + * and enable in non-promiscuous mode. + * multiq: This parameter used to enable/disable MULTIQUEUE support. + * Possible values '1' for enable and '0' for disable. Default is '0' + ************************************************************************/ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include <linux/module.h> +#include <linux/types.h> +#include <linux/errno.h> +#include <linux/ioport.h> +#include <linux/pci.h> +#include <linux/dma-mapping.h> +#include <linux/kernel.h> +#include <linux/netdevice.h> +#include <linux/etherdevice.h> +#include <linux/mdio.h> +#include <linux/skbuff.h> +#include <linux/init.h> +#include <linux/delay.h> +#include <linux/stddef.h> +#include <linux/ioctl.h> +#include <linux/timex.h> +#include <linux/ethtool.h> +#include <linux/workqueue.h> +#include <linux/if_vlan.h> +#include <linux/ip.h> +#include <linux/tcp.h> +#include <linux/uaccess.h> +#include <linux/io.h> +#include <linux/slab.h> +#include <linux/prefetch.h> +#include <net/tcp.h> + +#include <asm/system.h> +#include <asm/div64.h> +#include <asm/irq.h> + +/* local include */ +#include "s2io.h" +#include "s2io-regs.h" + +#define DRV_VERSION "2.0.26.28" + +/* S2io Driver name & version. */ +static const char s2io_driver_name[] = "Neterion"; +static const char s2io_driver_version[] = DRV_VERSION; + +static const int rxd_size[2] = {32, 48}; +static const int rxd_count[2] = {127, 85}; + +static inline int RXD_IS_UP2DT(struct RxD_t *rxdp) +{ + int ret; + + ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) && + (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK)); + + return ret; +} + +/* + * Cards with following subsystem_id have a link state indication + * problem, 600B, 600C, 600D, 640B, 640C and 640D. + * macro below identifies these cards given the subsystem_id. + */ +#define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \ + (dev_type == XFRAME_I_DEVICE) ? \ + ((((subid >= 0x600B) && (subid <= 0x600D)) || \ + ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0 + +#define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ + ADAPTER_STATUS_RMAC_LOCAL_FAULT))) + +static inline int is_s2io_card_up(const struct s2io_nic *sp) +{ + return test_bit(__S2IO_STATE_CARD_UP, &sp->state); +} + +/* Ethtool related variables and Macros. */ +static const char s2io_gstrings[][ETH_GSTRING_LEN] = { + "Register test\t(offline)", + "Eeprom test\t(offline)", + "Link test\t(online)", + "RLDRAM test\t(offline)", + "BIST Test\t(offline)" +}; + +static const char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = { + {"tmac_frms"}, + {"tmac_data_octets"}, + {"tmac_drop_frms"}, + {"tmac_mcst_frms"}, + {"tmac_bcst_frms"}, + {"tmac_pause_ctrl_frms"}, + {"tmac_ttl_octets"}, + {"tmac_ucst_frms"}, + {"tmac_nucst_frms"}, + {"tmac_any_err_frms"}, + {"tmac_ttl_less_fb_octets"}, + {"tmac_vld_ip_octets"}, + {"tmac_vld_ip"}, + {"tmac_drop_ip"}, + {"tmac_icmp"}, + {"tmac_rst_tcp"}, + {"tmac_tcp"}, + {"tmac_udp"}, + {"rmac_vld_frms"}, + {"rmac_data_octets"}, + {"rmac_fcs_err_frms"}, + {"rmac_drop_frms"}, + {"rmac_vld_mcst_frms"}, + {"rmac_vld_bcst_frms"}, + {"rmac_in_rng_len_err_frms"}, + {"rmac_out_rng_len_err_frms"}, + {"rmac_long_frms"}, + {"rmac_pause_ctrl_frms"}, + {"rmac_unsup_ctrl_frms"}, + {"rmac_ttl_octets"}, + {"rmac_accepted_ucst_frms"}, + {"rmac_accepted_nucst_frms"}, + {"rmac_discarded_frms"}, + {"rmac_drop_events"}, + {"rmac_ttl_less_fb_octets"}, + {"rmac_ttl_frms"}, + {"rmac_usized_frms"}, + {"rmac_osized_frms"}, + {"rmac_frag_frms"}, + {"rmac_jabber_frms"}, + {"rmac_ttl_64_frms"}, + {"rmac_ttl_65_127_frms"}, + {"rmac_ttl_128_255_frms"}, + {"rmac_ttl_256_511_frms"}, + {"rmac_ttl_512_1023_frms"}, + {"rmac_ttl_1024_1518_frms"}, + {"rmac_ip"}, + {"rmac_ip_octets"}, + {"rmac_hdr_err_ip"}, + {"rmac_drop_ip"}, + {"rmac_icmp"}, + {"rmac_tcp"}, + {"rmac_udp"}, + {"rmac_err_drp_udp"}, + {"rmac_xgmii_err_sym"}, + {"rmac_frms_q0"}, + {"rmac_frms_q1"}, + {"rmac_frms_q2"}, + {"rmac_frms_q3"}, + {"rmac_frms_q4"}, + {"rmac_frms_q5"}, + {"rmac_frms_q6"}, + {"rmac_frms_q7"}, + {"rmac_full_q0"}, + {"rmac_full_q1"}, + {"rmac_full_q2"}, + {"rmac_full_q3"}, + {"rmac_full_q4"}, + {"rmac_full_q5"}, + {"rmac_full_q6"}, + {"rmac_full_q7"}, + {"rmac_pause_cnt"}, + {"rmac_xgmii_data_err_cnt"}, + {"rmac_xgmii_ctrl_err_cnt"}, + {"rmac_accepted_ip"}, + {"rmac_err_tcp"}, + {"rd_req_cnt"}, + {"new_rd_req_cnt"}, + {"new_rd_req_rtry_cnt"}, + {"rd_rtry_cnt"}, + {"wr_rtry_rd_ack_cnt"}, + {"wr_req_cnt"}, + {"new_wr_req_cnt"}, + {"new_wr_req_rtry_cnt"}, + {"wr_rtry_cnt"}, + {"wr_disc_cnt"}, + {"rd_rtry_wr_ack_cnt"}, + {"txp_wr_cnt"}, + {"txd_rd_cnt"}, + {"txd_wr_cnt"}, + {"rxd_rd_cnt"}, + {"rxd_wr_cnt"}, + {"txf_rd_cnt"}, + {"rxf_wr_cnt"} +}; + +static const char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = { + {"rmac_ttl_1519_4095_frms"}, + {"rmac_ttl_4096_8191_frms"}, + {"rmac_ttl_8192_max_frms"}, + {"rmac_ttl_gt_max_frms"}, + {"rmac_osized_alt_frms"}, + {"rmac_jabber_alt_frms"}, + {"rmac_gt_max_alt_frms"}, + {"rmac_vlan_frms"}, + {"rmac_len_discard"}, + {"rmac_fcs_discard"}, + {"rmac_pf_discard"}, + {"rmac_da_discard"}, + {"rmac_red_discard"}, + {"rmac_rts_discard"}, + {"rmac_ingm_full_discard"}, + {"link_fault_cnt"} +}; + +static const char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = { + {"\n DRIVER STATISTICS"}, + {"single_bit_ecc_errs"}, + {"double_bit_ecc_errs"}, + {"parity_err_cnt"}, + {"serious_err_cnt"}, + {"soft_reset_cnt"}, + {"fifo_full_cnt"}, + {"ring_0_full_cnt"}, + {"ring_1_full_cnt"}, + {"ring_2_full_cnt"}, + {"ring_3_full_cnt"}, + {"ring_4_full_cnt"}, + {"ring_5_full_cnt"}, + {"ring_6_full_cnt"}, + {"ring_7_full_cnt"}, + {"alarm_transceiver_temp_high"}, + {"alarm_transceiver_temp_low"}, + {"alarm_laser_bias_current_high"}, + {"alarm_laser_bias_current_low"}, + {"alarm_laser_output_power_high"}, + {"alarm_laser_output_power_low"}, + {"warn_transceiver_temp_high"}, + {"warn_transceiver_temp_low"}, + {"warn_laser_bias_current_high"}, + {"warn_laser_bias_current_low"}, + {"warn_laser_output_power_high"}, + {"warn_laser_output_power_low"}, + {"lro_aggregated_pkts"}, + {"lro_flush_both_count"}, + {"lro_out_of_sequence_pkts"}, + {"lro_flush_due_to_max_pkts"}, + {"lro_avg_aggr_pkts"}, + {"mem_alloc_fail_cnt"}, + {"pci_map_fail_cnt"}, + {"watchdog_timer_cnt"}, + {"mem_allocated"}, + {"mem_freed"}, + {"link_up_cnt"}, + {"link_down_cnt"}, + {"link_up_time"}, + {"link_down_time"}, + {"tx_tcode_buf_abort_cnt"}, + {"tx_tcode_desc_abort_cnt"}, + {"tx_tcode_parity_err_cnt"}, + {"tx_tcode_link_loss_cnt"}, + {"tx_tcode_list_proc_err_cnt"}, + {"rx_tcode_parity_err_cnt"}, + {"rx_tcode_abort_cnt"}, + {"rx_tcode_parity_abort_cnt"}, + {"rx_tcode_rda_fail_cnt"}, + {"rx_tcode_unkn_prot_cnt"}, + {"rx_tcode_fcs_err_cnt"}, + {"rx_tcode_buf_size_err_cnt"}, + {"rx_tcode_rxd_corrupt_cnt"}, + {"rx_tcode_unkn_err_cnt"}, + {"tda_err_cnt"}, + {"pfc_err_cnt"}, + {"pcc_err_cnt"}, + {"tti_err_cnt"}, + {"tpa_err_cnt"}, + {"sm_err_cnt"}, + {"lso_err_cnt"}, + {"mac_tmac_err_cnt"}, + {"mac_rmac_err_cnt"}, + {"xgxs_txgxs_err_cnt"}, + {"xgxs_rxgxs_err_cnt"}, + {"rc_err_cnt"}, + {"prc_pcix_err_cnt"}, + {"rpa_err_cnt"}, + {"rda_err_cnt"}, + {"rti_err_cnt"}, + {"mc_err_cnt"} +}; + +#define S2IO_XENA_STAT_LEN ARRAY_SIZE(ethtool_xena_stats_keys) +#define S2IO_ENHANCED_STAT_LEN ARRAY_SIZE(ethtool_enhanced_stats_keys) +#define S2IO_DRIVER_STAT_LEN ARRAY_SIZE(ethtool_driver_stats_keys) + +#define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN) +#define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN) + +#define XFRAME_I_STAT_STRINGS_LEN (XFRAME_I_STAT_LEN * ETH_GSTRING_LEN) +#define XFRAME_II_STAT_STRINGS_LEN (XFRAME_II_STAT_LEN * ETH_GSTRING_LEN) + +#define S2IO_TEST_LEN ARRAY_SIZE(s2io_gstrings) +#define S2IO_STRINGS_LEN (S2IO_TEST_LEN * ETH_GSTRING_LEN) + +#define S2IO_TIMER_CONF(timer, handle, arg, exp) \ + init_timer(&timer); \ + timer.function = handle; \ + timer.data = (unsigned long)arg; \ + mod_timer(&timer, (jiffies + exp)) \ + +/* copy mac addr to def_mac_addr array */ +static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr) +{ + sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr); + sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8); + sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16); + sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24); + sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32); + sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40); +} + +/* + * Constants to be programmed into the Xena's registers, to configure + * the XAUI. + */ + +#define END_SIGN 0x0 +static const u64 herc_act_dtx_cfg[] = { + /* Set address */ + 0x8000051536750000ULL, 0x80000515367500E0ULL, + /* Write data */ + 0x8000051536750004ULL, 0x80000515367500E4ULL, + /* Set address */ + 0x80010515003F0000ULL, 0x80010515003F00E0ULL, + /* Write data */ + 0x80010515003F0004ULL, 0x80010515003F00E4ULL, + /* Set address */ + 0x801205150D440000ULL, 0x801205150D4400E0ULL, + /* Write data */ + 0x801205150D440004ULL, 0x801205150D4400E4ULL, + /* Set address */ + 0x80020515F2100000ULL, 0x80020515F21000E0ULL, + /* Write data */ + 0x80020515F2100004ULL, 0x80020515F21000E4ULL, + /* Done */ + END_SIGN +}; + +static const u64 xena_dtx_cfg[] = { + /* Set address */ + 0x8000051500000000ULL, 0x80000515000000E0ULL, + /* Write data */ + 0x80000515D9350004ULL, 0x80000515D93500E4ULL, + /* Set address */ + 0x8001051500000000ULL, 0x80010515000000E0ULL, + /* Write data */ + 0x80010515001E0004ULL, 0x80010515001E00E4ULL, + /* Set address */ + 0x8002051500000000ULL, 0x80020515000000E0ULL, + /* Write data */ + 0x80020515F2100004ULL, 0x80020515F21000E4ULL, + END_SIGN +}; + +/* + * Constants for Fixing the MacAddress problem seen mostly on + * Alpha machines. + */ +static const u64 fix_mac[] = { + 0x0060000000000000ULL, 0x0060600000000000ULL, + 0x0040600000000000ULL, 0x0000600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0060600000000000ULL, + 0x0020600000000000ULL, 0x0000600000000000ULL, + 0x0040600000000000ULL, 0x0060600000000000ULL, + END_SIGN +}; + +MODULE_LICENSE("GPL"); +MODULE_VERSION(DRV_VERSION); + + +/* Module Loadable parameters. */ +S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM); +S2IO_PARM_INT(rx_ring_num, 1); +S2IO_PARM_INT(multiq, 0); +S2IO_PARM_INT(rx_ring_mode, 1); +S2IO_PARM_INT(use_continuous_tx_intrs, 1); +S2IO_PARM_INT(rmac_pause_time, 0x100); +S2IO_PARM_INT(mc_pause_threshold_q0q3, 187); +S2IO_PARM_INT(mc_pause_threshold_q4q7, 187); +S2IO_PARM_INT(shared_splits, 0); +S2IO_PARM_INT(tmac_util_period, 5); +S2IO_PARM_INT(rmac_util_period, 5); +S2IO_PARM_INT(l3l4hdr_size, 128); +/* 0 is no steering, 1 is Priority steering, 2 is Default steering */ +S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING); +/* Frequency of Rx desc syncs expressed as power of 2 */ +S2IO_PARM_INT(rxsync_frequency, 3); +/* Interrupt type. Values can be 0(INTA), 2(MSI_X) */ +S2IO_PARM_INT(intr_type, 2); +/* Large receive offload feature */ + +/* Max pkts to be aggregated by LRO at one time. If not specified, + * aggregation happens until we hit max IP pkt size(64K) + */ +S2IO_PARM_INT(lro_max_pkts, 0xFFFF); +S2IO_PARM_INT(indicate_max_pkts, 0); + +S2IO_PARM_INT(napi, 1); +S2IO_PARM_INT(ufo, 0); +S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC); + +static unsigned int tx_fifo_len[MAX_TX_FIFOS] = +{DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN}; +static unsigned int rx_ring_sz[MAX_RX_RINGS] = +{[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT}; +static unsigned int rts_frm_len[MAX_RX_RINGS] = +{[0 ...(MAX_RX_RINGS - 1)] = 0 }; + +module_param_array(tx_fifo_len, uint, NULL, 0); +module_param_array(rx_ring_sz, uint, NULL, 0); +module_param_array(rts_frm_len, uint, NULL, 0); + +/* + * S2IO device table. + * This table lists all the devices that this driver supports. + */ +static DEFINE_PCI_DEVICE_TABLE(s2io_tbl) = { + {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, + PCI_ANY_ID, PCI_ANY_ID}, + {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, + PCI_ANY_ID, PCI_ANY_ID}, + {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, + PCI_ANY_ID, PCI_ANY_ID}, + {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, + PCI_ANY_ID, PCI_ANY_ID}, + {0,} +}; + +MODULE_DEVICE_TABLE(pci, s2io_tbl); + +static struct pci_error_handlers s2io_err_handler = { + .error_detected = s2io_io_error_detected, + .slot_reset = s2io_io_slot_reset, + .resume = s2io_io_resume, +}; + +static struct pci_driver s2io_driver = { + .name = "S2IO", + .id_table = s2io_tbl, + .probe = s2io_init_nic, + .remove = __devexit_p(s2io_rem_nic), + .err_handler = &s2io_err_handler, +}; + +/* A simplifier macro used both by init and free shared_mem Fns(). */ +#define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) + +/* netqueue manipulation helper functions */ +static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp) +{ + if (!sp->config.multiq) { + int i; + + for (i = 0; i < sp->config.tx_fifo_num; i++) + sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP; + } + netif_tx_stop_all_queues(sp->dev); +} + +static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no) +{ + if (!sp->config.multiq) + sp->mac_control.fifos[fifo_no].queue_state = + FIFO_QUEUE_STOP; + + netif_tx_stop_all_queues(sp->dev); +} + +static inline void s2io_start_all_tx_queue(struct s2io_nic *sp) +{ + if (!sp->config.multiq) { + int i; + + for (i = 0; i < sp->config.tx_fifo_num; i++) + sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; + } + netif_tx_start_all_queues(sp->dev); +} + +static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no) +{ + if (!sp->config.multiq) + sp->mac_control.fifos[fifo_no].queue_state = + FIFO_QUEUE_START; + + netif_tx_start_all_queues(sp->dev); +} + +static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp) +{ + if (!sp->config.multiq) { + int i; + + for (i = 0; i < sp->config.tx_fifo_num; i++) + sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START; + } + netif_tx_wake_all_queues(sp->dev); +} + +static inline void s2io_wake_tx_queue( + struct fifo_info *fifo, int cnt, u8 multiq) +{ + + if (multiq) { + if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no)) + netif_wake_subqueue(fifo->dev, fifo->fifo_no); + } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) { + if (netif_queue_stopped(fifo->dev)) { + fifo->queue_state = FIFO_QUEUE_START; + netif_wake_queue(fifo->dev); + } + } +} + +/** + * init_shared_mem - Allocation and Initialization of Memory + * @nic: Device private variable. + * Description: The function allocates all the memory areas shared + * between the NIC and the driver. This includes Tx descriptors, + * Rx descriptors and the statistics block. + */ + +static int init_shared_mem(struct s2io_nic *nic) +{ + u32 size; + void *tmp_v_addr, *tmp_v_addr_next; + dma_addr_t tmp_p_addr, tmp_p_addr_next; + struct RxD_block *pre_rxd_blk = NULL; + int i, j, blk_cnt; + int lst_size, lst_per_page; + struct net_device *dev = nic->dev; + unsigned long tmp; + struct buffAdd *ba; + struct config_param *config = &nic->config; + struct mac_info *mac_control = &nic->mac_control; + unsigned long long mem_allocated = 0; + + /* Allocation and initialization of TXDLs in FIFOs */ + size = 0; + for (i = 0; i < config->tx_fifo_num; i++) { + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + + size += tx_cfg->fifo_len; + } + if (size > MAX_AVAILABLE_TXDS) { + DBG_PRINT(ERR_DBG, + "Too many TxDs requested: %d, max supported: %d\n", + size, MAX_AVAILABLE_TXDS); + return -EINVAL; + } + + size = 0; + for (i = 0; i < config->tx_fifo_num; i++) { + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + + size = tx_cfg->fifo_len; + /* + * Legal values are from 2 to 8192 + */ + if (size < 2) { + DBG_PRINT(ERR_DBG, "Fifo %d: Invalid length (%d) - " + "Valid lengths are 2 through 8192\n", + i, size); + return -EINVAL; + } + } + + lst_size = (sizeof(struct TxD) * config->max_txds); + lst_per_page = PAGE_SIZE / lst_size; + + for (i = 0; i < config->tx_fifo_num; i++) { + struct fifo_info *fifo = &mac_control->fifos[i]; + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + int fifo_len = tx_cfg->fifo_len; + int list_holder_size = fifo_len * sizeof(struct list_info_hold); + + fifo->list_info = kzalloc(list_holder_size, GFP_KERNEL); + if (!fifo->list_info) { + DBG_PRINT(INFO_DBG, "Malloc failed for list_info\n"); + return -ENOMEM; + } + mem_allocated += list_holder_size; + } + for (i = 0; i < config->tx_fifo_num; i++) { + int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, + lst_per_page); + struct fifo_info *fifo = &mac_control->fifos[i]; + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + + fifo->tx_curr_put_info.offset = 0; + fifo->tx_curr_put_info.fifo_len = tx_cfg->fifo_len - 1; + fifo->tx_curr_get_info.offset = 0; + fifo->tx_curr_get_info.fifo_len = tx_cfg->fifo_len - 1; + fifo->fifo_no = i; + fifo->nic = nic; + fifo->max_txds = MAX_SKB_FRAGS + 2; + fifo->dev = dev; + + for (j = 0; j < page_num; j++) { + int k = 0; + dma_addr_t tmp_p; + void *tmp_v; + tmp_v = pci_alloc_consistent(nic->pdev, + PAGE_SIZE, &tmp_p); + if (!tmp_v) { + DBG_PRINT(INFO_DBG, + "pci_alloc_consistent failed for TxDL\n"); + return -ENOMEM; + } + /* If we got a zero DMA address(can happen on + * certain platforms like PPC), reallocate. + * Store virtual address of page we don't want, + * to be freed later. + */ + if (!tmp_p) { + mac_control->zerodma_virt_addr = tmp_v; + DBG_PRINT(INIT_DBG, + "%s: Zero DMA address for TxDL. " + "Virtual address %p\n", + dev->name, tmp_v); + tmp_v = pci_alloc_consistent(nic->pdev, + PAGE_SIZE, &tmp_p); + if (!tmp_v) { + DBG_PRINT(INFO_DBG, + "pci_alloc_consistent failed for TxDL\n"); + return -ENOMEM; + } + mem_allocated += PAGE_SIZE; + } + while (k < lst_per_page) { + int l = (j * lst_per_page) + k; + if (l == tx_cfg->fifo_len) + break; + fifo->list_info[l].list_virt_addr = + tmp_v + (k * lst_size); + fifo->list_info[l].list_phy_addr = + tmp_p + (k * lst_size); + k++; + } + } + } + + for (i = 0; i < config->tx_fifo_num; i++) { + struct fifo_info *fifo = &mac_control->fifos[i]; + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + + size = tx_cfg->fifo_len; + fifo->ufo_in_band_v = kcalloc(size, sizeof(u64), GFP_KERNEL); + if (!fifo->ufo_in_band_v) + return -ENOMEM; + mem_allocated += (size * sizeof(u64)); + } + + /* Allocation and initialization of RXDs in Rings */ + size = 0; + for (i = 0; i < config->rx_ring_num; i++) { + struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; + struct ring_info *ring = &mac_control->rings[i]; + + if (rx_cfg->num_rxd % (rxd_count[nic->rxd_mode] + 1)) { + DBG_PRINT(ERR_DBG, "%s: Ring%d RxD count is not a " + "multiple of RxDs per Block\n", + dev->name, i); + return FAILURE; + } + size += rx_cfg->num_rxd; + ring->block_count = rx_cfg->num_rxd / + (rxd_count[nic->rxd_mode] + 1); + ring->pkt_cnt = rx_cfg->num_rxd - ring->block_count; + } + if (nic->rxd_mode == RXD_MODE_1) + size = (size * (sizeof(struct RxD1))); + else + size = (size * (sizeof(struct RxD3))); + + for (i = 0; i < config->rx_ring_num; i++) { + struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; + struct ring_info *ring = &mac_control->rings[i]; + + ring->rx_curr_get_info.block_index = 0; + ring->rx_curr_get_info.offset = 0; + ring->rx_curr_get_info.ring_len = rx_cfg->num_rxd - 1; + ring->rx_curr_put_info.block_index = 0; + ring->rx_curr_put_info.offset = 0; + ring->rx_curr_put_info.ring_len = rx_cfg->num_rxd - 1; + ring->nic = nic; + ring->ring_no = i; + + blk_cnt = rx_cfg->num_rxd / (rxd_count[nic->rxd_mode] + 1); + /* Allocating all the Rx blocks */ + for (j = 0; j < blk_cnt; j++) { + struct rx_block_info *rx_blocks; + int l; + + rx_blocks = &ring->rx_blocks[j]; + size = SIZE_OF_BLOCK; /* size is always page size */ + tmp_v_addr = pci_alloc_consistent(nic->pdev, size, + &tmp_p_addr); + if (tmp_v_addr == NULL) { + /* + * In case of failure, free_shared_mem() + * is called, which should free any + * memory that was alloced till the + * failure happened. + */ + rx_blocks->block_virt_addr = tmp_v_addr; + return -ENOMEM; + } + mem_allocated += size; + memset(tmp_v_addr, 0, size); + + size = sizeof(struct rxd_info) * + rxd_count[nic->rxd_mode]; + rx_blocks->block_virt_addr = tmp_v_addr; + rx_blocks->block_dma_addr = tmp_p_addr; + rx_blocks->rxds = kmalloc(size, GFP_KERNEL); + if (!rx_blocks->rxds) + return -ENOMEM; + mem_allocated += size; + for (l = 0; l < rxd_count[nic->rxd_mode]; l++) { + rx_blocks->rxds[l].virt_addr = + rx_blocks->block_virt_addr + + (rxd_size[nic->rxd_mode] * l); + rx_blocks->rxds[l].dma_addr = + rx_blocks->block_dma_addr + + (rxd_size[nic->rxd_mode] * l); + } + } + /* Interlinking all Rx Blocks */ + for (j = 0; j < blk_cnt; j++) { + int next = (j + 1) % blk_cnt; + tmp_v_addr = ring->rx_blocks[j].block_virt_addr; + tmp_v_addr_next = ring->rx_blocks[next].block_virt_addr; + tmp_p_addr = ring->rx_blocks[j].block_dma_addr; + tmp_p_addr_next = ring->rx_blocks[next].block_dma_addr; + + pre_rxd_blk = tmp_v_addr; + pre_rxd_blk->reserved_2_pNext_RxD_block = + (unsigned long)tmp_v_addr_next; + pre_rxd_blk->pNext_RxD_Blk_physical = + (u64)tmp_p_addr_next; + } + } + if (nic->rxd_mode == RXD_MODE_3B) { + /* + * Allocation of Storages for buffer addresses in 2BUFF mode + * and the buffers as well. + */ + for (i = 0; i < config->rx_ring_num; i++) { + struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; + struct ring_info *ring = &mac_control->rings[i]; + + blk_cnt = rx_cfg->num_rxd / + (rxd_count[nic->rxd_mode] + 1); + size = sizeof(struct buffAdd *) * blk_cnt; + ring->ba = kmalloc(size, GFP_KERNEL); + if (!ring->ba) + return -ENOMEM; + mem_allocated += size; + for (j = 0; j < blk_cnt; j++) { + int k = 0; + + size = sizeof(struct buffAdd) * + (rxd_count[nic->rxd_mode] + 1); + ring->ba[j] = kmalloc(size, GFP_KERNEL); + if (!ring->ba[j]) + return -ENOMEM; + mem_allocated += size; + while (k != rxd_count[nic->rxd_mode]) { + ba = &ring->ba[j][k]; + size = BUF0_LEN + ALIGN_SIZE; + ba->ba_0_org = kmalloc(size, GFP_KERNEL); + if (!ba->ba_0_org) + return -ENOMEM; + mem_allocated += size; + tmp = (unsigned long)ba->ba_0_org; + tmp += ALIGN_SIZE; + tmp &= ~((unsigned long)ALIGN_SIZE); + ba->ba_0 = (void *)tmp; + + size = BUF1_LEN + ALIGN_SIZE; + ba->ba_1_org = kmalloc(size, GFP_KERNEL); + if (!ba->ba_1_org) + return -ENOMEM; + mem_allocated += size; + tmp = (unsigned long)ba->ba_1_org; + tmp += ALIGN_SIZE; + tmp &= ~((unsigned long)ALIGN_SIZE); + ba->ba_1 = (void *)tmp; + k++; + } + } + } + } + + /* Allocation and initialization of Statistics block */ + size = sizeof(struct stat_block); + mac_control->stats_mem = + pci_alloc_consistent(nic->pdev, size, + &mac_control->stats_mem_phy); + + if (!mac_control->stats_mem) { + /* + * In case of failure, free_shared_mem() is called, which + * should free any memory that was alloced till the + * failure happened. + */ + return -ENOMEM; + } + mem_allocated += size; + mac_control->stats_mem_sz = size; + + tmp_v_addr = mac_control->stats_mem; + mac_control->stats_info = tmp_v_addr; + memset(tmp_v_addr, 0, size); + DBG_PRINT(INIT_DBG, "%s: Ring Mem PHY: 0x%llx\n", + dev_name(&nic->pdev->dev), (unsigned long long)tmp_p_addr); + mac_control->stats_info->sw_stat.mem_allocated += mem_allocated; + return SUCCESS; +} + +/** + * free_shared_mem - Free the allocated Memory + * @nic: Device private variable. + * Description: This function is to free all memory locations allocated by + * the init_shared_mem() function and return it to the kernel. + */ + +static void free_shared_mem(struct s2io_nic *nic) +{ + int i, j, blk_cnt, size; + void *tmp_v_addr; + dma_addr_t tmp_p_addr; + int lst_size, lst_per_page; + struct net_device *dev; + int page_num = 0; + struct config_param *config; + struct mac_info *mac_control; + struct stat_block *stats; + struct swStat *swstats; + + if (!nic) + return; + + dev = nic->dev; + + config = &nic->config; + mac_control = &nic->mac_control; + stats = mac_control->stats_info; + swstats = &stats->sw_stat; + + lst_size = sizeof(struct TxD) * config->max_txds; + lst_per_page = PAGE_SIZE / lst_size; + + for (i = 0; i < config->tx_fifo_num; i++) { + struct fifo_info *fifo = &mac_control->fifos[i]; + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + + page_num = TXD_MEM_PAGE_CNT(tx_cfg->fifo_len, lst_per_page); + for (j = 0; j < page_num; j++) { + int mem_blks = (j * lst_per_page); + struct list_info_hold *fli; + + if (!fifo->list_info) + return; + + fli = &fifo->list_info[mem_blks]; + if (!fli->list_virt_addr) + break; + pci_free_consistent(nic->pdev, PAGE_SIZE, + fli->list_virt_addr, + fli->list_phy_addr); + swstats->mem_freed += PAGE_SIZE; + } + /* If we got a zero DMA address during allocation, + * free the page now + */ + if (mac_control->zerodma_virt_addr) { + pci_free_consistent(nic->pdev, PAGE_SIZE, + mac_control->zerodma_virt_addr, + (dma_addr_t)0); + DBG_PRINT(INIT_DBG, + "%s: Freeing TxDL with zero DMA address. " + "Virtual address %p\n", + dev->name, mac_control->zerodma_virt_addr); + swstats->mem_freed += PAGE_SIZE; + } + kfree(fifo->list_info); + swstats->mem_freed += tx_cfg->fifo_len * + sizeof(struct list_info_hold); + } + + size = SIZE_OF_BLOCK; + for (i = 0; i < config->rx_ring_num; i++) { + struct ring_info *ring = &mac_control->rings[i]; + + blk_cnt = ring->block_count; + for (j = 0; j < blk_cnt; j++) { + tmp_v_addr = ring->rx_blocks[j].block_virt_addr; + tmp_p_addr = ring->rx_blocks[j].block_dma_addr; + if (tmp_v_addr == NULL) + break; + pci_free_consistent(nic->pdev, size, + tmp_v_addr, tmp_p_addr); + swstats->mem_freed += size; + kfree(ring->rx_blocks[j].rxds); + swstats->mem_freed += sizeof(struct rxd_info) * + rxd_count[nic->rxd_mode]; + } + } + + if (nic->rxd_mode == RXD_MODE_3B) { + /* Freeing buffer storage addresses in 2BUFF mode. */ + for (i = 0; i < config->rx_ring_num; i++) { + struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; + struct ring_info *ring = &mac_control->rings[i]; + + blk_cnt = rx_cfg->num_rxd / + (rxd_count[nic->rxd_mode] + 1); + for (j = 0; j < blk_cnt; j++) { + int k = 0; + if (!ring->ba[j]) + continue; + while (k != rxd_count[nic->rxd_mode]) { + struct buffAdd *ba = &ring->ba[j][k]; + kfree(ba->ba_0_org); + swstats->mem_freed += + BUF0_LEN + ALIGN_SIZE; + kfree(ba->ba_1_org); + swstats->mem_freed += + BUF1_LEN + ALIGN_SIZE; + k++; + } + kfree(ring->ba[j]); + swstats->mem_freed += sizeof(struct buffAdd) * + (rxd_count[nic->rxd_mode] + 1); + } + kfree(ring->ba); + swstats->mem_freed += sizeof(struct buffAdd *) * + blk_cnt; + } + } + + for (i = 0; i < nic->config.tx_fifo_num; i++) { + struct fifo_info *fifo = &mac_control->fifos[i]; + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + + if (fifo->ufo_in_band_v) { + swstats->mem_freed += tx_cfg->fifo_len * + sizeof(u64); + kfree(fifo->ufo_in_band_v); + } + } + + if (mac_control->stats_mem) { + swstats->mem_freed += mac_control->stats_mem_sz; + pci_free_consistent(nic->pdev, + mac_control->stats_mem_sz, + mac_control->stats_mem, + mac_control->stats_mem_phy); + } +} + +/** + * s2io_verify_pci_mode - + */ + +static int s2io_verify_pci_mode(struct s2io_nic *nic) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + register u64 val64 = 0; + int mode; + + val64 = readq(&bar0->pci_mode); + mode = (u8)GET_PCI_MODE(val64); + + if (val64 & PCI_MODE_UNKNOWN_MODE) + return -1; /* Unknown PCI mode */ + return mode; +} + +#define NEC_VENID 0x1033 +#define NEC_DEVID 0x0125 +static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev) +{ + struct pci_dev *tdev = NULL; + while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) { + if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) { + if (tdev->bus == s2io_pdev->bus->parent) { + pci_dev_put(tdev); + return 1; + } + } + } + return 0; +} + +static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266}; +/** + * s2io_print_pci_mode - + */ +static int s2io_print_pci_mode(struct s2io_nic *nic) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + register u64 val64 = 0; + int mode; + struct config_param *config = &nic->config; + const char *pcimode; + + val64 = readq(&bar0->pci_mode); + mode = (u8)GET_PCI_MODE(val64); + + if (val64 & PCI_MODE_UNKNOWN_MODE) + return -1; /* Unknown PCI mode */ + + config->bus_speed = bus_speed[mode]; + + if (s2io_on_nec_bridge(nic->pdev)) { + DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n", + nic->dev->name); + return mode; + } + + switch (mode) { + case PCI_MODE_PCI_33: + pcimode = "33MHz PCI bus"; + break; + case PCI_MODE_PCI_66: + pcimode = "66MHz PCI bus"; + break; + case PCI_MODE_PCIX_M1_66: + pcimode = "66MHz PCIX(M1) bus"; + break; + case PCI_MODE_PCIX_M1_100: + pcimode = "100MHz PCIX(M1) bus"; + break; + case PCI_MODE_PCIX_M1_133: + pcimode = "133MHz PCIX(M1) bus"; + break; + case PCI_MODE_PCIX_M2_66: + pcimode = "133MHz PCIX(M2) bus"; + break; + case PCI_MODE_PCIX_M2_100: + pcimode = "200MHz PCIX(M2) bus"; + break; + case PCI_MODE_PCIX_M2_133: + pcimode = "266MHz PCIX(M2) bus"; + break; + default: + pcimode = "unsupported bus!"; + mode = -1; + } + + DBG_PRINT(ERR_DBG, "%s: Device is on %d bit %s\n", + nic->dev->name, val64 & PCI_MODE_32_BITS ? 32 : 64, pcimode); + + return mode; +} + +/** + * init_tti - Initialization transmit traffic interrupt scheme + * @nic: device private variable + * @link: link status (UP/DOWN) used to enable/disable continuous + * transmit interrupts + * Description: The function configures transmit traffic interrupts + * Return Value: SUCCESS on success and + * '-1' on failure + */ + +static int init_tti(struct s2io_nic *nic, int link) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + register u64 val64 = 0; + int i; + struct config_param *config = &nic->config; + + for (i = 0; i < config->tx_fifo_num; i++) { + /* + * TTI Initialization. Default Tx timer gets us about + * 250 interrupts per sec. Continuous interrupts are enabled + * by default. + */ + if (nic->device_type == XFRAME_II_DEVICE) { + int count = (nic->config.bus_speed * 125)/2; + val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count); + } else + val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078); + + val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) | + TTI_DATA1_MEM_TX_URNG_B(0x10) | + TTI_DATA1_MEM_TX_URNG_C(0x30) | + TTI_DATA1_MEM_TX_TIMER_AC_EN; + if (i == 0) + if (use_continuous_tx_intrs && (link == LINK_UP)) + val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN; + writeq(val64, &bar0->tti_data1_mem); + + if (nic->config.intr_type == MSI_X) { + val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | + TTI_DATA2_MEM_TX_UFC_B(0x100) | + TTI_DATA2_MEM_TX_UFC_C(0x200) | + TTI_DATA2_MEM_TX_UFC_D(0x300); + } else { + if ((nic->config.tx_steering_type == + TX_DEFAULT_STEERING) && + (config->tx_fifo_num > 1) && + (i >= nic->udp_fifo_idx) && + (i < (nic->udp_fifo_idx + + nic->total_udp_fifos))) + val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) | + TTI_DATA2_MEM_TX_UFC_B(0x80) | + TTI_DATA2_MEM_TX_UFC_C(0x100) | + TTI_DATA2_MEM_TX_UFC_D(0x120); + else + val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | + TTI_DATA2_MEM_TX_UFC_B(0x20) | + TTI_DATA2_MEM_TX_UFC_C(0x40) | + TTI_DATA2_MEM_TX_UFC_D(0x80); + } + + writeq(val64, &bar0->tti_data2_mem); + + val64 = TTI_CMD_MEM_WE | + TTI_CMD_MEM_STROBE_NEW_CMD | + TTI_CMD_MEM_OFFSET(i); + writeq(val64, &bar0->tti_command_mem); + + if (wait_for_cmd_complete(&bar0->tti_command_mem, + TTI_CMD_MEM_STROBE_NEW_CMD, + S2IO_BIT_RESET) != SUCCESS) + return FAILURE; + } + + return SUCCESS; +} + +/** + * init_nic - Initialization of hardware + * @nic: device private variable + * Description: The function sequentially configures every block + * of the H/W from their reset values. + * Return Value: SUCCESS on success and + * '-1' on failure (endian settings incorrect). + */ + +static int init_nic(struct s2io_nic *nic) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + struct net_device *dev = nic->dev; + register u64 val64 = 0; + void __iomem *add; + u32 time; + int i, j; + int dtx_cnt = 0; + unsigned long long mem_share; + int mem_size; + struct config_param *config = &nic->config; + struct mac_info *mac_control = &nic->mac_control; + + /* to set the swapper controle on the card */ + if (s2io_set_swapper(nic)) { + DBG_PRINT(ERR_DBG, "ERROR: Setting Swapper failed\n"); + return -EIO; + } + + /* + * Herc requires EOI to be removed from reset before XGXS, so.. + */ + if (nic->device_type & XFRAME_II_DEVICE) { + val64 = 0xA500000000ULL; + writeq(val64, &bar0->sw_reset); + msleep(500); + val64 = readq(&bar0->sw_reset); + } + + /* Remove XGXS from reset state */ + val64 = 0; + writeq(val64, &bar0->sw_reset); + msleep(500); + val64 = readq(&bar0->sw_reset); + + /* Ensure that it's safe to access registers by checking + * RIC_RUNNING bit is reset. Check is valid only for XframeII. + */ + if (nic->device_type == XFRAME_II_DEVICE) { + for (i = 0; i < 50; i++) { + val64 = readq(&bar0->adapter_status); + if (!(val64 & ADAPTER_STATUS_RIC_RUNNING)) + break; + msleep(10); + } + if (i == 50) + return -ENODEV; + } + + /* Enable Receiving broadcasts */ + add = &bar0->mac_cfg; + val64 = readq(&bar0->mac_cfg); + val64 |= MAC_RMAC_BCAST_ENABLE; + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32)val64, add); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64 >> 32), (add + 4)); + + /* Read registers in all blocks */ + val64 = readq(&bar0->mac_int_mask); + val64 = readq(&bar0->mc_int_mask); + val64 = readq(&bar0->xgxs_int_mask); + + /* Set MTU */ + val64 = dev->mtu; + writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); + + if (nic->device_type & XFRAME_II_DEVICE) { + while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) { + SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt], + &bar0->dtx_control, UF); + if (dtx_cnt & 0x1) + msleep(1); /* Necessary!! */ + dtx_cnt++; + } + } else { + while (xena_dtx_cfg[dtx_cnt] != END_SIGN) { + SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt], + &bar0->dtx_control, UF); + val64 = readq(&bar0->dtx_control); + dtx_cnt++; + } + } + + /* Tx DMA Initialization */ + val64 = 0; + writeq(val64, &bar0->tx_fifo_partition_0); + writeq(val64, &bar0->tx_fifo_partition_1); + writeq(val64, &bar0->tx_fifo_partition_2); + writeq(val64, &bar0->tx_fifo_partition_3); + + for (i = 0, j = 0; i < config->tx_fifo_num; i++) { + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + + val64 |= vBIT(tx_cfg->fifo_len - 1, ((j * 32) + 19), 13) | + vBIT(tx_cfg->fifo_priority, ((j * 32) + 5), 3); + + if (i == (config->tx_fifo_num - 1)) { + if (i % 2 == 0) + i++; + } + + switch (i) { + case 1: + writeq(val64, &bar0->tx_fifo_partition_0); + val64 = 0; + j = 0; + break; + case 3: + writeq(val64, &bar0->tx_fifo_partition_1); + val64 = 0; + j = 0; + break; + case 5: + writeq(val64, &bar0->tx_fifo_partition_2); + val64 = 0; + j = 0; + break; + case 7: + writeq(val64, &bar0->tx_fifo_partition_3); + val64 = 0; + j = 0; + break; + default: + j++; + break; + } + } + + /* + * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug + * SXE-008 TRANSMIT DMA ARBITRATION ISSUE. + */ + if ((nic->device_type == XFRAME_I_DEVICE) && (nic->pdev->revision < 4)) + writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable); + + val64 = readq(&bar0->tx_fifo_partition_0); + DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", + &bar0->tx_fifo_partition_0, (unsigned long long)val64); + + /* + * Initialization of Tx_PA_CONFIG register to ignore packet + * integrity checking. + */ + val64 = readq(&bar0->tx_pa_cfg); + val64 |= TX_PA_CFG_IGNORE_FRM_ERR | + TX_PA_CFG_IGNORE_SNAP_OUI | + TX_PA_CFG_IGNORE_LLC_CTRL | + TX_PA_CFG_IGNORE_L2_ERR; + writeq(val64, &bar0->tx_pa_cfg); + + /* Rx DMA intialization. */ + val64 = 0; + for (i = 0; i < config->rx_ring_num; i++) { + struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; + + val64 |= vBIT(rx_cfg->ring_priority, (5 + (i * 8)), 3); + } + writeq(val64, &bar0->rx_queue_priority); + + /* + * Allocating equal share of memory to all the + * configured Rings. + */ + val64 = 0; + if (nic->device_type & XFRAME_II_DEVICE) + mem_size = 32; + else + mem_size = 64; + + for (i = 0; i < config->rx_ring_num; i++) { + switch (i) { + case 0: + mem_share = (mem_size / config->rx_ring_num + + mem_size % config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); + continue; + case 1: + mem_share = (mem_size / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); + continue; + case 2: + mem_share = (mem_size / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); + continue; + case 3: + mem_share = (mem_size / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); + continue; + case 4: + mem_share = (mem_size / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); + continue; + case 5: + mem_share = (mem_size / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); + continue; + case 6: + mem_share = (mem_size / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); + continue; + case 7: + mem_share = (mem_size / config->rx_ring_num); + val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); + continue; + } + } + writeq(val64, &bar0->rx_queue_cfg); + + /* + * Filling Tx round robin registers + * as per the number of FIFOs for equal scheduling priority + */ + switch (config->tx_fifo_num) { + case 1: + val64 = 0x0; + writeq(val64, &bar0->tx_w_round_robin_0); + writeq(val64, &bar0->tx_w_round_robin_1); + writeq(val64, &bar0->tx_w_round_robin_2); + writeq(val64, &bar0->tx_w_round_robin_3); + writeq(val64, &bar0->tx_w_round_robin_4); + break; + case 2: + val64 = 0x0001000100010001ULL; + writeq(val64, &bar0->tx_w_round_robin_0); + writeq(val64, &bar0->tx_w_round_robin_1); + writeq(val64, &bar0->tx_w_round_robin_2); + writeq(val64, &bar0->tx_w_round_robin_3); + val64 = 0x0001000100000000ULL; + writeq(val64, &bar0->tx_w_round_robin_4); + break; + case 3: + val64 = 0x0001020001020001ULL; + writeq(val64, &bar0->tx_w_round_robin_0); + val64 = 0x0200010200010200ULL; + writeq(val64, &bar0->tx_w_round_robin_1); + val64 = 0x0102000102000102ULL; + writeq(val64, &bar0->tx_w_round_robin_2); + val64 = 0x0001020001020001ULL; + writeq(val64, &bar0->tx_w_round_robin_3); + val64 = 0x0200010200000000ULL; + writeq(val64, &bar0->tx_w_round_robin_4); + break; + case 4: + val64 = 0x0001020300010203ULL; + writeq(val64, &bar0->tx_w_round_robin_0); + writeq(val64, &bar0->tx_w_round_robin_1); + writeq(val64, &bar0->tx_w_round_robin_2); + writeq(val64, &bar0->tx_w_round_robin_3); + val64 = 0x0001020300000000ULL; + writeq(val64, &bar0->tx_w_round_robin_4); + break; + case 5: + val64 = 0x0001020304000102ULL; + writeq(val64, &bar0->tx_w_round_robin_0); + val64 = 0x0304000102030400ULL; + writeq(val64, &bar0->tx_w_round_robin_1); + val64 = 0x0102030400010203ULL; + writeq(val64, &bar0->tx_w_round_robin_2); + val64 = 0x0400010203040001ULL; + writeq(val64, &bar0->tx_w_round_robin_3); + val64 = 0x0203040000000000ULL; + writeq(val64, &bar0->tx_w_round_robin_4); + break; + case 6: + val64 = 0x0001020304050001ULL; + writeq(val64, &bar0->tx_w_round_robin_0); + val64 = 0x0203040500010203ULL; + writeq(val64, &bar0->tx_w_round_robin_1); + val64 = 0x0405000102030405ULL; + writeq(val64, &bar0->tx_w_round_robin_2); + val64 = 0x0001020304050001ULL; + writeq(val64, &bar0->tx_w_round_robin_3); + val64 = 0x0203040500000000ULL; + writeq(val64, &bar0->tx_w_round_robin_4); + break; + case 7: + val64 = 0x0001020304050600ULL; + writeq(val64, &bar0->tx_w_round_robin_0); + val64 = 0x0102030405060001ULL; + writeq(val64, &bar0->tx_w_round_robin_1); + val64 = 0x0203040506000102ULL; + writeq(val64, &bar0->tx_w_round_robin_2); + val64 = 0x0304050600010203ULL; + writeq(val64, &bar0->tx_w_round_robin_3); + val64 = 0x0405060000000000ULL; + writeq(val64, &bar0->tx_w_round_robin_4); + break; + case 8: + val64 = 0x0001020304050607ULL; + writeq(val64, &bar0->tx_w_round_robin_0); + writeq(val64, &bar0->tx_w_round_robin_1); + writeq(val64, &bar0->tx_w_round_robin_2); + writeq(val64, &bar0->tx_w_round_robin_3); + val64 = 0x0001020300000000ULL; + writeq(val64, &bar0->tx_w_round_robin_4); + break; + } + + /* Enable all configured Tx FIFO partitions */ + val64 = readq(&bar0->tx_fifo_partition_0); + val64 |= (TX_FIFO_PARTITION_EN); + writeq(val64, &bar0->tx_fifo_partition_0); + + /* Filling the Rx round robin registers as per the + * number of Rings and steering based on QoS with + * equal priority. + */ + switch (config->rx_ring_num) { + case 1: + val64 = 0x0; + writeq(val64, &bar0->rx_w_round_robin_0); + writeq(val64, &bar0->rx_w_round_robin_1); + writeq(val64, &bar0->rx_w_round_robin_2); + writeq(val64, &bar0->rx_w_round_robin_3); + writeq(val64, &bar0->rx_w_round_robin_4); + + val64 = 0x8080808080808080ULL; + writeq(val64, &bar0->rts_qos_steering); + break; + case 2: + val64 = 0x0001000100010001ULL; + writeq(val64, &bar0->rx_w_round_robin_0); + writeq(val64, &bar0->rx_w_round_robin_1); + writeq(val64, &bar0->rx_w_round_robin_2); + writeq(val64, &bar0->rx_w_round_robin_3); + val64 = 0x0001000100000000ULL; + writeq(val64, &bar0->rx_w_round_robin_4); + + val64 = 0x8080808040404040ULL; + writeq(val64, &bar0->rts_qos_steering); + break; + case 3: + val64 = 0x0001020001020001ULL; + writeq(val64, &bar0->rx_w_round_robin_0); + val64 = 0x0200010200010200ULL; + writeq(val64, &bar0->rx_w_round_robin_1); + val64 = 0x0102000102000102ULL; + writeq(val64, &bar0->rx_w_round_robin_2); + val64 = 0x0001020001020001ULL; + writeq(val64, &bar0->rx_w_round_robin_3); + val64 = 0x0200010200000000ULL; + writeq(val64, &bar0->rx_w_round_robin_4); + + val64 = 0x8080804040402020ULL; + writeq(val64, &bar0->rts_qos_steering); + break; + case 4: + val64 = 0x0001020300010203ULL; + writeq(val64, &bar0->rx_w_round_robin_0); + writeq(val64, &bar0->rx_w_round_robin_1); + writeq(val64, &bar0->rx_w_round_robin_2); + writeq(val64, &bar0->rx_w_round_robin_3); + val64 = 0x0001020300000000ULL; + writeq(val64, &bar0->rx_w_round_robin_4); + + val64 = 0x8080404020201010ULL; + writeq(val64, &bar0->rts_qos_steering); + break; + case 5: + val64 = 0x0001020304000102ULL; + writeq(val64, &bar0->rx_w_round_robin_0); + val64 = 0x0304000102030400ULL; + writeq(val64, &bar0->rx_w_round_robin_1); + val64 = 0x0102030400010203ULL; + writeq(val64, &bar0->rx_w_round_robin_2); + val64 = 0x0400010203040001ULL; + writeq(val64, &bar0->rx_w_round_robin_3); + val64 = 0x0203040000000000ULL; + writeq(val64, &bar0->rx_w_round_robin_4); + + val64 = 0x8080404020201008ULL; + writeq(val64, &bar0->rts_qos_steering); + break; + case 6: + val64 = 0x0001020304050001ULL; + writeq(val64, &bar0->rx_w_round_robin_0); + val64 = 0x0203040500010203ULL; + writeq(val64, &bar0->rx_w_round_robin_1); + val64 = 0x0405000102030405ULL; + writeq(val64, &bar0->rx_w_round_robin_2); + val64 = 0x0001020304050001ULL; + writeq(val64, &bar0->rx_w_round_robin_3); + val64 = 0x0203040500000000ULL; + writeq(val64, &bar0->rx_w_round_robin_4); + + val64 = 0x8080404020100804ULL; + writeq(val64, &bar0->rts_qos_steering); + break; + case 7: + val64 = 0x0001020304050600ULL; + writeq(val64, &bar0->rx_w_round_robin_0); + val64 = 0x0102030405060001ULL; + writeq(val64, &bar0->rx_w_round_robin_1); + val64 = 0x0203040506000102ULL; + writeq(val64, &bar0->rx_w_round_robin_2); + val64 = 0x0304050600010203ULL; + writeq(val64, &bar0->rx_w_round_robin_3); + val64 = 0x0405060000000000ULL; + writeq(val64, &bar0->rx_w_round_robin_4); + + val64 = 0x8080402010080402ULL; + writeq(val64, &bar0->rts_qos_steering); + break; + case 8: + val64 = 0x0001020304050607ULL; + writeq(val64, &bar0->rx_w_round_robin_0); + writeq(val64, &bar0->rx_w_round_robin_1); + writeq(val64, &bar0->rx_w_round_robin_2); + writeq(val64, &bar0->rx_w_round_robin_3); + val64 = 0x0001020300000000ULL; + writeq(val64, &bar0->rx_w_round_robin_4); + + val64 = 0x8040201008040201ULL; + writeq(val64, &bar0->rts_qos_steering); + break; + } + + /* UDP Fix */ + val64 = 0; + for (i = 0; i < 8; i++) + writeq(val64, &bar0->rts_frm_len_n[i]); + + /* Set the default rts frame length for the rings configured */ + val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22); + for (i = 0 ; i < config->rx_ring_num ; i++) + writeq(val64, &bar0->rts_frm_len_n[i]); + + /* Set the frame length for the configured rings + * desired by the user + */ + for (i = 0; i < config->rx_ring_num; i++) { + /* If rts_frm_len[i] == 0 then it is assumed that user not + * specified frame length steering. + * If the user provides the frame length then program + * the rts_frm_len register for those values or else + * leave it as it is. + */ + if (rts_frm_len[i] != 0) { + writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]), + &bar0->rts_frm_len_n[i]); + } + } + + /* Disable differentiated services steering logic */ + for (i = 0; i < 64; i++) { + if (rts_ds_steer(nic, i, 0) == FAILURE) { + DBG_PRINT(ERR_DBG, + "%s: rts_ds_steer failed on codepoint %d\n", + dev->name, i); + return -ENODEV; + } + } + + /* Program statistics memory */ + writeq(mac_control->stats_mem_phy, &bar0->stat_addr); + + if (nic->device_type == XFRAME_II_DEVICE) { + val64 = STAT_BC(0x320); + writeq(val64, &bar0->stat_byte_cnt); + } + + /* + * Initializing the sampling rate for the device to calculate the + * bandwidth utilization. + */ + val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | + MAC_RX_LINK_UTIL_VAL(rmac_util_period); + writeq(val64, &bar0->mac_link_util); + + /* + * Initializing the Transmit and Receive Traffic Interrupt + * Scheme. + */ + + /* Initialize TTI */ + if (SUCCESS != init_tti(nic, nic->last_link_state)) + return -ENODEV; + + /* RTI Initialization */ + if (nic->device_type == XFRAME_II_DEVICE) { + /* + * Programmed to generate Apprx 500 Intrs per + * second + */ + int count = (nic->config.bus_speed * 125)/4; + val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count); + } else + val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF); + val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) | + RTI_DATA1_MEM_RX_URNG_B(0x10) | + RTI_DATA1_MEM_RX_URNG_C(0x30) | + RTI_DATA1_MEM_RX_TIMER_AC_EN; + + writeq(val64, &bar0->rti_data1_mem); + + val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | + RTI_DATA2_MEM_RX_UFC_B(0x2) ; + if (nic->config.intr_type == MSI_X) + val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | + RTI_DATA2_MEM_RX_UFC_D(0x40)); + else + val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | + RTI_DATA2_MEM_RX_UFC_D(0x80)); + writeq(val64, &bar0->rti_data2_mem); + + for (i = 0; i < config->rx_ring_num; i++) { + val64 = RTI_CMD_MEM_WE | + RTI_CMD_MEM_STROBE_NEW_CMD | + RTI_CMD_MEM_OFFSET(i); + writeq(val64, &bar0->rti_command_mem); + + /* + * Once the operation completes, the Strobe bit of the + * command register will be reset. We poll for this + * particular condition. We wait for a maximum of 500ms + * for the operation to complete, if it's not complete + * by then we return error. + */ + time = 0; + while (true) { + val64 = readq(&bar0->rti_command_mem); + if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD)) + break; + + if (time > 10) { + DBG_PRINT(ERR_DBG, "%s: RTI init failed\n", + dev->name); + return -ENODEV; + } + time++; + msleep(50); + } + } + + /* + * Initializing proper values as Pause threshold into all + * the 8 Queues on Rx side. + */ + writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); + writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); + + /* Disable RMAC PAD STRIPPING */ + add = &bar0->mac_cfg; + val64 = readq(&bar0->mac_cfg); + val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64), add); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64 >> 32), (add + 4)); + val64 = readq(&bar0->mac_cfg); + + /* Enable FCS stripping by adapter */ + add = &bar0->mac_cfg; + val64 = readq(&bar0->mac_cfg); + val64 |= MAC_CFG_RMAC_STRIP_FCS; + if (nic->device_type == XFRAME_II_DEVICE) + writeq(val64, &bar0->mac_cfg); + else { + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64), add); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64 >> 32), (add + 4)); + } + + /* + * Set the time value to be inserted in the pause frame + * generated by xena. + */ + val64 = readq(&bar0->rmac_pause_cfg); + val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); + val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); + writeq(val64, &bar0->rmac_pause_cfg); + + /* + * Set the Threshold Limit for Generating the pause frame + * If the amount of data in any Queue exceeds ratio of + * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 + * pause frame is generated + */ + val64 = 0; + for (i = 0; i < 4; i++) { + val64 |= (((u64)0xFF00 | + nic->mac_control.mc_pause_threshold_q0q3) + << (i * 2 * 8)); + } + writeq(val64, &bar0->mc_pause_thresh_q0q3); + + val64 = 0; + for (i = 0; i < 4; i++) { + val64 |= (((u64)0xFF00 | + nic->mac_control.mc_pause_threshold_q4q7) + << (i * 2 * 8)); + } + writeq(val64, &bar0->mc_pause_thresh_q4q7); + + /* + * TxDMA will stop Read request if the number of read split has + * exceeded the limit pointed by shared_splits + */ + val64 = readq(&bar0->pic_control); + val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); + writeq(val64, &bar0->pic_control); + + if (nic->config.bus_speed == 266) { + writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout); + writeq(0x0, &bar0->read_retry_delay); + writeq(0x0, &bar0->write_retry_delay); + } + + /* + * Programming the Herc to split every write transaction + * that does not start on an ADB to reduce disconnects. + */ + if (nic->device_type == XFRAME_II_DEVICE) { + val64 = FAULT_BEHAVIOUR | EXT_REQ_EN | + MISC_LINK_STABILITY_PRD(3); + writeq(val64, &bar0->misc_control); + val64 = readq(&bar0->pic_control2); + val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15)); + writeq(val64, &bar0->pic_control2); + } + if (strstr(nic->product_name, "CX4")) { + val64 = TMAC_AVG_IPG(0x17); + writeq(val64, &bar0->tmac_avg_ipg); + } + + return SUCCESS; +} +#define LINK_UP_DOWN_INTERRUPT 1 +#define MAC_RMAC_ERR_TIMER 2 + +static int s2io_link_fault_indication(struct s2io_nic *nic) +{ + if (nic->device_type == XFRAME_II_DEVICE) + return LINK_UP_DOWN_INTERRUPT; + else + return MAC_RMAC_ERR_TIMER; +} + +/** + * do_s2io_write_bits - update alarm bits in alarm register + * @value: alarm bits + * @flag: interrupt status + * @addr: address value + * Description: update alarm bits in alarm register + * Return Value: + * NONE. + */ +static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr) +{ + u64 temp64; + + temp64 = readq(addr); + + if (flag == ENABLE_INTRS) + temp64 &= ~((u64)value); + else + temp64 |= ((u64)value); + writeq(temp64, addr); +} + +static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + register u64 gen_int_mask = 0; + u64 interruptible; + + writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask); + if (mask & TX_DMA_INTR) { + gen_int_mask |= TXDMA_INT_M; + + do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT | + TXDMA_PCC_INT | TXDMA_TTI_INT | + TXDMA_LSO_INT | TXDMA_TPA_INT | + TXDMA_SM_INT, flag, &bar0->txdma_int_mask); + + do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | + PFC_MISC_0_ERR | PFC_MISC_1_ERR | + PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag, + &bar0->pfc_err_mask); + + do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM | + TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR | + TDA_PCIX_ERR, flag, &bar0->tda_err_mask); + + do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR | + PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | + PCC_N_SERR | PCC_6_COF_OV_ERR | + PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | + PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR | + PCC_TXB_ECC_SG_ERR, + flag, &bar0->pcc_err_mask); + + do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR | + TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask); + + do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT | + LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM | + LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, + flag, &bar0->lso_err_mask); + + do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP, + flag, &bar0->tpa_err_mask); + + do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask); + } + + if (mask & TX_MAC_INTR) { + gen_int_mask |= TXMAC_INT_M; + do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag, + &bar0->mac_int_mask); + do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR | + TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | + TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR, + flag, &bar0->mac_tmac_err_mask); + } + + if (mask & TX_XGXS_INTR) { + gen_int_mask |= TXXGXS_INT_M; + do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag, + &bar0->xgxs_int_mask); + do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR | + TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, + flag, &bar0->xgxs_txgxs_err_mask); + } + + if (mask & RX_DMA_INTR) { + gen_int_mask |= RXDMA_INT_M; + do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M | + RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M, + flag, &bar0->rxdma_int_mask); + do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR | + RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM | + RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR | + RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask); + do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn | + PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn | + PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag, + &bar0->prc_pcix_err_mask); + do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR | + RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag, + &bar0->rpa_err_mask); + do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR | + RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM | + RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR | + RDA_FRM_ECC_SG_ERR | + RDA_MISC_ERR|RDA_PCIX_ERR, + flag, &bar0->rda_err_mask); + do_s2io_write_bits(RTI_SM_ERR_ALARM | + RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, + flag, &bar0->rti_err_mask); + } + + if (mask & RX_MAC_INTR) { + gen_int_mask |= RXMAC_INT_M; + do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag, + &bar0->mac_int_mask); + interruptible = (RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR | + RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR | + RMAC_DOUBLE_ECC_ERR); + if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) + interruptible |= RMAC_LINK_STATE_CHANGE_INT; + do_s2io_write_bits(interruptible, + flag, &bar0->mac_rmac_err_mask); + } + + if (mask & RX_XGXS_INTR) { + gen_int_mask |= RXXGXS_INT_M; + do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag, + &bar0->xgxs_int_mask); + do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag, + &bar0->xgxs_rxgxs_err_mask); + } + + if (mask & MC_INTR) { + gen_int_mask |= MC_INT_M; + do_s2io_write_bits(MC_INT_MASK_MC_INT, + flag, &bar0->mc_int_mask); + do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG | + MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag, + &bar0->mc_err_mask); + } + nic->general_int_mask = gen_int_mask; + + /* Remove this line when alarm interrupts are enabled */ + nic->general_int_mask = 0; +} + +/** + * en_dis_able_nic_intrs - Enable or Disable the interrupts + * @nic: device private variable, + * @mask: A mask indicating which Intr block must be modified and, + * @flag: A flag indicating whether to enable or disable the Intrs. + * Description: This function will either disable or enable the interrupts + * depending on the flag argument. The mask argument can be used to + * enable/disable any Intr block. + * Return Value: NONE. + */ + +static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + register u64 temp64 = 0, intr_mask = 0; + + intr_mask = nic->general_int_mask; + + /* Top level interrupt classification */ + /* PIC Interrupts */ + if (mask & TX_PIC_INTR) { + /* Enable PIC Intrs in the general intr mask register */ + intr_mask |= TXPIC_INT_M; + if (flag == ENABLE_INTRS) { + /* + * If Hercules adapter enable GPIO otherwise + * disable all PCIX, Flash, MDIO, IIC and GPIO + * interrupts for now. + * TODO + */ + if (s2io_link_fault_indication(nic) == + LINK_UP_DOWN_INTERRUPT) { + do_s2io_write_bits(PIC_INT_GPIO, flag, + &bar0->pic_int_mask); + do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag, + &bar0->gpio_int_mask); + } else + writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable PIC Intrs in the general + * intr mask register + */ + writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); + } + } + + /* Tx traffic interrupts */ + if (mask & TX_TRAFFIC_INTR) { + intr_mask |= TXTRAFFIC_INT_M; + if (flag == ENABLE_INTRS) { + /* + * Enable all the Tx side interrupts + * writing 0 Enables all 64 TX interrupt levels + */ + writeq(0x0, &bar0->tx_traffic_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable Tx Traffic Intrs in the general intr mask + * register. + */ + writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); + } + } + + /* Rx traffic interrupts */ + if (mask & RX_TRAFFIC_INTR) { + intr_mask |= RXTRAFFIC_INT_M; + if (flag == ENABLE_INTRS) { + /* writing 0 Enables all 8 RX interrupt levels */ + writeq(0x0, &bar0->rx_traffic_mask); + } else if (flag == DISABLE_INTRS) { + /* + * Disable Rx Traffic Intrs in the general intr mask + * register. + */ + writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); + } + } + + temp64 = readq(&bar0->general_int_mask); + if (flag == ENABLE_INTRS) + temp64 &= ~((u64)intr_mask); + else + temp64 = DISABLE_ALL_INTRS; + writeq(temp64, &bar0->general_int_mask); + + nic->general_int_mask = readq(&bar0->general_int_mask); +} + +/** + * verify_pcc_quiescent- Checks for PCC quiescent state + * Return: 1 If PCC is quiescence + * 0 If PCC is not quiescence + */ +static int verify_pcc_quiescent(struct s2io_nic *sp, int flag) +{ + int ret = 0, herc; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64 = readq(&bar0->adapter_status); + + herc = (sp->device_type == XFRAME_II_DEVICE); + + if (flag == false) { + if ((!herc && (sp->pdev->revision >= 4)) || herc) { + if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE)) + ret = 1; + } else { + if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) + ret = 1; + } + } else { + if ((!herc && (sp->pdev->revision >= 4)) || herc) { + if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == + ADAPTER_STATUS_RMAC_PCC_IDLE)) + ret = 1; + } else { + if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) == + ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE)) + ret = 1; + } + } + + return ret; +} +/** + * verify_xena_quiescence - Checks whether the H/W is ready + * Description: Returns whether the H/W is ready to go or not. Depending + * on whether adapter enable bit was written or not the comparison + * differs and the calling function passes the input argument flag to + * indicate this. + * Return: 1 If xena is quiescence + * 0 If Xena is not quiescence + */ + +static int verify_xena_quiescence(struct s2io_nic *sp) +{ + int mode; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64 = readq(&bar0->adapter_status); + mode = s2io_verify_pci_mode(sp); + + if (!(val64 & ADAPTER_STATUS_TDMA_READY)) { + DBG_PRINT(ERR_DBG, "TDMA is not ready!\n"); + return 0; + } + if (!(val64 & ADAPTER_STATUS_RDMA_READY)) { + DBG_PRINT(ERR_DBG, "RDMA is not ready!\n"); + return 0; + } + if (!(val64 & ADAPTER_STATUS_PFC_READY)) { + DBG_PRINT(ERR_DBG, "PFC is not ready!\n"); + return 0; + } + if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) { + DBG_PRINT(ERR_DBG, "TMAC BUF is not empty!\n"); + return 0; + } + if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) { + DBG_PRINT(ERR_DBG, "PIC is not QUIESCENT!\n"); + return 0; + } + if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) { + DBG_PRINT(ERR_DBG, "MC_DRAM is not ready!\n"); + return 0; + } + if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) { + DBG_PRINT(ERR_DBG, "MC_QUEUES is not ready!\n"); + return 0; + } + if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) { + DBG_PRINT(ERR_DBG, "M_PLL is not locked!\n"); + return 0; + } + + /* + * In PCI 33 mode, the P_PLL is not used, and therefore, + * the the P_PLL_LOCK bit in the adapter_status register will + * not be asserted. + */ + if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) && + sp->device_type == XFRAME_II_DEVICE && + mode != PCI_MODE_PCI_33) { + DBG_PRINT(ERR_DBG, "P_PLL is not locked!\n"); + return 0; + } + if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == + ADAPTER_STATUS_RC_PRC_QUIESCENT)) { + DBG_PRINT(ERR_DBG, "RC_PRC is not QUIESCENT!\n"); + return 0; + } + return 1; +} + +/** + * fix_mac_address - Fix for Mac addr problem on Alpha platforms + * @sp: Pointer to device specifc structure + * Description : + * New procedure to clear mac address reading problems on Alpha platforms + * + */ + +static void fix_mac_address(struct s2io_nic *sp) +{ + struct XENA_dev_config __iomem *bar0 = sp->bar0; + int i = 0; + + while (fix_mac[i] != END_SIGN) { + writeq(fix_mac[i++], &bar0->gpio_control); + udelay(10); + (void) readq(&bar0->gpio_control); + } +} + +/** + * start_nic - Turns the device on + * @nic : device private variable. + * Description: + * This function actually turns the device on. Before this function is + * called,all Registers are configured from their reset states + * and shared memory is allocated but the NIC is still quiescent. On + * calling this function, the device interrupts are cleared and the NIC is + * literally switched on by writing into the adapter control register. + * Return Value: + * SUCCESS on success and -1 on failure. + */ + +static int start_nic(struct s2io_nic *nic) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + struct net_device *dev = nic->dev; + register u64 val64 = 0; + u16 subid, i; + struct config_param *config = &nic->config; + struct mac_info *mac_control = &nic->mac_control; + + /* PRC Initialization and configuration */ + for (i = 0; i < config->rx_ring_num; i++) { + struct ring_info *ring = &mac_control->rings[i]; + + writeq((u64)ring->rx_blocks[0].block_dma_addr, + &bar0->prc_rxd0_n[i]); + + val64 = readq(&bar0->prc_ctrl_n[i]); + if (nic->rxd_mode == RXD_MODE_1) + val64 |= PRC_CTRL_RC_ENABLED; + else + val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; + if (nic->device_type == XFRAME_II_DEVICE) + val64 |= PRC_CTRL_GROUP_READS; + val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF); + val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000); + writeq(val64, &bar0->prc_ctrl_n[i]); + } + + if (nic->rxd_mode == RXD_MODE_3B) { + /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ + val64 = readq(&bar0->rx_pa_cfg); + val64 |= RX_PA_CFG_IGNORE_L2_ERR; + writeq(val64, &bar0->rx_pa_cfg); + } + + if (vlan_tag_strip == 0) { + val64 = readq(&bar0->rx_pa_cfg); + val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; + writeq(val64, &bar0->rx_pa_cfg); + nic->vlan_strip_flag = 0; + } + + /* + * Enabling MC-RLDRAM. After enabling the device, we timeout + * for around 100ms, which is approximately the time required + * for the device to be ready for operation. + */ + val64 = readq(&bar0->mc_rldram_mrs); + val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; + SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); + val64 = readq(&bar0->mc_rldram_mrs); + + msleep(100); /* Delay by around 100 ms. */ + + /* Enabling ECC Protection. */ + val64 = readq(&bar0->adapter_control); + val64 &= ~ADAPTER_ECC_EN; + writeq(val64, &bar0->adapter_control); + + /* + * Verify if the device is ready to be enabled, if so enable + * it. + */ + val64 = readq(&bar0->adapter_status); + if (!verify_xena_quiescence(nic)) { + DBG_PRINT(ERR_DBG, "%s: device is not ready, " + "Adapter status reads: 0x%llx\n", + dev->name, (unsigned long long)val64); + return FAILURE; + } + + /* + * With some switches, link might be already up at this point. + * Because of this weird behavior, when we enable laser, + * we may not get link. We need to handle this. We cannot + * figure out which switch is misbehaving. So we are forced to + * make a global change. + */ + + /* Enabling Laser. */ + val64 = readq(&bar0->adapter_control); + val64 |= ADAPTER_EOI_TX_ON; + writeq(val64, &bar0->adapter_control); + + if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { + /* + * Dont see link state interrupts initially on some switches, + * so directly scheduling the link state task here. + */ + schedule_work(&nic->set_link_task); + } + /* SXE-002: Initialize link and activity LED */ + subid = nic->pdev->subsystem_device; + if (((subid & 0xFF) >= 0x07) && + (nic->device_type == XFRAME_I_DEVICE)) { + val64 = readq(&bar0->gpio_control); + val64 |= 0x0000800000000000ULL; + writeq(val64, &bar0->gpio_control); + val64 = 0x0411040400000000ULL; + writeq(val64, (void __iomem *)bar0 + 0x2700); + } + + return SUCCESS; +} +/** + * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb + */ +static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, + struct TxD *txdlp, int get_off) +{ + struct s2io_nic *nic = fifo_data->nic; + struct sk_buff *skb; + struct TxD *txds; + u16 j, frg_cnt; + + txds = txdlp; + if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) { + pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, + sizeof(u64), PCI_DMA_TODEVICE); + txds++; + } + + skb = (struct sk_buff *)((unsigned long)txds->Host_Control); + if (!skb) { + memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); + return NULL; + } + pci_unmap_single(nic->pdev, (dma_addr_t)txds->Buffer_Pointer, + skb_headlen(skb), PCI_DMA_TODEVICE); + frg_cnt = skb_shinfo(skb)->nr_frags; + if (frg_cnt) { + txds++; + for (j = 0; j < frg_cnt; j++, txds++) { + skb_frag_t *frag = &skb_shinfo(skb)->frags[j]; + if (!txds->Buffer_Pointer) + break; + pci_unmap_page(nic->pdev, + (dma_addr_t)txds->Buffer_Pointer, + frag->size, PCI_DMA_TODEVICE); + } + } + memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds)); + return skb; +} + +/** + * free_tx_buffers - Free all queued Tx buffers + * @nic : device private variable. + * Description: + * Free all queued Tx buffers. + * Return Value: void + */ + +static void free_tx_buffers(struct s2io_nic *nic) +{ + struct net_device *dev = nic->dev; + struct sk_buff *skb; + struct TxD *txdp; + int i, j; + int cnt = 0; + struct config_param *config = &nic->config; + struct mac_info *mac_control = &nic->mac_control; + struct stat_block *stats = mac_control->stats_info; + struct swStat *swstats = &stats->sw_stat; + + for (i = 0; i < config->tx_fifo_num; i++) { + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + struct fifo_info *fifo = &mac_control->fifos[i]; + unsigned long flags; + + spin_lock_irqsave(&fifo->tx_lock, flags); + for (j = 0; j < tx_cfg->fifo_len; j++) { + txdp = fifo->list_info[j].list_virt_addr; + skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j); + if (skb) { + swstats->mem_freed += skb->truesize; + dev_kfree_skb(skb); + cnt++; + } + } + DBG_PRINT(INTR_DBG, + "%s: forcibly freeing %d skbs on FIFO%d\n", + dev->name, cnt, i); + fifo->tx_curr_get_info.offset = 0; + fifo->tx_curr_put_info.offset = 0; + spin_unlock_irqrestore(&fifo->tx_lock, flags); + } +} + +/** + * stop_nic - To stop the nic + * @nic ; device private variable. + * Description: + * This function does exactly the opposite of what the start_nic() + * function does. This function is called to stop the device. + * Return Value: + * void. + */ + +static void stop_nic(struct s2io_nic *nic) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + register u64 val64 = 0; + u16 interruptible; + + /* Disable all interrupts */ + en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS); + interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; + interruptible |= TX_PIC_INTR; + en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); + + /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */ + val64 = readq(&bar0->adapter_control); + val64 &= ~(ADAPTER_CNTL_EN); + writeq(val64, &bar0->adapter_control); +} + +/** + * fill_rx_buffers - Allocates the Rx side skbs + * @ring_info: per ring structure + * @from_card_up: If this is true, we will map the buffer to get + * the dma address for buf0 and buf1 to give it to the card. + * Else we will sync the already mapped buffer to give it to the card. + * Description: + * The function allocates Rx side skbs and puts the physical + * address of these buffers into the RxD buffer pointers, so that the NIC + * can DMA the received frame into these locations. + * The NIC supports 3 receive modes, viz + * 1. single buffer, + * 2. three buffer and + * 3. Five buffer modes. + * Each mode defines how many fragments the received frame will be split + * up into by the NIC. The frame is split into L3 header, L4 Header, + * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself + * is split into 3 fragments. As of now only single buffer mode is + * supported. + * Return Value: + * SUCCESS on success or an appropriate -ve value on failure. + */ +static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring, + int from_card_up) +{ + struct sk_buff *skb; + struct RxD_t *rxdp; + int off, size, block_no, block_no1; + u32 alloc_tab = 0; + u32 alloc_cnt; + u64 tmp; + struct buffAdd *ba; + struct RxD_t *first_rxdp = NULL; + u64 Buffer0_ptr = 0, Buffer1_ptr = 0; + int rxd_index = 0; + struct RxD1 *rxdp1; + struct RxD3 *rxdp3; + struct swStat *swstats = &ring->nic->mac_control.stats_info->sw_stat; + + alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left; + + block_no1 = ring->rx_curr_get_info.block_index; + while (alloc_tab < alloc_cnt) { + block_no = ring->rx_curr_put_info.block_index; + + off = ring->rx_curr_put_info.offset; + + rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr; + + rxd_index = off + 1; + if (block_no) + rxd_index += (block_no * ring->rxd_count); + + if ((block_no == block_no1) && + (off == ring->rx_curr_get_info.offset) && + (rxdp->Host_Control)) { + DBG_PRINT(INTR_DBG, "%s: Get and Put info equated\n", + ring->dev->name); + goto end; + } + if (off && (off == ring->rxd_count)) { + ring->rx_curr_put_info.block_index++; + if (ring->rx_curr_put_info.block_index == + ring->block_count) + ring->rx_curr_put_info.block_index = 0; + block_no = ring->rx_curr_put_info.block_index; + off = 0; + ring->rx_curr_put_info.offset = off; + rxdp = ring->rx_blocks[block_no].block_virt_addr; + DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", + ring->dev->name, rxdp); + + } + + if ((rxdp->Control_1 & RXD_OWN_XENA) && + ((ring->rxd_mode == RXD_MODE_3B) && + (rxdp->Control_2 & s2BIT(0)))) { + ring->rx_curr_put_info.offset = off; + goto end; + } + /* calculate size of skb based on ring mode */ + size = ring->mtu + + HEADER_ETHERNET_II_802_3_SIZE + + HEADER_802_2_SIZE + HEADER_SNAP_SIZE; + if (ring->rxd_mode == RXD_MODE_1) + size += NET_IP_ALIGN; + else + size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4; + + /* allocate skb */ + skb = dev_alloc_skb(size); + if (!skb) { + DBG_PRINT(INFO_DBG, "%s: Could not allocate skb\n", + ring->dev->name); + if (first_rxdp) { + wmb(); + first_rxdp->Control_1 |= RXD_OWN_XENA; + } + swstats->mem_alloc_fail_cnt++; + + return -ENOMEM ; + } + swstats->mem_allocated += skb->truesize; + + if (ring->rxd_mode == RXD_MODE_1) { + /* 1 buffer mode - normal operation mode */ + rxdp1 = (struct RxD1 *)rxdp; + memset(rxdp, 0, sizeof(struct RxD1)); + skb_reserve(skb, NET_IP_ALIGN); + rxdp1->Buffer0_ptr = + pci_map_single(ring->pdev, skb->data, + size - NET_IP_ALIGN, + PCI_DMA_FROMDEVICE); + if (pci_dma_mapping_error(nic->pdev, + rxdp1->Buffer0_ptr)) + goto pci_map_failed; + + rxdp->Control_2 = + SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); + rxdp->Host_Control = (unsigned long)skb; + } else if (ring->rxd_mode == RXD_MODE_3B) { + /* + * 2 buffer mode - + * 2 buffer mode provides 128 + * byte aligned receive buffers. + */ + + rxdp3 = (struct RxD3 *)rxdp; + /* save buffer pointers to avoid frequent dma mapping */ + Buffer0_ptr = rxdp3->Buffer0_ptr; + Buffer1_ptr = rxdp3->Buffer1_ptr; + memset(rxdp, 0, sizeof(struct RxD3)); + /* restore the buffer pointers for dma sync*/ + rxdp3->Buffer0_ptr = Buffer0_ptr; + rxdp3->Buffer1_ptr = Buffer1_ptr; + + ba = &ring->ba[block_no][off]; + skb_reserve(skb, BUF0_LEN); + tmp = (u64)(unsigned long)skb->data; + tmp += ALIGN_SIZE; + tmp &= ~ALIGN_SIZE; + skb->data = (void *) (unsigned long)tmp; + skb_reset_tail_pointer(skb); + + if (from_card_up) { + rxdp3->Buffer0_ptr = + pci_map_single(ring->pdev, ba->ba_0, + BUF0_LEN, + PCI_DMA_FROMDEVICE); + if (pci_dma_mapping_error(nic->pdev, + rxdp3->Buffer0_ptr)) + goto pci_map_failed; + } else + pci_dma_sync_single_for_device(ring->pdev, + (dma_addr_t)rxdp3->Buffer0_ptr, + BUF0_LEN, + PCI_DMA_FROMDEVICE); + + rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); + if (ring->rxd_mode == RXD_MODE_3B) { + /* Two buffer mode */ + + /* + * Buffer2 will have L3/L4 header plus + * L4 payload + */ + rxdp3->Buffer2_ptr = pci_map_single(ring->pdev, + skb->data, + ring->mtu + 4, + PCI_DMA_FROMDEVICE); + + if (pci_dma_mapping_error(nic->pdev, + rxdp3->Buffer2_ptr)) + goto pci_map_failed; + + if (from_card_up) { + rxdp3->Buffer1_ptr = + pci_map_single(ring->pdev, + ba->ba_1, + BUF1_LEN, + PCI_DMA_FROMDEVICE); + + if (pci_dma_mapping_error(nic->pdev, + rxdp3->Buffer1_ptr)) { + pci_unmap_single(ring->pdev, + (dma_addr_t)(unsigned long) + skb->data, + ring->mtu + 4, + PCI_DMA_FROMDEVICE); + goto pci_map_failed; + } + } + rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); + rxdp->Control_2 |= SET_BUFFER2_SIZE_3 + (ring->mtu + 4); + } + rxdp->Control_2 |= s2BIT(0); + rxdp->Host_Control = (unsigned long) (skb); + } + if (alloc_tab & ((1 << rxsync_frequency) - 1)) + rxdp->Control_1 |= RXD_OWN_XENA; + off++; + if (off == (ring->rxd_count + 1)) + off = 0; + ring->rx_curr_put_info.offset = off; + + rxdp->Control_2 |= SET_RXD_MARKER; + if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) { + if (first_rxdp) { + wmb(); + first_rxdp->Control_1 |= RXD_OWN_XENA; + } + first_rxdp = rxdp; + } + ring->rx_bufs_left += 1; + alloc_tab++; + } + +end: + /* Transfer ownership of first descriptor to adapter just before + * exiting. Before that, use memory barrier so that ownership + * and other fields are seen by adapter correctly. + */ + if (first_rxdp) { + wmb(); + first_rxdp->Control_1 |= RXD_OWN_XENA; + } + + return SUCCESS; + +pci_map_failed: + swstats->pci_map_fail_cnt++; + swstats->mem_freed += skb->truesize; + dev_kfree_skb_irq(skb); + return -ENOMEM; +} + +static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk) +{ + struct net_device *dev = sp->dev; + int j; + struct sk_buff *skb; + struct RxD_t *rxdp; + struct RxD1 *rxdp1; + struct RxD3 *rxdp3; + struct mac_info *mac_control = &sp->mac_control; + struct stat_block *stats = mac_control->stats_info; + struct swStat *swstats = &stats->sw_stat; + + for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) { + rxdp = mac_control->rings[ring_no]. + rx_blocks[blk].rxds[j].virt_addr; + skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); + if (!skb) + continue; + if (sp->rxd_mode == RXD_MODE_1) { + rxdp1 = (struct RxD1 *)rxdp; + pci_unmap_single(sp->pdev, + (dma_addr_t)rxdp1->Buffer0_ptr, + dev->mtu + + HEADER_ETHERNET_II_802_3_SIZE + + HEADER_802_2_SIZE + HEADER_SNAP_SIZE, + PCI_DMA_FROMDEVICE); + memset(rxdp, 0, sizeof(struct RxD1)); + } else if (sp->rxd_mode == RXD_MODE_3B) { + rxdp3 = (struct RxD3 *)rxdp; + pci_unmap_single(sp->pdev, + (dma_addr_t)rxdp3->Buffer0_ptr, + BUF0_LEN, + PCI_DMA_FROMDEVICE); + pci_unmap_single(sp->pdev, + (dma_addr_t)rxdp3->Buffer1_ptr, + BUF1_LEN, + PCI_DMA_FROMDEVICE); + pci_unmap_single(sp->pdev, + (dma_addr_t)rxdp3->Buffer2_ptr, + dev->mtu + 4, + PCI_DMA_FROMDEVICE); + memset(rxdp, 0, sizeof(struct RxD3)); + } + swstats->mem_freed += skb->truesize; + dev_kfree_skb(skb); + mac_control->rings[ring_no].rx_bufs_left -= 1; + } +} + +/** + * free_rx_buffers - Frees all Rx buffers + * @sp: device private variable. + * Description: + * This function will free all Rx buffers allocated by host. + * Return Value: + * NONE. + */ + +static void free_rx_buffers(struct s2io_nic *sp) +{ + struct net_device *dev = sp->dev; + int i, blk = 0, buf_cnt = 0; + struct config_param *config = &sp->config; + struct mac_info *mac_control = &sp->mac_control; + + for (i = 0; i < config->rx_ring_num; i++) { + struct ring_info *ring = &mac_control->rings[i]; + + for (blk = 0; blk < rx_ring_sz[i]; blk++) + free_rxd_blk(sp, i, blk); + + ring->rx_curr_put_info.block_index = 0; + ring->rx_curr_get_info.block_index = 0; + ring->rx_curr_put_info.offset = 0; + ring->rx_curr_get_info.offset = 0; + ring->rx_bufs_left = 0; + DBG_PRINT(INIT_DBG, "%s: Freed 0x%x Rx Buffers on ring%d\n", + dev->name, buf_cnt, i); + } +} + +static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring) +{ + if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { + DBG_PRINT(INFO_DBG, "%s: Out of memory in Rx Intr!!\n", + ring->dev->name); + } + return 0; +} + +/** + * s2io_poll - Rx interrupt handler for NAPI support + * @napi : pointer to the napi structure. + * @budget : The number of packets that were budgeted to be processed + * during one pass through the 'Poll" function. + * Description: + * Comes into picture only if NAPI support has been incorporated. It does + * the same thing that rx_intr_handler does, but not in a interrupt context + * also It will process only a given number of packets. + * Return value: + * 0 on success and 1 if there are No Rx packets to be processed. + */ + +static int s2io_poll_msix(struct napi_struct *napi, int budget) +{ + struct ring_info *ring = container_of(napi, struct ring_info, napi); + struct net_device *dev = ring->dev; + int pkts_processed = 0; + u8 __iomem *addr = NULL; + u8 val8 = 0; + struct s2io_nic *nic = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = nic->bar0; + int budget_org = budget; + + if (unlikely(!is_s2io_card_up(nic))) + return 0; + + pkts_processed = rx_intr_handler(ring, budget); + s2io_chk_rx_buffers(nic, ring); + + if (pkts_processed < budget_org) { + napi_complete(napi); + /*Re Enable MSI-Rx Vector*/ + addr = (u8 __iomem *)&bar0->xmsi_mask_reg; + addr += 7 - ring->ring_no; + val8 = (ring->ring_no == 0) ? 0x3f : 0xbf; + writeb(val8, addr); + val8 = readb(addr); + } + return pkts_processed; +} + +static int s2io_poll_inta(struct napi_struct *napi, int budget) +{ + struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi); + int pkts_processed = 0; + int ring_pkts_processed, i; + struct XENA_dev_config __iomem *bar0 = nic->bar0; + int budget_org = budget; + struct config_param *config = &nic->config; + struct mac_info *mac_control = &nic->mac_control; + + if (unlikely(!is_s2io_card_up(nic))) + return 0; + + for (i = 0; i < config->rx_ring_num; i++) { + struct ring_info *ring = &mac_control->rings[i]; + ring_pkts_processed = rx_intr_handler(ring, budget); + s2io_chk_rx_buffers(nic, ring); + pkts_processed += ring_pkts_processed; + budget -= ring_pkts_processed; + if (budget <= 0) + break; + } + if (pkts_processed < budget_org) { + napi_complete(napi); + /* Re enable the Rx interrupts for the ring */ + writeq(0, &bar0->rx_traffic_mask); + readl(&bar0->rx_traffic_mask); + } + return pkts_processed; +} + +#ifdef CONFIG_NET_POLL_CONTROLLER +/** + * s2io_netpoll - netpoll event handler entry point + * @dev : pointer to the device structure. + * Description: + * This function will be called by upper layer to check for events on the + * interface in situations where interrupts are disabled. It is used for + * specific in-kernel networking tasks, such as remote consoles and kernel + * debugging over the network (example netdump in RedHat). + */ +static void s2io_netpoll(struct net_device *dev) +{ + struct s2io_nic *nic = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = nic->bar0; + u64 val64 = 0xFFFFFFFFFFFFFFFFULL; + int i; + struct config_param *config = &nic->config; + struct mac_info *mac_control = &nic->mac_control; + + if (pci_channel_offline(nic->pdev)) + return; + + disable_irq(dev->irq); + + writeq(val64, &bar0->rx_traffic_int); + writeq(val64, &bar0->tx_traffic_int); + + /* we need to free up the transmitted skbufs or else netpoll will + * run out of skbs and will fail and eventually netpoll application such + * as netdump will fail. + */ + for (i = 0; i < config->tx_fifo_num; i++) + tx_intr_handler(&mac_control->fifos[i]); + + /* check for received packet and indicate up to network */ + for (i = 0; i < config->rx_ring_num; i++) { + struct ring_info *ring = &mac_control->rings[i]; + + rx_intr_handler(ring, 0); + } + + for (i = 0; i < config->rx_ring_num; i++) { + struct ring_info *ring = &mac_control->rings[i]; + + if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) { + DBG_PRINT(INFO_DBG, + "%s: Out of memory in Rx Netpoll!!\n", + dev->name); + break; + } + } + enable_irq(dev->irq); +} +#endif + +/** + * rx_intr_handler - Rx interrupt handler + * @ring_info: per ring structure. + * @budget: budget for napi processing. + * Description: + * If the interrupt is because of a received frame or if the + * receive ring contains fresh as yet un-processed frames,this function is + * called. It picks out the RxD at which place the last Rx processing had + * stopped and sends the skb to the OSM's Rx handler and then increments + * the offset. + * Return Value: + * No. of napi packets processed. + */ +static int rx_intr_handler(struct ring_info *ring_data, int budget) +{ + int get_block, put_block; + struct rx_curr_get_info get_info, put_info; + struct RxD_t *rxdp; + struct sk_buff *skb; + int pkt_cnt = 0, napi_pkts = 0; + int i; + struct RxD1 *rxdp1; + struct RxD3 *rxdp3; + + get_info = ring_data->rx_curr_get_info; + get_block = get_info.block_index; + memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info)); + put_block = put_info.block_index; + rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr; + + while (RXD_IS_UP2DT(rxdp)) { + /* + * If your are next to put index then it's + * FIFO full condition + */ + if ((get_block == put_block) && + (get_info.offset + 1) == put_info.offset) { + DBG_PRINT(INTR_DBG, "%s: Ring Full\n", + ring_data->dev->name); + break; + } + skb = (struct sk_buff *)((unsigned long)rxdp->Host_Control); + if (skb == NULL) { + DBG_PRINT(ERR_DBG, "%s: NULL skb in Rx Intr\n", + ring_data->dev->name); + return 0; + } + if (ring_data->rxd_mode == RXD_MODE_1) { + rxdp1 = (struct RxD1 *)rxdp; + pci_unmap_single(ring_data->pdev, (dma_addr_t) + rxdp1->Buffer0_ptr, + ring_data->mtu + + HEADER_ETHERNET_II_802_3_SIZE + + HEADER_802_2_SIZE + + HEADER_SNAP_SIZE, + PCI_DMA_FROMDEVICE); + } else if (ring_data->rxd_mode == RXD_MODE_3B) { + rxdp3 = (struct RxD3 *)rxdp; + pci_dma_sync_single_for_cpu(ring_data->pdev, + (dma_addr_t)rxdp3->Buffer0_ptr, + BUF0_LEN, + PCI_DMA_FROMDEVICE); + pci_unmap_single(ring_data->pdev, + (dma_addr_t)rxdp3->Buffer2_ptr, + ring_data->mtu + 4, + PCI_DMA_FROMDEVICE); + } + prefetch(skb->data); + rx_osm_handler(ring_data, rxdp); + get_info.offset++; + ring_data->rx_curr_get_info.offset = get_info.offset; + rxdp = ring_data->rx_blocks[get_block]. + rxds[get_info.offset].virt_addr; + if (get_info.offset == rxd_count[ring_data->rxd_mode]) { + get_info.offset = 0; + ring_data->rx_curr_get_info.offset = get_info.offset; + get_block++; + if (get_block == ring_data->block_count) + get_block = 0; + ring_data->rx_curr_get_info.block_index = get_block; + rxdp = ring_data->rx_blocks[get_block].block_virt_addr; + } + + if (ring_data->nic->config.napi) { + budget--; + napi_pkts++; + if (!budget) + break; + } + pkt_cnt++; + if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) + break; + } + if (ring_data->lro) { + /* Clear all LRO sessions before exiting */ + for (i = 0; i < MAX_LRO_SESSIONS; i++) { + struct lro *lro = &ring_data->lro0_n[i]; + if (lro->in_use) { + update_L3L4_header(ring_data->nic, lro); + queue_rx_frame(lro->parent, lro->vlan_tag); + clear_lro_session(lro); + } + } + } + return napi_pkts; +} + +/** + * tx_intr_handler - Transmit interrupt handler + * @nic : device private variable + * Description: + * If an interrupt was raised to indicate DMA complete of the + * Tx packet, this function is called. It identifies the last TxD + * whose buffer was freed and frees all skbs whose data have already + * DMA'ed into the NICs internal memory. + * Return Value: + * NONE + */ + +static void tx_intr_handler(struct fifo_info *fifo_data) +{ + struct s2io_nic *nic = fifo_data->nic; + struct tx_curr_get_info get_info, put_info; + struct sk_buff *skb = NULL; + struct TxD *txdlp; + int pkt_cnt = 0; + unsigned long flags = 0; + u8 err_mask; + struct stat_block *stats = nic->mac_control.stats_info; + struct swStat *swstats = &stats->sw_stat; + + if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags)) + return; + + get_info = fifo_data->tx_curr_get_info; + memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info)); + txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; + while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && + (get_info.offset != put_info.offset) && + (txdlp->Host_Control)) { + /* Check for TxD errors */ + if (txdlp->Control_1 & TXD_T_CODE) { + unsigned long long err; + err = txdlp->Control_1 & TXD_T_CODE; + if (err & 0x1) { + swstats->parity_err_cnt++; + } + + /* update t_code statistics */ + err_mask = err >> 48; + switch (err_mask) { + case 2: + swstats->tx_buf_abort_cnt++; + break; + + case 3: + swstats->tx_desc_abort_cnt++; + break; + + case 7: + swstats->tx_parity_err_cnt++; + break; + + case 10: + swstats->tx_link_loss_cnt++; + break; + + case 15: + swstats->tx_list_proc_err_cnt++; + break; + } + } + + skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset); + if (skb == NULL) { + spin_unlock_irqrestore(&fifo_data->tx_lock, flags); + DBG_PRINT(ERR_DBG, "%s: NULL skb in Tx Free Intr\n", + __func__); + return; + } + pkt_cnt++; + + /* Updating the statistics block */ + swstats->mem_freed += skb->truesize; + dev_kfree_skb_irq(skb); + + get_info.offset++; + if (get_info.offset == get_info.fifo_len + 1) + get_info.offset = 0; + txdlp = fifo_data->list_info[get_info.offset].list_virt_addr; + fifo_data->tx_curr_get_info.offset = get_info.offset; + } + + s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq); + + spin_unlock_irqrestore(&fifo_data->tx_lock, flags); +} + +/** + * s2io_mdio_write - Function to write in to MDIO registers + * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) + * @addr : address value + * @value : data value + * @dev : pointer to net_device structure + * Description: + * This function is used to write values to the MDIO registers + * NONE + */ +static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, + struct net_device *dev) +{ + u64 val64; + struct s2io_nic *sp = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = sp->bar0; + + /* address transaction */ + val64 = MDIO_MMD_INDX_ADDR(addr) | + MDIO_MMD_DEV_ADDR(mmd_type) | + MDIO_MMS_PRT_ADDR(0x0); + writeq(val64, &bar0->mdio_control); + val64 = val64 | MDIO_CTRL_START_TRANS(0xE); + writeq(val64, &bar0->mdio_control); + udelay(100); + + /* Data transaction */ + val64 = MDIO_MMD_INDX_ADDR(addr) | + MDIO_MMD_DEV_ADDR(mmd_type) | + MDIO_MMS_PRT_ADDR(0x0) | + MDIO_MDIO_DATA(value) | + MDIO_OP(MDIO_OP_WRITE_TRANS); + writeq(val64, &bar0->mdio_control); + val64 = val64 | MDIO_CTRL_START_TRANS(0xE); + writeq(val64, &bar0->mdio_control); + udelay(100); + + val64 = MDIO_MMD_INDX_ADDR(addr) | + MDIO_MMD_DEV_ADDR(mmd_type) | + MDIO_MMS_PRT_ADDR(0x0) | + MDIO_OP(MDIO_OP_READ_TRANS); + writeq(val64, &bar0->mdio_control); + val64 = val64 | MDIO_CTRL_START_TRANS(0xE); + writeq(val64, &bar0->mdio_control); + udelay(100); +} + +/** + * s2io_mdio_read - Function to write in to MDIO registers + * @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS) + * @addr : address value + * @dev : pointer to net_device structure + * Description: + * This function is used to read values to the MDIO registers + * NONE + */ +static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev) +{ + u64 val64 = 0x0; + u64 rval64 = 0x0; + struct s2io_nic *sp = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = sp->bar0; + + /* address transaction */ + val64 = val64 | (MDIO_MMD_INDX_ADDR(addr) + | MDIO_MMD_DEV_ADDR(mmd_type) + | MDIO_MMS_PRT_ADDR(0x0)); + writeq(val64, &bar0->mdio_control); + val64 = val64 | MDIO_CTRL_START_TRANS(0xE); + writeq(val64, &bar0->mdio_control); + udelay(100); + + /* Data transaction */ + val64 = MDIO_MMD_INDX_ADDR(addr) | + MDIO_MMD_DEV_ADDR(mmd_type) | + MDIO_MMS_PRT_ADDR(0x0) | + MDIO_OP(MDIO_OP_READ_TRANS); + writeq(val64, &bar0->mdio_control); + val64 = val64 | MDIO_CTRL_START_TRANS(0xE); + writeq(val64, &bar0->mdio_control); + udelay(100); + + /* Read the value from regs */ + rval64 = readq(&bar0->mdio_control); + rval64 = rval64 & 0xFFFF0000; + rval64 = rval64 >> 16; + return rval64; +} + +/** + * s2io_chk_xpak_counter - Function to check the status of the xpak counters + * @counter : counter value to be updated + * @flag : flag to indicate the status + * @type : counter type + * Description: + * This function is to check the status of the xpak counters value + * NONE + */ + +static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, + u16 flag, u16 type) +{ + u64 mask = 0x3; + u64 val64; + int i; + for (i = 0; i < index; i++) + mask = mask << 0x2; + + if (flag > 0) { + *counter = *counter + 1; + val64 = *regs_stat & mask; + val64 = val64 >> (index * 0x2); + val64 = val64 + 1; + if (val64 == 3) { + switch (type) { + case 1: + DBG_PRINT(ERR_DBG, + "Take Xframe NIC out of service.\n"); + DBG_PRINT(ERR_DBG, +"Excessive temperatures may result in premature transceiver failure.\n"); + break; + case 2: + DBG_PRINT(ERR_DBG, + "Take Xframe NIC out of service.\n"); + DBG_PRINT(ERR_DBG, +"Excessive bias currents may indicate imminent laser diode failure.\n"); + break; + case 3: + DBG_PRINT(ERR_DBG, + "Take Xframe NIC out of service.\n"); + DBG_PRINT(ERR_DBG, +"Excessive laser output power may saturate far-end receiver.\n"); + break; + default: + DBG_PRINT(ERR_DBG, + "Incorrect XPAK Alarm type\n"); + } + val64 = 0x0; + } + val64 = val64 << (index * 0x2); + *regs_stat = (*regs_stat & (~mask)) | (val64); + + } else { + *regs_stat = *regs_stat & (~mask); + } +} + +/** + * s2io_updt_xpak_counter - Function to update the xpak counters + * @dev : pointer to net_device struct + * Description: + * This function is to upate the status of the xpak counters value + * NONE + */ +static void s2io_updt_xpak_counter(struct net_device *dev) +{ + u16 flag = 0x0; + u16 type = 0x0; + u16 val16 = 0x0; + u64 val64 = 0x0; + u64 addr = 0x0; + + struct s2io_nic *sp = netdev_priv(dev); + struct stat_block *stats = sp->mac_control.stats_info; + struct xpakStat *xstats = &stats->xpak_stat; + + /* Check the communication with the MDIO slave */ + addr = MDIO_CTRL1; + val64 = 0x0; + val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); + if ((val64 == 0xFFFF) || (val64 == 0x0000)) { + DBG_PRINT(ERR_DBG, + "ERR: MDIO slave access failed - Returned %llx\n", + (unsigned long long)val64); + return; + } + + /* Check for the expected value of control reg 1 */ + if (val64 != MDIO_CTRL1_SPEED10G) { + DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - " + "Returned: %llx- Expected: 0x%x\n", + (unsigned long long)val64, MDIO_CTRL1_SPEED10G); + return; + } + + /* Loading the DOM register to MDIO register */ + addr = 0xA100; + s2io_mdio_write(MDIO_MMD_PMAPMD, addr, val16, dev); + val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); + + /* Reading the Alarm flags */ + addr = 0xA070; + val64 = 0x0; + val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); + + flag = CHECKBIT(val64, 0x7); + type = 1; + s2io_chk_xpak_counter(&xstats->alarm_transceiver_temp_high, + &xstats->xpak_regs_stat, + 0x0, flag, type); + + if (CHECKBIT(val64, 0x6)) + xstats->alarm_transceiver_temp_low++; + + flag = CHECKBIT(val64, 0x3); + type = 2; + s2io_chk_xpak_counter(&xstats->alarm_laser_bias_current_high, + &xstats->xpak_regs_stat, + 0x2, flag, type); + + if (CHECKBIT(val64, 0x2)) + xstats->alarm_laser_bias_current_low++; + + flag = CHECKBIT(val64, 0x1); + type = 3; + s2io_chk_xpak_counter(&xstats->alarm_laser_output_power_high, + &xstats->xpak_regs_stat, + 0x4, flag, type); + + if (CHECKBIT(val64, 0x0)) + xstats->alarm_laser_output_power_low++; + + /* Reading the Warning flags */ + addr = 0xA074; + val64 = 0x0; + val64 = s2io_mdio_read(MDIO_MMD_PMAPMD, addr, dev); + + if (CHECKBIT(val64, 0x7)) + xstats->warn_transceiver_temp_high++; + + if (CHECKBIT(val64, 0x6)) + xstats->warn_transceiver_temp_low++; + + if (CHECKBIT(val64, 0x3)) + xstats->warn_laser_bias_current_high++; + + if (CHECKBIT(val64, 0x2)) + xstats->warn_laser_bias_current_low++; + + if (CHECKBIT(val64, 0x1)) + xstats->warn_laser_output_power_high++; + + if (CHECKBIT(val64, 0x0)) + xstats->warn_laser_output_power_low++; +} + +/** + * wait_for_cmd_complete - waits for a command to complete. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * Description: Function that waits for a command to Write into RMAC + * ADDR DATA registers to be completed and returns either success or + * error depending on whether the command was complete or not. + * Return value: + * SUCCESS on success and FAILURE on failure. + */ + +static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit, + int bit_state) +{ + int ret = FAILURE, cnt = 0, delay = 1; + u64 val64; + + if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET)) + return FAILURE; + + do { + val64 = readq(addr); + if (bit_state == S2IO_BIT_RESET) { + if (!(val64 & busy_bit)) { + ret = SUCCESS; + break; + } + } else { + if (val64 & busy_bit) { + ret = SUCCESS; + break; + } + } + + if (in_interrupt()) + mdelay(delay); + else + msleep(delay); + + if (++cnt >= 10) + delay = 50; + } while (cnt < 20); + return ret; +} +/* + * check_pci_device_id - Checks if the device id is supported + * @id : device id + * Description: Function to check if the pci device id is supported by driver. + * Return value: Actual device id if supported else PCI_ANY_ID + */ +static u16 check_pci_device_id(u16 id) +{ + switch (id) { + case PCI_DEVICE_ID_HERC_WIN: + case PCI_DEVICE_ID_HERC_UNI: + return XFRAME_II_DEVICE; + case PCI_DEVICE_ID_S2IO_UNI: + case PCI_DEVICE_ID_S2IO_WIN: + return XFRAME_I_DEVICE; + default: + return PCI_ANY_ID; + } +} + +/** + * s2io_reset - Resets the card. + * @sp : private member of the device structure. + * Description: Function to Reset the card. This function then also + * restores the previously saved PCI configuration space registers as + * the card reset also resets the configuration space. + * Return value: + * void. + */ + +static void s2io_reset(struct s2io_nic *sp) +{ + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64; + u16 subid, pci_cmd; + int i; + u16 val16; + unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt; + unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt; + struct stat_block *stats; + struct swStat *swstats; + + DBG_PRINT(INIT_DBG, "%s: Resetting XFrame card %s\n", + __func__, pci_name(sp->pdev)); + + /* Back up the PCI-X CMD reg, dont want to lose MMRBC, OST settings */ + pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd)); + + val64 = SW_RESET_ALL; + writeq(val64, &bar0->sw_reset); + if (strstr(sp->product_name, "CX4")) + msleep(750); + msleep(250); + for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) { + + /* Restore the PCI state saved during initialization. */ + pci_restore_state(sp->pdev); + pci_save_state(sp->pdev); + pci_read_config_word(sp->pdev, 0x2, &val16); + if (check_pci_device_id(val16) != (u16)PCI_ANY_ID) + break; + msleep(200); + } + + if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) + DBG_PRINT(ERR_DBG, "%s SW_Reset failed!\n", __func__); + + pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd); + + s2io_init_pci(sp); + + /* Set swapper to enable I/O register access */ + s2io_set_swapper(sp); + + /* restore mac_addr entries */ + do_s2io_restore_unicast_mc(sp); + + /* Restore the MSIX table entries from local variables */ + restore_xmsi_data(sp); + + /* Clear certain PCI/PCI-X fields after reset */ + if (sp->device_type == XFRAME_II_DEVICE) { + /* Clear "detected parity error" bit */ + pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000); + + /* Clearing PCIX Ecc status register */ + pci_write_config_dword(sp->pdev, 0x68, 0x7C); + + /* Clearing PCI_STATUS error reflected here */ + writeq(s2BIT(62), &bar0->txpic_int_reg); + } + + /* Reset device statistics maintained by OS */ + memset(&sp->stats, 0, sizeof(struct net_device_stats)); + + stats = sp->mac_control.stats_info; + swstats = &stats->sw_stat; + + /* save link up/down time/cnt, reset/memory/watchdog cnt */ + up_cnt = swstats->link_up_cnt; + down_cnt = swstats->link_down_cnt; + up_time = swstats->link_up_time; + down_time = swstats->link_down_time; + reset_cnt = swstats->soft_reset_cnt; + mem_alloc_cnt = swstats->mem_allocated; + mem_free_cnt = swstats->mem_freed; + watchdog_cnt = swstats->watchdog_timer_cnt; + + memset(stats, 0, sizeof(struct stat_block)); + + /* restore link up/down time/cnt, reset/memory/watchdog cnt */ + swstats->link_up_cnt = up_cnt; + swstats->link_down_cnt = down_cnt; + swstats->link_up_time = up_time; + swstats->link_down_time = down_time; + swstats->soft_reset_cnt = reset_cnt; + swstats->mem_allocated = mem_alloc_cnt; + swstats->mem_freed = mem_free_cnt; + swstats->watchdog_timer_cnt = watchdog_cnt; + + /* SXE-002: Configure link and activity LED to turn it off */ + subid = sp->pdev->subsystem_device; + if (((subid & 0xFF) >= 0x07) && + (sp->device_type == XFRAME_I_DEVICE)) { + val64 = readq(&bar0->gpio_control); + val64 |= 0x0000800000000000ULL; + writeq(val64, &bar0->gpio_control); + val64 = 0x0411040400000000ULL; + writeq(val64, (void __iomem *)bar0 + 0x2700); + } + + /* + * Clear spurious ECC interrupts that would have occurred on + * XFRAME II cards after reset. + */ + if (sp->device_type == XFRAME_II_DEVICE) { + val64 = readq(&bar0->pcc_err_reg); + writeq(val64, &bar0->pcc_err_reg); + } + + sp->device_enabled_once = false; +} + +/** + * s2io_set_swapper - to set the swapper controle on the card + * @sp : private member of the device structure, + * pointer to the s2io_nic structure. + * Description: Function to set the swapper control on the card + * correctly depending on the 'endianness' of the system. + * Return value: + * SUCCESS on success and FAILURE on failure. + */ + +static int s2io_set_swapper(struct s2io_nic *sp) +{ + struct net_device *dev = sp->dev; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64, valt, valr; + + /* + * Set proper endian settings and verify the same by reading + * the PIF Feed-back register. + */ + + val64 = readq(&bar0->pif_rd_swapper_fb); + if (val64 != 0x0123456789ABCDEFULL) { + int i = 0; + static const u64 value[] = { + 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ + 0x8100008181000081ULL, /* FE=1, SE=0 */ + 0x4200004242000042ULL, /* FE=0, SE=1 */ + 0 /* FE=0, SE=0 */ + }; + + while (i < 4) { + writeq(value[i], &bar0->swapper_ctrl); + val64 = readq(&bar0->pif_rd_swapper_fb); + if (val64 == 0x0123456789ABCDEFULL) + break; + i++; + } + if (i == 4) { + DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, " + "feedback read %llx\n", + dev->name, (unsigned long long)val64); + return FAILURE; + } + valr = value[i]; + } else { + valr = readq(&bar0->swapper_ctrl); + } + + valt = 0x0123456789ABCDEFULL; + writeq(valt, &bar0->xmsi_address); + val64 = readq(&bar0->xmsi_address); + + if (val64 != valt) { + int i = 0; + static const u64 value[] = { + 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ + 0x0081810000818100ULL, /* FE=1, SE=0 */ + 0x0042420000424200ULL, /* FE=0, SE=1 */ + 0 /* FE=0, SE=0 */ + }; + + while (i < 4) { + writeq((value[i] | valr), &bar0->swapper_ctrl); + writeq(valt, &bar0->xmsi_address); + val64 = readq(&bar0->xmsi_address); + if (val64 == valt) + break; + i++; + } + if (i == 4) { + unsigned long long x = val64; + DBG_PRINT(ERR_DBG, + "Write failed, Xmsi_addr reads:0x%llx\n", x); + return FAILURE; + } + } + val64 = readq(&bar0->swapper_ctrl); + val64 &= 0xFFFF000000000000ULL; + +#ifdef __BIG_ENDIAN + /* + * The device by default set to a big endian format, so a + * big endian driver need not set anything. + */ + val64 |= (SWAPPER_CTRL_TXP_FE | + SWAPPER_CTRL_TXP_SE | + SWAPPER_CTRL_TXD_R_FE | + SWAPPER_CTRL_TXD_W_FE | + SWAPPER_CTRL_TXF_R_FE | + SWAPPER_CTRL_RXD_R_FE | + SWAPPER_CTRL_RXD_W_FE | + SWAPPER_CTRL_RXF_W_FE | + SWAPPER_CTRL_XMSI_FE | + SWAPPER_CTRL_STATS_FE | + SWAPPER_CTRL_STATS_SE); + if (sp->config.intr_type == INTA) + val64 |= SWAPPER_CTRL_XMSI_SE; + writeq(val64, &bar0->swapper_ctrl); +#else + /* + * Initially we enable all bits to make it accessible by the + * driver, then we selectively enable only those bits that + * we want to set. + */ + val64 |= (SWAPPER_CTRL_TXP_FE | + SWAPPER_CTRL_TXP_SE | + SWAPPER_CTRL_TXD_R_FE | + SWAPPER_CTRL_TXD_R_SE | + SWAPPER_CTRL_TXD_W_FE | + SWAPPER_CTRL_TXD_W_SE | + SWAPPER_CTRL_TXF_R_FE | + SWAPPER_CTRL_RXD_R_FE | + SWAPPER_CTRL_RXD_R_SE | + SWAPPER_CTRL_RXD_W_FE | + SWAPPER_CTRL_RXD_W_SE | + SWAPPER_CTRL_RXF_W_FE | + SWAPPER_CTRL_XMSI_FE | + SWAPPER_CTRL_STATS_FE | + SWAPPER_CTRL_STATS_SE); + if (sp->config.intr_type == INTA) + val64 |= SWAPPER_CTRL_XMSI_SE; + writeq(val64, &bar0->swapper_ctrl); +#endif + val64 = readq(&bar0->swapper_ctrl); + + /* + * Verifying if endian settings are accurate by reading a + * feedback register. + */ + val64 = readq(&bar0->pif_rd_swapper_fb); + if (val64 != 0x0123456789ABCDEFULL) { + /* Endian settings are incorrect, calls for another dekko. */ + DBG_PRINT(ERR_DBG, + "%s: Endian settings are wrong, feedback read %llx\n", + dev->name, (unsigned long long)val64); + return FAILURE; + } + + return SUCCESS; +} + +static int wait_for_msix_trans(struct s2io_nic *nic, int i) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + u64 val64; + int ret = 0, cnt = 0; + + do { + val64 = readq(&bar0->xmsi_access); + if (!(val64 & s2BIT(15))) + break; + mdelay(1); + cnt++; + } while (cnt < 5); + if (cnt == 5) { + DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i); + ret = 1; + } + + return ret; +} + +static void restore_xmsi_data(struct s2io_nic *nic) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + u64 val64; + int i, msix_index; + + if (nic->device_type == XFRAME_I_DEVICE) + return; + + for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { + msix_index = (i) ? ((i-1) * 8 + 1) : 0; + writeq(nic->msix_info[i].addr, &bar0->xmsi_address); + writeq(nic->msix_info[i].data, &bar0->xmsi_data); + val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6)); + writeq(val64, &bar0->xmsi_access); + if (wait_for_msix_trans(nic, msix_index)) { + DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", + __func__, msix_index); + continue; + } + } +} + +static void store_xmsi_data(struct s2io_nic *nic) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + u64 val64, addr, data; + int i, msix_index; + + if (nic->device_type == XFRAME_I_DEVICE) + return; + + /* Store and display */ + for (i = 0; i < MAX_REQUESTED_MSI_X; i++) { + msix_index = (i) ? ((i-1) * 8 + 1) : 0; + val64 = (s2BIT(15) | vBIT(msix_index, 26, 6)); + writeq(val64, &bar0->xmsi_access); + if (wait_for_msix_trans(nic, msix_index)) { + DBG_PRINT(ERR_DBG, "%s: index: %d failed\n", + __func__, msix_index); + continue; + } + addr = readq(&bar0->xmsi_address); + data = readq(&bar0->xmsi_data); + if (addr && data) { + nic->msix_info[i].addr = addr; + nic->msix_info[i].data = data; + } + } +} + +static int s2io_enable_msi_x(struct s2io_nic *nic) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + u64 rx_mat; + u16 msi_control; /* Temp variable */ + int ret, i, j, msix_indx = 1; + int size; + struct stat_block *stats = nic->mac_control.stats_info; + struct swStat *swstats = &stats->sw_stat; + + size = nic->num_entries * sizeof(struct msix_entry); + nic->entries = kzalloc(size, GFP_KERNEL); + if (!nic->entries) { + DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", + __func__); + swstats->mem_alloc_fail_cnt++; + return -ENOMEM; + } + swstats->mem_allocated += size; + + size = nic->num_entries * sizeof(struct s2io_msix_entry); + nic->s2io_entries = kzalloc(size, GFP_KERNEL); + if (!nic->s2io_entries) { + DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", + __func__); + swstats->mem_alloc_fail_cnt++; + kfree(nic->entries); + swstats->mem_freed + += (nic->num_entries * sizeof(struct msix_entry)); + return -ENOMEM; + } + swstats->mem_allocated += size; + + nic->entries[0].entry = 0; + nic->s2io_entries[0].entry = 0; + nic->s2io_entries[0].in_use = MSIX_FLG; + nic->s2io_entries[0].type = MSIX_ALARM_TYPE; + nic->s2io_entries[0].arg = &nic->mac_control.fifos; + + for (i = 1; i < nic->num_entries; i++) { + nic->entries[i].entry = ((i - 1) * 8) + 1; + nic->s2io_entries[i].entry = ((i - 1) * 8) + 1; + nic->s2io_entries[i].arg = NULL; + nic->s2io_entries[i].in_use = 0; + } + + rx_mat = readq(&bar0->rx_mat); + for (j = 0; j < nic->config.rx_ring_num; j++) { + rx_mat |= RX_MAT_SET(j, msix_indx); + nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j]; + nic->s2io_entries[j+1].type = MSIX_RING_TYPE; + nic->s2io_entries[j+1].in_use = MSIX_FLG; + msix_indx += 8; + } + writeq(rx_mat, &bar0->rx_mat); + readq(&bar0->rx_mat); + + ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries); + /* We fail init if error or we get less vectors than min required */ + if (ret) { + DBG_PRINT(ERR_DBG, "Enabling MSI-X failed\n"); + kfree(nic->entries); + swstats->mem_freed += nic->num_entries * + sizeof(struct msix_entry); + kfree(nic->s2io_entries); + swstats->mem_freed += nic->num_entries * + sizeof(struct s2io_msix_entry); + nic->entries = NULL; + nic->s2io_entries = NULL; + return -ENOMEM; + } + + /* + * To enable MSI-X, MSI also needs to be enabled, due to a bug + * in the herc NIC. (Temp change, needs to be removed later) + */ + pci_read_config_word(nic->pdev, 0x42, &msi_control); + msi_control |= 0x1; /* Enable MSI */ + pci_write_config_word(nic->pdev, 0x42, msi_control); + + return 0; +} + +/* Handle software interrupt used during MSI(X) test */ +static irqreturn_t s2io_test_intr(int irq, void *dev_id) +{ + struct s2io_nic *sp = dev_id; + + sp->msi_detected = 1; + wake_up(&sp->msi_wait); + + return IRQ_HANDLED; +} + +/* Test interrupt path by forcing a a software IRQ */ +static int s2io_test_msi(struct s2io_nic *sp) +{ + struct pci_dev *pdev = sp->pdev; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + int err; + u64 val64, saved64; + + err = request_irq(sp->entries[1].vector, s2io_test_intr, 0, + sp->name, sp); + if (err) { + DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n", + sp->dev->name, pci_name(pdev), pdev->irq); + return err; + } + + init_waitqueue_head(&sp->msi_wait); + sp->msi_detected = 0; + + saved64 = val64 = readq(&bar0->scheduled_int_ctrl); + val64 |= SCHED_INT_CTRL_ONE_SHOT; + val64 |= SCHED_INT_CTRL_TIMER_EN; + val64 |= SCHED_INT_CTRL_INT2MSI(1); + writeq(val64, &bar0->scheduled_int_ctrl); + + wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10); + + if (!sp->msi_detected) { + /* MSI(X) test failed, go back to INTx mode */ + DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated " + "using MSI(X) during test\n", + sp->dev->name, pci_name(pdev)); + + err = -EOPNOTSUPP; + } + + free_irq(sp->entries[1].vector, sp); + + writeq(saved64, &bar0->scheduled_int_ctrl); + + return err; +} + +static void remove_msix_isr(struct s2io_nic *sp) +{ + int i; + u16 msi_control; + + for (i = 0; i < sp->num_entries; i++) { + if (sp->s2io_entries[i].in_use == MSIX_REGISTERED_SUCCESS) { + int vector = sp->entries[i].vector; + void *arg = sp->s2io_entries[i].arg; + free_irq(vector, arg); + } + } + + kfree(sp->entries); + kfree(sp->s2io_entries); + sp->entries = NULL; + sp->s2io_entries = NULL; + + pci_read_config_word(sp->pdev, 0x42, &msi_control); + msi_control &= 0xFFFE; /* Disable MSI */ + pci_write_config_word(sp->pdev, 0x42, msi_control); + + pci_disable_msix(sp->pdev); +} + +static void remove_inta_isr(struct s2io_nic *sp) +{ + struct net_device *dev = sp->dev; + + free_irq(sp->pdev->irq, dev); +} + +/* ********************************************************* * + * Functions defined below concern the OS part of the driver * + * ********************************************************* */ + +/** + * s2io_open - open entry point of the driver + * @dev : pointer to the device structure. + * Description: + * This function is the open entry point of the driver. It mainly calls a + * function to allocate Rx buffers and inserts them into the buffer + * descriptors and then enables the Rx part of the NIC. + * Return value: + * 0 on success and an appropriate (-)ve integer as defined in errno.h + * file on failure. + */ + +static int s2io_open(struct net_device *dev) +{ + struct s2io_nic *sp = netdev_priv(dev); + struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; + int err = 0; + + /* + * Make sure you have link off by default every time + * Nic is initialized + */ + netif_carrier_off(dev); + sp->last_link_state = 0; + + /* Initialize H/W and enable interrupts */ + err = s2io_card_up(sp); + if (err) { + DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", + dev->name); + goto hw_init_failed; + } + + if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) { + DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); + s2io_card_down(sp); + err = -ENODEV; + goto hw_init_failed; + } + s2io_start_all_tx_queue(sp); + return 0; + +hw_init_failed: + if (sp->config.intr_type == MSI_X) { + if (sp->entries) { + kfree(sp->entries); + swstats->mem_freed += sp->num_entries * + sizeof(struct msix_entry); + } + if (sp->s2io_entries) { + kfree(sp->s2io_entries); + swstats->mem_freed += sp->num_entries * + sizeof(struct s2io_msix_entry); + } + } + return err; +} + +/** + * s2io_close -close entry point of the driver + * @dev : device pointer. + * Description: + * This is the stop entry point of the driver. It needs to undo exactly + * whatever was done by the open entry point,thus it's usually referred to + * as the close function.Among other things this function mainly stops the + * Rx side of the NIC and frees all the Rx buffers in the Rx rings. + * Return value: + * 0 on success and an appropriate (-)ve integer as defined in errno.h + * file on failure. + */ + +static int s2io_close(struct net_device *dev) +{ + struct s2io_nic *sp = netdev_priv(dev); + struct config_param *config = &sp->config; + u64 tmp64; + int offset; + + /* Return if the device is already closed * + * Can happen when s2io_card_up failed in change_mtu * + */ + if (!is_s2io_card_up(sp)) + return 0; + + s2io_stop_all_tx_queue(sp); + /* delete all populated mac entries */ + for (offset = 1; offset < config->max_mc_addr; offset++) { + tmp64 = do_s2io_read_unicast_mc(sp, offset); + if (tmp64 != S2IO_DISABLE_MAC_ENTRY) + do_s2io_delete_unicast_mc(sp, tmp64); + } + + s2io_card_down(sp); + + return 0; +} + +/** + * s2io_xmit - Tx entry point of te driver + * @skb : the socket buffer containing the Tx data. + * @dev : device pointer. + * Description : + * This function is the Tx entry point of the driver. S2IO NIC supports + * certain protocol assist features on Tx side, namely CSO, S/G, LSO. + * NOTE: when device can't queue the pkt,just the trans_start variable will + * not be upadted. + * Return value: + * 0 on success & 1 on failure. + */ + +static netdev_tx_t s2io_xmit(struct sk_buff *skb, struct net_device *dev) +{ + struct s2io_nic *sp = netdev_priv(dev); + u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; + register u64 val64; + struct TxD *txdp; + struct TxFIFO_element __iomem *tx_fifo; + unsigned long flags = 0; + u16 vlan_tag = 0; + struct fifo_info *fifo = NULL; + int do_spin_lock = 1; + int offload_type; + int enable_per_list_interrupt = 0; + struct config_param *config = &sp->config; + struct mac_info *mac_control = &sp->mac_control; + struct stat_block *stats = mac_control->stats_info; + struct swStat *swstats = &stats->sw_stat; + + DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name); + + if (unlikely(skb->len <= 0)) { + DBG_PRINT(TX_DBG, "%s: Buffer has no data..\n", dev->name); + dev_kfree_skb_any(skb); + return NETDEV_TX_OK; + } + + if (!is_s2io_card_up(sp)) { + DBG_PRINT(TX_DBG, "%s: Card going down for reset\n", + dev->name); + dev_kfree_skb(skb); + return NETDEV_TX_OK; + } + + queue = 0; + if (vlan_tx_tag_present(skb)) + vlan_tag = vlan_tx_tag_get(skb); + if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) { + if (skb->protocol == htons(ETH_P_IP)) { + struct iphdr *ip; + struct tcphdr *th; + ip = ip_hdr(skb); + + if (!ip_is_fragment(ip)) { + th = (struct tcphdr *)(((unsigned char *)ip) + + ip->ihl*4); + + if (ip->protocol == IPPROTO_TCP) { + queue_len = sp->total_tcp_fifos; + queue = (ntohs(th->source) + + ntohs(th->dest)) & + sp->fifo_selector[queue_len - 1]; + if (queue >= queue_len) + queue = queue_len - 1; + } else if (ip->protocol == IPPROTO_UDP) { + queue_len = sp->total_udp_fifos; + queue = (ntohs(th->source) + + ntohs(th->dest)) & + sp->fifo_selector[queue_len - 1]; + if (queue >= queue_len) + queue = queue_len - 1; + queue += sp->udp_fifo_idx; + if (skb->len > 1024) + enable_per_list_interrupt = 1; + do_spin_lock = 0; + } + } + } + } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING) + /* get fifo number based on skb->priority value */ + queue = config->fifo_mapping + [skb->priority & (MAX_TX_FIFOS - 1)]; + fifo = &mac_control->fifos[queue]; + + if (do_spin_lock) + spin_lock_irqsave(&fifo->tx_lock, flags); + else { + if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags))) + return NETDEV_TX_LOCKED; + } + + if (sp->config.multiq) { + if (__netif_subqueue_stopped(dev, fifo->fifo_no)) { + spin_unlock_irqrestore(&fifo->tx_lock, flags); + return NETDEV_TX_BUSY; + } + } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) { + if (netif_queue_stopped(dev)) { + spin_unlock_irqrestore(&fifo->tx_lock, flags); + return NETDEV_TX_BUSY; + } + } + + put_off = (u16)fifo->tx_curr_put_info.offset; + get_off = (u16)fifo->tx_curr_get_info.offset; + txdp = fifo->list_info[put_off].list_virt_addr; + + queue_len = fifo->tx_curr_put_info.fifo_len + 1; + /* Avoid "put" pointer going beyond "get" pointer */ + if (txdp->Host_Control || + ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { + DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n"); + s2io_stop_tx_queue(sp, fifo->fifo_no); + dev_kfree_skb(skb); + spin_unlock_irqrestore(&fifo->tx_lock, flags); + return NETDEV_TX_OK; + } + + offload_type = s2io_offload_type(skb); + if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { + txdp->Control_1 |= TXD_TCP_LSO_EN; + txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb)); + } + if (skb->ip_summed == CHECKSUM_PARTIAL) { + txdp->Control_2 |= (TXD_TX_CKO_IPV4_EN | + TXD_TX_CKO_TCP_EN | + TXD_TX_CKO_UDP_EN); + } + txdp->Control_1 |= TXD_GATHER_CODE_FIRST; + txdp->Control_1 |= TXD_LIST_OWN_XENA; + txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no); + if (enable_per_list_interrupt) + if (put_off & (queue_len >> 5)) + txdp->Control_2 |= TXD_INT_TYPE_PER_LIST; + if (vlan_tag) { + txdp->Control_2 |= TXD_VLAN_ENABLE; + txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag); + } + + frg_len = skb_headlen(skb); + if (offload_type == SKB_GSO_UDP) { + int ufo_size; + + ufo_size = s2io_udp_mss(skb); + ufo_size &= ~7; + txdp->Control_1 |= TXD_UFO_EN; + txdp->Control_1 |= TXD_UFO_MSS(ufo_size); + txdp->Control_1 |= TXD_BUFFER0_SIZE(8); +#ifdef __BIG_ENDIAN + /* both variants do cpu_to_be64(be32_to_cpu(...)) */ + fifo->ufo_in_band_v[put_off] = + (__force u64)skb_shinfo(skb)->ip6_frag_id; +#else + fifo->ufo_in_band_v[put_off] = + (__force u64)skb_shinfo(skb)->ip6_frag_id << 32; +#endif + txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v; + txdp->Buffer_Pointer = pci_map_single(sp->pdev, + fifo->ufo_in_band_v, + sizeof(u64), + PCI_DMA_TODEVICE); + if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) + goto pci_map_failed; + txdp++; + } + + txdp->Buffer_Pointer = pci_map_single(sp->pdev, skb->data, + frg_len, PCI_DMA_TODEVICE); + if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer)) + goto pci_map_failed; + + txdp->Host_Control = (unsigned long)skb; + txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len); + if (offload_type == SKB_GSO_UDP) + txdp->Control_1 |= TXD_UFO_EN; + + frg_cnt = skb_shinfo(skb)->nr_frags; + /* For fragmented SKB. */ + for (i = 0; i < frg_cnt; i++) { + skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; + /* A '0' length fragment will be ignored */ + if (!frag->size) + continue; + txdp++; + txdp->Buffer_Pointer = (u64)pci_map_page(sp->pdev, frag->page, + frag->page_offset, + frag->size, + PCI_DMA_TODEVICE); + txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size); + if (offload_type == SKB_GSO_UDP) + txdp->Control_1 |= TXD_UFO_EN; + } + txdp->Control_1 |= TXD_GATHER_CODE_LAST; + + if (offload_type == SKB_GSO_UDP) + frg_cnt++; /* as Txd0 was used for inband header */ + + tx_fifo = mac_control->tx_FIFO_start[queue]; + val64 = fifo->list_info[put_off].list_phy_addr; + writeq(val64, &tx_fifo->TxDL_Pointer); + + val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | + TX_FIFO_LAST_LIST); + if (offload_type) + val64 |= TX_FIFO_SPECIAL_FUNC; + + writeq(val64, &tx_fifo->List_Control); + + mmiowb(); + + put_off++; + if (put_off == fifo->tx_curr_put_info.fifo_len + 1) + put_off = 0; + fifo->tx_curr_put_info.offset = put_off; + + /* Avoid "put" pointer going beyond "get" pointer */ + if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) { + swstats->fifo_full_cnt++; + DBG_PRINT(TX_DBG, + "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", + put_off, get_off); + s2io_stop_tx_queue(sp, fifo->fifo_no); + } + swstats->mem_allocated += skb->truesize; + spin_unlock_irqrestore(&fifo->tx_lock, flags); + + if (sp->config.intr_type == MSI_X) + tx_intr_handler(fifo); + + return NETDEV_TX_OK; + +pci_map_failed: + swstats->pci_map_fail_cnt++; + s2io_stop_tx_queue(sp, fifo->fifo_no); + swstats->mem_freed += skb->truesize; + dev_kfree_skb(skb); + spin_unlock_irqrestore(&fifo->tx_lock, flags); + return NETDEV_TX_OK; +} + +static void +s2io_alarm_handle(unsigned long data) +{ + struct s2io_nic *sp = (struct s2io_nic *)data; + struct net_device *dev = sp->dev; + + s2io_handle_errors(dev); + mod_timer(&sp->alarm_timer, jiffies + HZ / 2); +} + +static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id) +{ + struct ring_info *ring = (struct ring_info *)dev_id; + struct s2io_nic *sp = ring->nic; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + + if (unlikely(!is_s2io_card_up(sp))) + return IRQ_HANDLED; + + if (sp->config.napi) { + u8 __iomem *addr = NULL; + u8 val8 = 0; + + addr = (u8 __iomem *)&bar0->xmsi_mask_reg; + addr += (7 - ring->ring_no); + val8 = (ring->ring_no == 0) ? 0x7f : 0xff; + writeb(val8, addr); + val8 = readb(addr); + napi_schedule(&ring->napi); + } else { + rx_intr_handler(ring, 0); + s2io_chk_rx_buffers(sp, ring); + } + + return IRQ_HANDLED; +} + +static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id) +{ + int i; + struct fifo_info *fifos = (struct fifo_info *)dev_id; + struct s2io_nic *sp = fifos->nic; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + struct config_param *config = &sp->config; + u64 reason; + + if (unlikely(!is_s2io_card_up(sp))) + return IRQ_NONE; + + reason = readq(&bar0->general_int_status); + if (unlikely(reason == S2IO_MINUS_ONE)) + /* Nothing much can be done. Get out */ + return IRQ_HANDLED; + + if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) { + writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); + + if (reason & GEN_INTR_TXPIC) + s2io_txpic_intr_handle(sp); + + if (reason & GEN_INTR_TXTRAFFIC) + writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); + + for (i = 0; i < config->tx_fifo_num; i++) + tx_intr_handler(&fifos[i]); + + writeq(sp->general_int_mask, &bar0->general_int_mask); + readl(&bar0->general_int_status); + return IRQ_HANDLED; + } + /* The interrupt was not raised by us */ + return IRQ_NONE; +} + +static void s2io_txpic_intr_handle(struct s2io_nic *sp) +{ + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64; + + val64 = readq(&bar0->pic_int_status); + if (val64 & PIC_INT_GPIO) { + val64 = readq(&bar0->gpio_int_reg); + if ((val64 & GPIO_INT_REG_LINK_DOWN) && + (val64 & GPIO_INT_REG_LINK_UP)) { + /* + * This is unstable state so clear both up/down + * interrupt and adapter to re-evaluate the link state. + */ + val64 |= GPIO_INT_REG_LINK_DOWN; + val64 |= GPIO_INT_REG_LINK_UP; + writeq(val64, &bar0->gpio_int_reg); + val64 = readq(&bar0->gpio_int_mask); + val64 &= ~(GPIO_INT_MASK_LINK_UP | + GPIO_INT_MASK_LINK_DOWN); + writeq(val64, &bar0->gpio_int_mask); + } else if (val64 & GPIO_INT_REG_LINK_UP) { + val64 = readq(&bar0->adapter_status); + /* Enable Adapter */ + val64 = readq(&bar0->adapter_control); + val64 |= ADAPTER_CNTL_EN; + writeq(val64, &bar0->adapter_control); + val64 |= ADAPTER_LED_ON; + writeq(val64, &bar0->adapter_control); + if (!sp->device_enabled_once) + sp->device_enabled_once = 1; + + s2io_link(sp, LINK_UP); + /* + * unmask link down interrupt and mask link-up + * intr + */ + val64 = readq(&bar0->gpio_int_mask); + val64 &= ~GPIO_INT_MASK_LINK_DOWN; + val64 |= GPIO_INT_MASK_LINK_UP; + writeq(val64, &bar0->gpio_int_mask); + + } else if (val64 & GPIO_INT_REG_LINK_DOWN) { + val64 = readq(&bar0->adapter_status); + s2io_link(sp, LINK_DOWN); + /* Link is down so unmaks link up interrupt */ + val64 = readq(&bar0->gpio_int_mask); + val64 &= ~GPIO_INT_MASK_LINK_UP; + val64 |= GPIO_INT_MASK_LINK_DOWN; + writeq(val64, &bar0->gpio_int_mask); + + /* turn off LED */ + val64 = readq(&bar0->adapter_control); + val64 = val64 & (~ADAPTER_LED_ON); + writeq(val64, &bar0->adapter_control); + } + } + val64 = readq(&bar0->gpio_int_mask); +} + +/** + * do_s2io_chk_alarm_bit - Check for alarm and incrment the counter + * @value: alarm bits + * @addr: address value + * @cnt: counter variable + * Description: Check for alarm and increment the counter + * Return Value: + * 1 - if alarm bit set + * 0 - if alarm bit is not set + */ +static int do_s2io_chk_alarm_bit(u64 value, void __iomem *addr, + unsigned long long *cnt) +{ + u64 val64; + val64 = readq(addr); + if (val64 & value) { + writeq(val64, addr); + (*cnt)++; + return 1; + } + return 0; + +} + +/** + * s2io_handle_errors - Xframe error indication handler + * @nic: device private variable + * Description: Handle alarms such as loss of link, single or + * double ECC errors, critical and serious errors. + * Return Value: + * NONE + */ +static void s2io_handle_errors(void *dev_id) +{ + struct net_device *dev = (struct net_device *)dev_id; + struct s2io_nic *sp = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 temp64 = 0, val64 = 0; + int i = 0; + + struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat; + struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat; + + if (!is_s2io_card_up(sp)) + return; + + if (pci_channel_offline(sp->pdev)) + return; + + memset(&sw_stat->ring_full_cnt, 0, + sizeof(sw_stat->ring_full_cnt)); + + /* Handling the XPAK counters update */ + if (stats->xpak_timer_count < 72000) { + /* waiting for an hour */ + stats->xpak_timer_count++; + } else { + s2io_updt_xpak_counter(dev); + /* reset the count to zero */ + stats->xpak_timer_count = 0; + } + + /* Handling link status change error Intr */ + if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) { + val64 = readq(&bar0->mac_rmac_err_reg); + writeq(val64, &bar0->mac_rmac_err_reg); + if (val64 & RMAC_LINK_STATE_CHANGE_INT) + schedule_work(&sp->set_link_task); + } + + /* In case of a serious error, the device will be Reset. */ + if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source, + &sw_stat->serious_err_cnt)) + goto reset; + + /* Check for data parity error */ + if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg, + &sw_stat->parity_err_cnt)) + goto reset; + + /* Check for ring full counter */ + if (sp->device_type == XFRAME_II_DEVICE) { + val64 = readq(&bar0->ring_bump_counter1); + for (i = 0; i < 4; i++) { + temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); + temp64 >>= 64 - ((i+1)*16); + sw_stat->ring_full_cnt[i] += temp64; + } + + val64 = readq(&bar0->ring_bump_counter2); + for (i = 0; i < 4; i++) { + temp64 = (val64 & vBIT(0xFFFF, (i*16), 16)); + temp64 >>= 64 - ((i+1)*16); + sw_stat->ring_full_cnt[i+4] += temp64; + } + } + + val64 = readq(&bar0->txdma_int_status); + /*check for pfc_err*/ + if (val64 & TXDMA_PFC_INT) { + if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM | + PFC_MISC_0_ERR | PFC_MISC_1_ERR | + PFC_PCIX_ERR, + &bar0->pfc_err_reg, + &sw_stat->pfc_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, + &bar0->pfc_err_reg, + &sw_stat->pfc_err_cnt); + } + + /*check for tda_err*/ + if (val64 & TXDMA_TDA_INT) { + if (do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | + TDA_SM0_ERR_ALARM | + TDA_SM1_ERR_ALARM, + &bar0->tda_err_reg, + &sw_stat->tda_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR, + &bar0->tda_err_reg, + &sw_stat->tda_err_cnt); + } + /*check for pcc_err*/ + if (val64 & TXDMA_PCC_INT) { + if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM | + PCC_N_SERR | PCC_6_COF_OV_ERR | + PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR | + PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR | + PCC_TXB_ECC_DB_ERR, + &bar0->pcc_err_reg, + &sw_stat->pcc_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR, + &bar0->pcc_err_reg, + &sw_stat->pcc_err_cnt); + } + + /*check for tti_err*/ + if (val64 & TXDMA_TTI_INT) { + if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, + &bar0->tti_err_reg, + &sw_stat->tti_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR, + &bar0->tti_err_reg, + &sw_stat->tti_err_cnt); + } + + /*check for lso_err*/ + if (val64 & TXDMA_LSO_INT) { + if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT | + LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM, + &bar0->lso_err_reg, + &sw_stat->lso_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW, + &bar0->lso_err_reg, + &sw_stat->lso_err_cnt); + } + + /*check for tpa_err*/ + if (val64 & TXDMA_TPA_INT) { + if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, + &bar0->tpa_err_reg, + &sw_stat->tpa_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, + &bar0->tpa_err_reg, + &sw_stat->tpa_err_cnt); + } + + /*check for sm_err*/ + if (val64 & TXDMA_SM_INT) { + if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, + &bar0->sm_err_reg, + &sw_stat->sm_err_cnt)) + goto reset; + } + + val64 = readq(&bar0->mac_int_status); + if (val64 & MAC_INT_STATUS_TMAC_INT) { + if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR, + &bar0->mac_tmac_err_reg, + &sw_stat->mac_tmac_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR | + TMAC_DESC_ECC_SG_ERR | + TMAC_DESC_ECC_DB_ERR, + &bar0->mac_tmac_err_reg, + &sw_stat->mac_tmac_err_cnt); + } + + val64 = readq(&bar0->xgxs_int_status); + if (val64 & XGXS_INT_STATUS_TXGXS) { + if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR, + &bar0->xgxs_txgxs_err_reg, + &sw_stat->xgxs_txgxs_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR, + &bar0->xgxs_txgxs_err_reg, + &sw_stat->xgxs_txgxs_err_cnt); + } + + val64 = readq(&bar0->rxdma_int_status); + if (val64 & RXDMA_INT_RC_INT_M) { + if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | + RC_FTC_ECC_DB_ERR | + RC_PRCn_SM_ERR_ALARM | + RC_FTC_SM_ERR_ALARM, + &bar0->rc_err_reg, + &sw_stat->rc_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | + RC_FTC_ECC_SG_ERR | + RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg, + &sw_stat->rc_err_cnt); + if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | + PRC_PCI_AB_WR_Rn | + PRC_PCI_AB_F_WR_Rn, + &bar0->prc_pcix_err_reg, + &sw_stat->prc_pcix_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | + PRC_PCI_DP_WR_Rn | + PRC_PCI_DP_F_WR_Rn, + &bar0->prc_pcix_err_reg, + &sw_stat->prc_pcix_err_cnt); + } + + if (val64 & RXDMA_INT_RPA_INT_M) { + if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR, + &bar0->rpa_err_reg, + &sw_stat->rpa_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, + &bar0->rpa_err_reg, + &sw_stat->rpa_err_cnt); + } + + if (val64 & RXDMA_INT_RDA_INT_M) { + if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR | + RDA_FRM_ECC_DB_N_AERR | + RDA_SM1_ERR_ALARM | + RDA_SM0_ERR_ALARM | + RDA_RXD_ECC_DB_SERR, + &bar0->rda_err_reg, + &sw_stat->rda_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | + RDA_FRM_ECC_SG_ERR | + RDA_MISC_ERR | + RDA_PCIX_ERR, + &bar0->rda_err_reg, + &sw_stat->rda_err_cnt); + } + + if (val64 & RXDMA_INT_RTI_INT_M) { + if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, + &bar0->rti_err_reg, + &sw_stat->rti_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR, + &bar0->rti_err_reg, + &sw_stat->rti_err_cnt); + } + + val64 = readq(&bar0->mac_int_status); + if (val64 & MAC_INT_STATUS_RMAC_INT) { + if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR, + &bar0->mac_rmac_err_reg, + &sw_stat->mac_rmac_err_cnt)) + goto reset; + do_s2io_chk_alarm_bit(RMAC_UNUSED_INT | + RMAC_SINGLE_ECC_ERR | + RMAC_DOUBLE_ECC_ERR, + &bar0->mac_rmac_err_reg, + &sw_stat->mac_rmac_err_cnt); + } + + val64 = readq(&bar0->xgxs_int_status); + if (val64 & XGXS_INT_STATUS_RXGXS) { + if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, + &bar0->xgxs_rxgxs_err_reg, + &sw_stat->xgxs_rxgxs_err_cnt)) + goto reset; + } + + val64 = readq(&bar0->mc_int_status); + if (val64 & MC_INT_STATUS_MC_INT) { + if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, + &bar0->mc_err_reg, + &sw_stat->mc_err_cnt)) + goto reset; + + /* Handling Ecc errors */ + if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) { + writeq(val64, &bar0->mc_err_reg); + if (val64 & MC_ERR_REG_ECC_ALL_DBL) { + sw_stat->double_ecc_errs++; + if (sp->device_type != XFRAME_II_DEVICE) { + /* + * Reset XframeI only if critical error + */ + if (val64 & + (MC_ERR_REG_MIRI_ECC_DB_ERR_0 | + MC_ERR_REG_MIRI_ECC_DB_ERR_1)) + goto reset; + } + } else + sw_stat->single_ecc_errs++; + } + } + return; + +reset: + s2io_stop_all_tx_queue(sp); + schedule_work(&sp->rst_timer_task); + sw_stat->soft_reset_cnt++; +} + +/** + * s2io_isr - ISR handler of the device . + * @irq: the irq of the device. + * @dev_id: a void pointer to the dev structure of the NIC. + * Description: This function is the ISR handler of the device. It + * identifies the reason for the interrupt and calls the relevant + * service routines. As a contongency measure, this ISR allocates the + * recv buffers, if their numbers are below the panic value which is + * presently set to 25% of the original number of rcv buffers allocated. + * Return value: + * IRQ_HANDLED: will be returned if IRQ was handled by this routine + * IRQ_NONE: will be returned if interrupt is not from our device + */ +static irqreturn_t s2io_isr(int irq, void *dev_id) +{ + struct net_device *dev = (struct net_device *)dev_id; + struct s2io_nic *sp = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = sp->bar0; + int i; + u64 reason = 0; + struct mac_info *mac_control; + struct config_param *config; + + /* Pretend we handled any irq's from a disconnected card */ + if (pci_channel_offline(sp->pdev)) + return IRQ_NONE; + + if (!is_s2io_card_up(sp)) + return IRQ_NONE; + + config = &sp->config; + mac_control = &sp->mac_control; + + /* + * Identify the cause for interrupt and call the appropriate + * interrupt handler. Causes for the interrupt could be; + * 1. Rx of packet. + * 2. Tx complete. + * 3. Link down. + */ + reason = readq(&bar0->general_int_status); + + if (unlikely(reason == S2IO_MINUS_ONE)) + return IRQ_HANDLED; /* Nothing much can be done. Get out */ + + if (reason & + (GEN_INTR_RXTRAFFIC | GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC)) { + writeq(S2IO_MINUS_ONE, &bar0->general_int_mask); + + if (config->napi) { + if (reason & GEN_INTR_RXTRAFFIC) { + napi_schedule(&sp->napi); + writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask); + writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); + readl(&bar0->rx_traffic_int); + } + } else { + /* + * rx_traffic_int reg is an R1 register, writing all 1's + * will ensure that the actual interrupt causing bit + * get's cleared and hence a read can be avoided. + */ + if (reason & GEN_INTR_RXTRAFFIC) + writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int); + + for (i = 0; i < config->rx_ring_num; i++) { + struct ring_info *ring = &mac_control->rings[i]; + + rx_intr_handler(ring, 0); + } + } + + /* + * tx_traffic_int reg is an R1 register, writing all 1's + * will ensure that the actual interrupt causing bit get's + * cleared and hence a read can be avoided. + */ + if (reason & GEN_INTR_TXTRAFFIC) + writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int); + + for (i = 0; i < config->tx_fifo_num; i++) + tx_intr_handler(&mac_control->fifos[i]); + + if (reason & GEN_INTR_TXPIC) + s2io_txpic_intr_handle(sp); + + /* + * Reallocate the buffers from the interrupt handler itself. + */ + if (!config->napi) { + for (i = 0; i < config->rx_ring_num; i++) { + struct ring_info *ring = &mac_control->rings[i]; + + s2io_chk_rx_buffers(sp, ring); + } + } + writeq(sp->general_int_mask, &bar0->general_int_mask); + readl(&bar0->general_int_status); + + return IRQ_HANDLED; + + } else if (!reason) { + /* The interrupt was not raised by us */ + return IRQ_NONE; + } + + return IRQ_HANDLED; +} + +/** + * s2io_updt_stats - + */ +static void s2io_updt_stats(struct s2io_nic *sp) +{ + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64; + int cnt = 0; + + if (is_s2io_card_up(sp)) { + /* Apprx 30us on a 133 MHz bus */ + val64 = SET_UPDT_CLICKS(10) | + STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN; + writeq(val64, &bar0->stat_cfg); + do { + udelay(100); + val64 = readq(&bar0->stat_cfg); + if (!(val64 & s2BIT(0))) + break; + cnt++; + if (cnt == 5) + break; /* Updt failed */ + } while (1); + } +} + +/** + * s2io_get_stats - Updates the device statistics structure. + * @dev : pointer to the device structure. + * Description: + * This function updates the device statistics structure in the s2io_nic + * structure and returns a pointer to the same. + * Return value: + * pointer to the updated net_device_stats structure. + */ +static struct net_device_stats *s2io_get_stats(struct net_device *dev) +{ + struct s2io_nic *sp = netdev_priv(dev); + struct mac_info *mac_control = &sp->mac_control; + struct stat_block *stats = mac_control->stats_info; + u64 delta; + + /* Configure Stats for immediate updt */ + s2io_updt_stats(sp); + + /* A device reset will cause the on-adapter statistics to be zero'ed. + * This can be done while running by changing the MTU. To prevent the + * system from having the stats zero'ed, the driver keeps a copy of the + * last update to the system (which is also zero'ed on reset). This + * enables the driver to accurately know the delta between the last + * update and the current update. + */ + delta = ((u64) le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_vld_frms)) - sp->stats.rx_packets; + sp->stats.rx_packets += delta; + dev->stats.rx_packets += delta; + + delta = ((u64) le32_to_cpu(stats->tmac_frms_oflow) << 32 | + le32_to_cpu(stats->tmac_frms)) - sp->stats.tx_packets; + sp->stats.tx_packets += delta; + dev->stats.tx_packets += delta; + + delta = ((u64) le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | + le32_to_cpu(stats->rmac_data_octets)) - sp->stats.rx_bytes; + sp->stats.rx_bytes += delta; + dev->stats.rx_bytes += delta; + + delta = ((u64) le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | + le32_to_cpu(stats->tmac_data_octets)) - sp->stats.tx_bytes; + sp->stats.tx_bytes += delta; + dev->stats.tx_bytes += delta; + + delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_errors; + sp->stats.rx_errors += delta; + dev->stats.rx_errors += delta; + + delta = ((u64) le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | + le32_to_cpu(stats->tmac_any_err_frms)) - sp->stats.tx_errors; + sp->stats.tx_errors += delta; + dev->stats.tx_errors += delta; + + delta = le64_to_cpu(stats->rmac_drop_frms) - sp->stats.rx_dropped; + sp->stats.rx_dropped += delta; + dev->stats.rx_dropped += delta; + + delta = le64_to_cpu(stats->tmac_drop_frms) - sp->stats.tx_dropped; + sp->stats.tx_dropped += delta; + dev->stats.tx_dropped += delta; + + /* The adapter MAC interprets pause frames as multicast packets, but + * does not pass them up. This erroneously increases the multicast + * packet count and needs to be deducted when the multicast frame count + * is queried. + */ + delta = (u64) le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_vld_mcst_frms); + delta -= le64_to_cpu(stats->rmac_pause_ctrl_frms); + delta -= sp->stats.multicast; + sp->stats.multicast += delta; + dev->stats.multicast += delta; + + delta = ((u64) le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_usized_frms)) + + le64_to_cpu(stats->rmac_long_frms) - sp->stats.rx_length_errors; + sp->stats.rx_length_errors += delta; + dev->stats.rx_length_errors += delta; + + delta = le64_to_cpu(stats->rmac_fcs_err_frms) - sp->stats.rx_crc_errors; + sp->stats.rx_crc_errors += delta; + dev->stats.rx_crc_errors += delta; + + return &dev->stats; +} + +/** + * s2io_set_multicast - entry point for multicast address enable/disable. + * @dev : pointer to the device structure + * Description: + * This function is a driver entry point which gets called by the kernel + * whenever multicast addresses must be enabled/disabled. This also gets + * called to set/reset promiscuous mode. Depending on the deivce flag, we + * determine, if multicast address must be enabled or if promiscuous mode + * is to be disabled etc. + * Return value: + * void. + */ + +static void s2io_set_multicast(struct net_device *dev) +{ + int i, j, prev_cnt; + struct netdev_hw_addr *ha; + struct s2io_nic *sp = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = + 0xfeffffffffffULL; + u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0; + void __iomem *add; + struct config_param *config = &sp->config; + + if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { + /* Enable all Multicast addresses */ + writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), + &bar0->rmac_addr_data0_mem); + writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), + &bar0->rmac_addr_data1_mem); + val64 = RMAC_ADDR_CMD_MEM_WE | + RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1); + writeq(val64, &bar0->rmac_addr_cmd_mem); + /* Wait till command completes */ + wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, + RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, + S2IO_BIT_RESET); + + sp->m_cast_flg = 1; + sp->all_multi_pos = config->max_mc_addr - 1; + } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { + /* Disable all Multicast addresses */ + writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), + &bar0->rmac_addr_data0_mem); + writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0), + &bar0->rmac_addr_data1_mem); + val64 = RMAC_ADDR_CMD_MEM_WE | + RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); + writeq(val64, &bar0->rmac_addr_cmd_mem); + /* Wait till command completes */ + wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, + RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, + S2IO_BIT_RESET); + + sp->m_cast_flg = 0; + sp->all_multi_pos = 0; + } + + if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { + /* Put the NIC into promiscuous mode */ + add = &bar0->mac_cfg; + val64 = readq(&bar0->mac_cfg); + val64 |= MAC_CFG_RMAC_PROM_ENABLE; + + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32)val64, add); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64 >> 32), (add + 4)); + + if (vlan_tag_strip != 1) { + val64 = readq(&bar0->rx_pa_cfg); + val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG; + writeq(val64, &bar0->rx_pa_cfg); + sp->vlan_strip_flag = 0; + } + + val64 = readq(&bar0->mac_cfg); + sp->promisc_flg = 1; + DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n", + dev->name); + } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { + /* Remove the NIC from promiscuous mode */ + add = &bar0->mac_cfg; + val64 = readq(&bar0->mac_cfg); + val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; + + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32)val64, add); + writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); + writel((u32) (val64 >> 32), (add + 4)); + + if (vlan_tag_strip != 0) { + val64 = readq(&bar0->rx_pa_cfg); + val64 |= RX_PA_CFG_STRIP_VLAN_TAG; + writeq(val64, &bar0->rx_pa_cfg); + sp->vlan_strip_flag = 1; + } + + val64 = readq(&bar0->mac_cfg); + sp->promisc_flg = 0; + DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n", dev->name); + } + + /* Update individual M_CAST address list */ + if ((!sp->m_cast_flg) && netdev_mc_count(dev)) { + if (netdev_mc_count(dev) > + (config->max_mc_addr - config->max_mac_addr)) { + DBG_PRINT(ERR_DBG, + "%s: No more Rx filters can be added - " + "please enable ALL_MULTI instead\n", + dev->name); + return; + } + + prev_cnt = sp->mc_addr_count; + sp->mc_addr_count = netdev_mc_count(dev); + + /* Clear out the previous list of Mc in the H/W. */ + for (i = 0; i < prev_cnt; i++) { + writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), + &bar0->rmac_addr_data0_mem); + writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), + &bar0->rmac_addr_data1_mem); + val64 = RMAC_ADDR_CMD_MEM_WE | + RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET + (config->mc_start_offset + i); + writeq(val64, &bar0->rmac_addr_cmd_mem); + + /* Wait for command completes */ + if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, + RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, + S2IO_BIT_RESET)) { + DBG_PRINT(ERR_DBG, + "%s: Adding Multicasts failed\n", + dev->name); + return; + } + } + + /* Create the new Rx filter list and update the same in H/W. */ + i = 0; + netdev_for_each_mc_addr(ha, dev) { + mac_addr = 0; + for (j = 0; j < ETH_ALEN; j++) { + mac_addr |= ha->addr[j]; + mac_addr <<= 8; + } + mac_addr >>= 8; + writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), + &bar0->rmac_addr_data0_mem); + writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), + &bar0->rmac_addr_data1_mem); + val64 = RMAC_ADDR_CMD_MEM_WE | + RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET + (i + config->mc_start_offset); + writeq(val64, &bar0->rmac_addr_cmd_mem); + + /* Wait for command completes */ + if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, + RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, + S2IO_BIT_RESET)) { + DBG_PRINT(ERR_DBG, + "%s: Adding Multicasts failed\n", + dev->name); + return; + } + i++; + } + } +} + +/* read from CAM unicast & multicast addresses and store it in + * def_mac_addr structure + */ +static void do_s2io_store_unicast_mc(struct s2io_nic *sp) +{ + int offset; + u64 mac_addr = 0x0; + struct config_param *config = &sp->config; + + /* store unicast & multicast mac addresses */ + for (offset = 0; offset < config->max_mc_addr; offset++) { + mac_addr = do_s2io_read_unicast_mc(sp, offset); + /* if read fails disable the entry */ + if (mac_addr == FAILURE) + mac_addr = S2IO_DISABLE_MAC_ENTRY; + do_s2io_copy_mac_addr(sp, offset, mac_addr); + } +} + +/* restore unicast & multicast MAC to CAM from def_mac_addr structure */ +static void do_s2io_restore_unicast_mc(struct s2io_nic *sp) +{ + int offset; + struct config_param *config = &sp->config; + /* restore unicast mac address */ + for (offset = 0; offset < config->max_mac_addr; offset++) + do_s2io_prog_unicast(sp->dev, + sp->def_mac_addr[offset].mac_addr); + + /* restore multicast mac address */ + for (offset = config->mc_start_offset; + offset < config->max_mc_addr; offset++) + do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr); +} + +/* add a multicast MAC address to CAM */ +static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr) +{ + int i; + u64 mac_addr = 0; + struct config_param *config = &sp->config; + + for (i = 0; i < ETH_ALEN; i++) { + mac_addr <<= 8; + mac_addr |= addr[i]; + } + if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY)) + return SUCCESS; + + /* check if the multicast mac already preset in CAM */ + for (i = config->mc_start_offset; i < config->max_mc_addr; i++) { + u64 tmp64; + tmp64 = do_s2io_read_unicast_mc(sp, i); + if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ + break; + + if (tmp64 == mac_addr) + return SUCCESS; + } + if (i == config->max_mc_addr) { + DBG_PRINT(ERR_DBG, + "CAM full no space left for multicast MAC\n"); + return FAILURE; + } + /* Update the internal structure with this new mac address */ + do_s2io_copy_mac_addr(sp, i, mac_addr); + + return do_s2io_add_mac(sp, mac_addr, i); +} + +/* add MAC address to CAM */ +static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off) +{ + u64 val64; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + + writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr), + &bar0->rmac_addr_data0_mem); + + val64 = RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET(off); + writeq(val64, &bar0->rmac_addr_cmd_mem); + + /* Wait till command completes */ + if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, + RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, + S2IO_BIT_RESET)) { + DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n"); + return FAILURE; + } + return SUCCESS; +} +/* deletes a specified unicast/multicast mac entry from CAM */ +static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr) +{ + int offset; + u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64; + struct config_param *config = &sp->config; + + for (offset = 1; + offset < config->max_mc_addr; offset++) { + tmp64 = do_s2io_read_unicast_mc(sp, offset); + if (tmp64 == addr) { + /* disable the entry by writing 0xffffffffffffULL */ + if (do_s2io_add_mac(sp, dis_addr, offset) == FAILURE) + return FAILURE; + /* store the new mac list from CAM */ + do_s2io_store_unicast_mc(sp); + return SUCCESS; + } + } + DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n", + (unsigned long long)addr); + return FAILURE; +} + +/* read mac entries from CAM */ +static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset) +{ + u64 tmp64 = 0xffffffffffff0000ULL, val64; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + + /* read mac addr */ + val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET(offset); + writeq(val64, &bar0->rmac_addr_cmd_mem); + + /* Wait till command completes */ + if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, + RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, + S2IO_BIT_RESET)) { + DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n"); + return FAILURE; + } + tmp64 = readq(&bar0->rmac_addr_data0_mem); + + return tmp64 >> 16; +} + +/** + * s2io_set_mac_addr driver entry point + */ + +static int s2io_set_mac_addr(struct net_device *dev, void *p) +{ + struct sockaddr *addr = p; + + if (!is_valid_ether_addr(addr->sa_data)) + return -EINVAL; + + memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); + + /* store the MAC address in CAM */ + return do_s2io_prog_unicast(dev, dev->dev_addr); +} +/** + * do_s2io_prog_unicast - Programs the Xframe mac address + * @dev : pointer to the device structure. + * @addr: a uchar pointer to the new mac address which is to be set. + * Description : This procedure will program the Xframe to receive + * frames with new Mac Address + * Return value: SUCCESS on success and an appropriate (-)ve integer + * as defined in errno.h file on failure. + */ + +static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr) +{ + struct s2io_nic *sp = netdev_priv(dev); + register u64 mac_addr = 0, perm_addr = 0; + int i; + u64 tmp64; + struct config_param *config = &sp->config; + + /* + * Set the new MAC address as the new unicast filter and reflect this + * change on the device address registered with the OS. It will be + * at offset 0. + */ + for (i = 0; i < ETH_ALEN; i++) { + mac_addr <<= 8; + mac_addr |= addr[i]; + perm_addr <<= 8; + perm_addr |= sp->def_mac_addr[0].mac_addr[i]; + } + + /* check if the dev_addr is different than perm_addr */ + if (mac_addr == perm_addr) + return SUCCESS; + + /* check if the mac already preset in CAM */ + for (i = 1; i < config->max_mac_addr; i++) { + tmp64 = do_s2io_read_unicast_mc(sp, i); + if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */ + break; + + if (tmp64 == mac_addr) { + DBG_PRINT(INFO_DBG, + "MAC addr:0x%llx already present in CAM\n", + (unsigned long long)mac_addr); + return SUCCESS; + } + } + if (i == config->max_mac_addr) { + DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n"); + return FAILURE; + } + /* Update the internal structure with this new mac address */ + do_s2io_copy_mac_addr(sp, i, mac_addr); + + return do_s2io_add_mac(sp, mac_addr, i); +} + +/** + * s2io_ethtool_sset - Sets different link parameters. + * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. + * @info: pointer to the structure with parameters given by ethtool to set + * link information. + * Description: + * The function sets different link parameters provided by the user onto + * the NIC. + * Return value: + * 0 on success. + */ + +static int s2io_ethtool_sset(struct net_device *dev, + struct ethtool_cmd *info) +{ + struct s2io_nic *sp = netdev_priv(dev); + if ((info->autoneg == AUTONEG_ENABLE) || + (ethtool_cmd_speed(info) != SPEED_10000) || + (info->duplex != DUPLEX_FULL)) + return -EINVAL; + else { + s2io_close(sp->dev); + s2io_open(sp->dev); + } + + return 0; +} + +/** + * s2io_ethtol_gset - Return link specific information. + * @sp : private member of the device structure, pointer to the + * s2io_nic structure. + * @info : pointer to the structure with parameters given by ethtool + * to return link information. + * Description: + * Returns link specific information like speed, duplex etc.. to ethtool. + * Return value : + * return 0 on success. + */ + +static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) +{ + struct s2io_nic *sp = netdev_priv(dev); + info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); + info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); + info->port = PORT_FIBRE; + + /* info->transceiver */ + info->transceiver = XCVR_EXTERNAL; + + if (netif_carrier_ok(sp->dev)) { + ethtool_cmd_speed_set(info, SPEED_10000); + info->duplex = DUPLEX_FULL; + } else { + ethtool_cmd_speed_set(info, -1); + info->duplex = -1; + } + + info->autoneg = AUTONEG_DISABLE; + return 0; +} + +/** + * s2io_ethtool_gdrvinfo - Returns driver specific information. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @info : pointer to the structure with parameters given by ethtool to + * return driver information. + * Description: + * Returns driver specefic information like name, version etc.. to ethtool. + * Return value: + * void + */ + +static void s2io_ethtool_gdrvinfo(struct net_device *dev, + struct ethtool_drvinfo *info) +{ + struct s2io_nic *sp = netdev_priv(dev); + + strncpy(info->driver, s2io_driver_name, sizeof(info->driver)); + strncpy(info->version, s2io_driver_version, sizeof(info->version)); + strncpy(info->fw_version, "", sizeof(info->fw_version)); + strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info)); + info->regdump_len = XENA_REG_SPACE; + info->eedump_len = XENA_EEPROM_SPACE; +} + +/** + * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. + * @sp: private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @regs : pointer to the structure with parameters given by ethtool for + * dumping the registers. + * @reg_space: The input argumnet into which all the registers are dumped. + * Description: + * Dumps the entire register space of xFrame NIC into the user given + * buffer area. + * Return value : + * void . + */ + +static void s2io_ethtool_gregs(struct net_device *dev, + struct ethtool_regs *regs, void *space) +{ + int i; + u64 reg; + u8 *reg_space = (u8 *)space; + struct s2io_nic *sp = netdev_priv(dev); + + regs->len = XENA_REG_SPACE; + regs->version = sp->pdev->subsystem_device; + + for (i = 0; i < regs->len; i += 8) { + reg = readq(sp->bar0 + i); + memcpy((reg_space + i), ®, 8); + } +} + +/* + * s2io_set_led - control NIC led + */ +static void s2io_set_led(struct s2io_nic *sp, bool on) +{ + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u16 subid = sp->pdev->subsystem_device; + u64 val64; + + if ((sp->device_type == XFRAME_II_DEVICE) || + ((subid & 0xFF) >= 0x07)) { + val64 = readq(&bar0->gpio_control); + if (on) + val64 |= GPIO_CTRL_GPIO_0; + else + val64 &= ~GPIO_CTRL_GPIO_0; + + writeq(val64, &bar0->gpio_control); + } else { + val64 = readq(&bar0->adapter_control); + if (on) + val64 |= ADAPTER_LED_ON; + else + val64 &= ~ADAPTER_LED_ON; + + writeq(val64, &bar0->adapter_control); + } + +} + +/** + * s2io_ethtool_set_led - To physically identify the nic on the system. + * @dev : network device + * @state: led setting + * + * Description: Used to physically identify the NIC on the system. + * The Link LED will blink for a time specified by the user for + * identification. + * NOTE: The Link has to be Up to be able to blink the LED. Hence + * identification is possible only if it's link is up. + */ + +static int s2io_ethtool_set_led(struct net_device *dev, + enum ethtool_phys_id_state state) +{ + struct s2io_nic *sp = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u16 subid = sp->pdev->subsystem_device; + + if ((sp->device_type == XFRAME_I_DEVICE) && ((subid & 0xFF) < 0x07)) { + u64 val64 = readq(&bar0->adapter_control); + if (!(val64 & ADAPTER_CNTL_EN)) { + pr_err("Adapter Link down, cannot blink LED\n"); + return -EAGAIN; + } + } + + switch (state) { + case ETHTOOL_ID_ACTIVE: + sp->adapt_ctrl_org = readq(&bar0->gpio_control); + return 1; /* cycle on/off once per second */ + + case ETHTOOL_ID_ON: + s2io_set_led(sp, true); + break; + + case ETHTOOL_ID_OFF: + s2io_set_led(sp, false); + break; + + case ETHTOOL_ID_INACTIVE: + if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) + writeq(sp->adapt_ctrl_org, &bar0->gpio_control); + } + + return 0; +} + +static void s2io_ethtool_gringparam(struct net_device *dev, + struct ethtool_ringparam *ering) +{ + struct s2io_nic *sp = netdev_priv(dev); + int i, tx_desc_count = 0, rx_desc_count = 0; + + if (sp->rxd_mode == RXD_MODE_1) { + ering->rx_max_pending = MAX_RX_DESC_1; + ering->rx_jumbo_max_pending = MAX_RX_DESC_1; + } else { + ering->rx_max_pending = MAX_RX_DESC_2; + ering->rx_jumbo_max_pending = MAX_RX_DESC_2; + } + + ering->rx_mini_max_pending = 0; + ering->tx_max_pending = MAX_TX_DESC; + + for (i = 0; i < sp->config.rx_ring_num; i++) + rx_desc_count += sp->config.rx_cfg[i].num_rxd; + ering->rx_pending = rx_desc_count; + ering->rx_jumbo_pending = rx_desc_count; + ering->rx_mini_pending = 0; + + for (i = 0; i < sp->config.tx_fifo_num; i++) + tx_desc_count += sp->config.tx_cfg[i].fifo_len; + ering->tx_pending = tx_desc_count; + DBG_PRINT(INFO_DBG, "max txds: %d\n", sp->config.max_txds); +} + +/** + * s2io_ethtool_getpause_data -Pause frame frame generation and reception. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @ep : pointer to the structure with pause parameters given by ethtool. + * Description: + * Returns the Pause frame generation and reception capability of the NIC. + * Return value: + * void + */ +static void s2io_ethtool_getpause_data(struct net_device *dev, + struct ethtool_pauseparam *ep) +{ + u64 val64; + struct s2io_nic *sp = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = sp->bar0; + + val64 = readq(&bar0->rmac_pause_cfg); + if (val64 & RMAC_PAUSE_GEN_ENABLE) + ep->tx_pause = true; + if (val64 & RMAC_PAUSE_RX_ENABLE) + ep->rx_pause = true; + ep->autoneg = false; +} + +/** + * s2io_ethtool_setpause_data - set/reset pause frame generation. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @ep : pointer to the structure with pause parameters given by ethtool. + * Description: + * It can be used to set or reset Pause frame generation or reception + * support of the NIC. + * Return value: + * int, returns 0 on Success + */ + +static int s2io_ethtool_setpause_data(struct net_device *dev, + struct ethtool_pauseparam *ep) +{ + u64 val64; + struct s2io_nic *sp = netdev_priv(dev); + struct XENA_dev_config __iomem *bar0 = sp->bar0; + + val64 = readq(&bar0->rmac_pause_cfg); + if (ep->tx_pause) + val64 |= RMAC_PAUSE_GEN_ENABLE; + else + val64 &= ~RMAC_PAUSE_GEN_ENABLE; + if (ep->rx_pause) + val64 |= RMAC_PAUSE_RX_ENABLE; + else + val64 &= ~RMAC_PAUSE_RX_ENABLE; + writeq(val64, &bar0->rmac_pause_cfg); + return 0; +} + +/** + * read_eeprom - reads 4 bytes of data from user given offset. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @off : offset at which the data must be written + * @data : Its an output parameter where the data read at the given + * offset is stored. + * Description: + * Will read 4 bytes of data from the user given offset and return the + * read data. + * NOTE: Will allow to read only part of the EEPROM visible through the + * I2C bus. + * Return value: + * -1 on failure and 0 on success. + */ + +#define S2IO_DEV_ID 5 +static int read_eeprom(struct s2io_nic *sp, int off, u64 *data) +{ + int ret = -1; + u32 exit_cnt = 0; + u64 val64; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + + if (sp->device_type == XFRAME_I_DEVICE) { + val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | + I2C_CONTROL_ADDR(off) | + I2C_CONTROL_BYTE_CNT(0x3) | + I2C_CONTROL_READ | + I2C_CONTROL_CNTL_START; + SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); + + while (exit_cnt < 5) { + val64 = readq(&bar0->i2c_control); + if (I2C_CONTROL_CNTL_END(val64)) { + *data = I2C_CONTROL_GET_DATA(val64); + ret = 0; + break; + } + msleep(50); + exit_cnt++; + } + } + + if (sp->device_type == XFRAME_II_DEVICE) { + val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | + SPI_CONTROL_BYTECNT(0x3) | + SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off); + SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); + val64 |= SPI_CONTROL_REQ; + SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); + while (exit_cnt < 5) { + val64 = readq(&bar0->spi_control); + if (val64 & SPI_CONTROL_NACK) { + ret = 1; + break; + } else if (val64 & SPI_CONTROL_DONE) { + *data = readq(&bar0->spi_data); + *data &= 0xffffff; + ret = 0; + break; + } + msleep(50); + exit_cnt++; + } + } + return ret; +} + +/** + * write_eeprom - actually writes the relevant part of the data value. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @off : offset at which the data must be written + * @data : The data that is to be written + * @cnt : Number of bytes of the data that are actually to be written into + * the Eeprom. (max of 3) + * Description: + * Actually writes the relevant part of the data value into the Eeprom + * through the I2C bus. + * Return value: + * 0 on success, -1 on failure. + */ + +static int write_eeprom(struct s2io_nic *sp, int off, u64 data, int cnt) +{ + int exit_cnt = 0, ret = -1; + u64 val64; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + + if (sp->device_type == XFRAME_I_DEVICE) { + val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | + I2C_CONTROL_ADDR(off) | + I2C_CONTROL_BYTE_CNT(cnt) | + I2C_CONTROL_SET_DATA((u32)data) | + I2C_CONTROL_CNTL_START; + SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); + + while (exit_cnt < 5) { + val64 = readq(&bar0->i2c_control); + if (I2C_CONTROL_CNTL_END(val64)) { + if (!(val64 & I2C_CONTROL_NACK)) + ret = 0; + break; + } + msleep(50); + exit_cnt++; + } + } + + if (sp->device_type == XFRAME_II_DEVICE) { + int write_cnt = (cnt == 8) ? 0 : cnt; + writeq(SPI_DATA_WRITE(data, (cnt << 3)), &bar0->spi_data); + + val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 | + SPI_CONTROL_BYTECNT(write_cnt) | + SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off); + SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); + val64 |= SPI_CONTROL_REQ; + SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF); + while (exit_cnt < 5) { + val64 = readq(&bar0->spi_control); + if (val64 & SPI_CONTROL_NACK) { + ret = 1; + break; + } else if (val64 & SPI_CONTROL_DONE) { + ret = 0; + break; + } + msleep(50); + exit_cnt++; + } + } + return ret; +} +static void s2io_vpd_read(struct s2io_nic *nic) +{ + u8 *vpd_data; + u8 data; + int i = 0, cnt, len, fail = 0; + int vpd_addr = 0x80; + struct swStat *swstats = &nic->mac_control.stats_info->sw_stat; + + if (nic->device_type == XFRAME_II_DEVICE) { + strcpy(nic->product_name, "Xframe II 10GbE network adapter"); + vpd_addr = 0x80; + } else { + strcpy(nic->product_name, "Xframe I 10GbE network adapter"); + vpd_addr = 0x50; + } + strcpy(nic->serial_num, "NOT AVAILABLE"); + + vpd_data = kmalloc(256, GFP_KERNEL); + if (!vpd_data) { + swstats->mem_alloc_fail_cnt++; + return; + } + swstats->mem_allocated += 256; + + for (i = 0; i < 256; i += 4) { + pci_write_config_byte(nic->pdev, (vpd_addr + 2), i); + pci_read_config_byte(nic->pdev, (vpd_addr + 2), &data); + pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0); + for (cnt = 0; cnt < 5; cnt++) { + msleep(2); + pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data); + if (data == 0x80) + break; + } + if (cnt >= 5) { + DBG_PRINT(ERR_DBG, "Read of VPD data failed\n"); + fail = 1; + break; + } + pci_read_config_dword(nic->pdev, (vpd_addr + 4), + (u32 *)&vpd_data[i]); + } + + if (!fail) { + /* read serial number of adapter */ + for (cnt = 0; cnt < 252; cnt++) { + if ((vpd_data[cnt] == 'S') && + (vpd_data[cnt+1] == 'N')) { + len = vpd_data[cnt+2]; + if (len < min(VPD_STRING_LEN, 256-cnt-2)) { + memcpy(nic->serial_num, + &vpd_data[cnt + 3], + len); + memset(nic->serial_num+len, + 0, + VPD_STRING_LEN-len); + break; + } + } + } + } + + if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) { + len = vpd_data[1]; + memcpy(nic->product_name, &vpd_data[3], len); + nic->product_name[len] = 0; + } + kfree(vpd_data); + swstats->mem_freed += 256; +} + +/** + * s2io_ethtool_geeprom - reads the value stored in the Eeprom. + * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. + * @eeprom : pointer to the user level structure provided by ethtool, + * containing all relevant information. + * @data_buf : user defined value to be written into Eeprom. + * Description: Reads the values stored in the Eeprom at given offset + * for a given length. Stores these values int the input argument data + * buffer 'data_buf' and returns these to the caller (ethtool.) + * Return value: + * int 0 on success + */ + +static int s2io_ethtool_geeprom(struct net_device *dev, + struct ethtool_eeprom *eeprom, u8 * data_buf) +{ + u32 i, valid; + u64 data; + struct s2io_nic *sp = netdev_priv(dev); + + eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); + + if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) + eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; + + for (i = 0; i < eeprom->len; i += 4) { + if (read_eeprom(sp, (eeprom->offset + i), &data)) { + DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); + return -EFAULT; + } + valid = INV(data); + memcpy((data_buf + i), &valid, 4); + } + return 0; +} + +/** + * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @eeprom : pointer to the user level structure provided by ethtool, + * containing all relevant information. + * @data_buf ; user defined value to be written into Eeprom. + * Description: + * Tries to write the user provided value in the Eeprom, at the offset + * given by the user. + * Return value: + * 0 on success, -EFAULT on failure. + */ + +static int s2io_ethtool_seeprom(struct net_device *dev, + struct ethtool_eeprom *eeprom, + u8 *data_buf) +{ + int len = eeprom->len, cnt = 0; + u64 valid = 0, data; + struct s2io_nic *sp = netdev_priv(dev); + + if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { + DBG_PRINT(ERR_DBG, + "ETHTOOL_WRITE_EEPROM Err: " + "Magic value is wrong, it is 0x%x should be 0x%x\n", + (sp->pdev->vendor | (sp->pdev->device << 16)), + eeprom->magic); + return -EFAULT; + } + + while (len) { + data = (u32)data_buf[cnt] & 0x000000FF; + if (data) + valid = (u32)(data << 24); + else + valid = data; + + if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { + DBG_PRINT(ERR_DBG, + "ETHTOOL_WRITE_EEPROM Err: " + "Cannot write into the specified offset\n"); + return -EFAULT; + } + cnt++; + len--; + } + + return 0; +} + +/** + * s2io_register_test - reads and writes into all clock domains. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data : variable that returns the result of each of the test conducted b + * by the driver. + * Description: + * Read and write into all clock domains. The NIC has 3 clock domains, + * see that registers in all the three regions are accessible. + * Return value: + * 0 on success. + */ + +static int s2io_register_test(struct s2io_nic *sp, uint64_t *data) +{ + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64 = 0, exp_val; + int fail = 0; + + val64 = readq(&bar0->pif_rd_swapper_fb); + if (val64 != 0x123456789abcdefULL) { + fail = 1; + DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 1); + } + + val64 = readq(&bar0->rmac_pause_cfg); + if (val64 != 0xc000ffff00000000ULL) { + fail = 1; + DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 2); + } + + val64 = readq(&bar0->rx_queue_cfg); + if (sp->device_type == XFRAME_II_DEVICE) + exp_val = 0x0404040404040404ULL; + else + exp_val = 0x0808080808080808ULL; + if (val64 != exp_val) { + fail = 1; + DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 3); + } + + val64 = readq(&bar0->xgxs_efifo_cfg); + if (val64 != 0x000000001923141EULL) { + fail = 1; + DBG_PRINT(INFO_DBG, "Read Test level %d fails\n", 4); + } + + val64 = 0x5A5A5A5A5A5A5A5AULL; + writeq(val64, &bar0->xmsi_data); + val64 = readq(&bar0->xmsi_data); + if (val64 != 0x5A5A5A5A5A5A5A5AULL) { + fail = 1; + DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 1); + } + + val64 = 0xA5A5A5A5A5A5A5A5ULL; + writeq(val64, &bar0->xmsi_data); + val64 = readq(&bar0->xmsi_data); + if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { + fail = 1; + DBG_PRINT(ERR_DBG, "Write Test level %d fails\n", 2); + } + + *data = fail; + return fail; +} + +/** + * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data:variable that returns the result of each of the test conducted by + * the driver. + * Description: + * Verify that EEPROM in the xena can be programmed using I2C_CONTROL + * register. + * Return value: + * 0 on success. + */ + +static int s2io_eeprom_test(struct s2io_nic *sp, uint64_t *data) +{ + int fail = 0; + u64 ret_data, org_4F0, org_7F0; + u8 saved_4F0 = 0, saved_7F0 = 0; + struct net_device *dev = sp->dev; + + /* Test Write Error at offset 0 */ + /* Note that SPI interface allows write access to all areas + * of EEPROM. Hence doing all negative testing only for Xframe I. + */ + if (sp->device_type == XFRAME_I_DEVICE) + if (!write_eeprom(sp, 0, 0, 3)) + fail = 1; + + /* Save current values at offsets 0x4F0 and 0x7F0 */ + if (!read_eeprom(sp, 0x4F0, &org_4F0)) + saved_4F0 = 1; + if (!read_eeprom(sp, 0x7F0, &org_7F0)) + saved_7F0 = 1; + + /* Test Write at offset 4f0 */ + if (write_eeprom(sp, 0x4F0, 0x012345, 3)) + fail = 1; + if (read_eeprom(sp, 0x4F0, &ret_data)) + fail = 1; + + if (ret_data != 0x012345) { + DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. " + "Data written %llx Data read %llx\n", + dev->name, (unsigned long long)0x12345, + (unsigned long long)ret_data); + fail = 1; + } + + /* Reset the EEPROM data go FFFF */ + write_eeprom(sp, 0x4F0, 0xFFFFFF, 3); + + /* Test Write Request Error at offset 0x7c */ + if (sp->device_type == XFRAME_I_DEVICE) + if (!write_eeprom(sp, 0x07C, 0, 3)) + fail = 1; + + /* Test Write Request at offset 0x7f0 */ + if (write_eeprom(sp, 0x7F0, 0x012345, 3)) + fail = 1; + if (read_eeprom(sp, 0x7F0, &ret_data)) + fail = 1; + + if (ret_data != 0x012345) { + DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. " + "Data written %llx Data read %llx\n", + dev->name, (unsigned long long)0x12345, + (unsigned long long)ret_data); + fail = 1; + } + + /* Reset the EEPROM data go FFFF */ + write_eeprom(sp, 0x7F0, 0xFFFFFF, 3); + + if (sp->device_type == XFRAME_I_DEVICE) { + /* Test Write Error at offset 0x80 */ + if (!write_eeprom(sp, 0x080, 0, 3)) + fail = 1; + + /* Test Write Error at offset 0xfc */ + if (!write_eeprom(sp, 0x0FC, 0, 3)) + fail = 1; + + /* Test Write Error at offset 0x100 */ + if (!write_eeprom(sp, 0x100, 0, 3)) + fail = 1; + + /* Test Write Error at offset 4ec */ + if (!write_eeprom(sp, 0x4EC, 0, 3)) + fail = 1; + } + + /* Restore values at offsets 0x4F0 and 0x7F0 */ + if (saved_4F0) + write_eeprom(sp, 0x4F0, org_4F0, 3); + if (saved_7F0) + write_eeprom(sp, 0x7F0, org_7F0, 3); + + *data = fail; + return fail; +} + +/** + * s2io_bist_test - invokes the MemBist test of the card . + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data:variable that returns the result of each of the test conducted by + * the driver. + * Description: + * This invokes the MemBist test of the card. We give around + * 2 secs time for the Test to complete. If it's still not complete + * within this peiod, we consider that the test failed. + * Return value: + * 0 on success and -1 on failure. + */ + +static int s2io_bist_test(struct s2io_nic *sp, uint64_t *data) +{ + u8 bist = 0; + int cnt = 0, ret = -1; + + pci_read_config_byte(sp->pdev, PCI_BIST, &bist); + bist |= PCI_BIST_START; + pci_write_config_word(sp->pdev, PCI_BIST, bist); + + while (cnt < 20) { + pci_read_config_byte(sp->pdev, PCI_BIST, &bist); + if (!(bist & PCI_BIST_START)) { + *data = (bist & PCI_BIST_CODE_MASK); + ret = 0; + break; + } + msleep(100); + cnt++; + } + + return ret; +} + +/** + * s2io-link_test - verifies the link state of the nic + * @sp ; private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data: variable that returns the result of each of the test conducted by + * the driver. + * Description: + * The function verifies the link state of the NIC and updates the input + * argument 'data' appropriately. + * Return value: + * 0 on success. + */ + +static int s2io_link_test(struct s2io_nic *sp, uint64_t *data) +{ + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64; + + val64 = readq(&bar0->adapter_status); + if (!(LINK_IS_UP(val64))) + *data = 1; + else + *data = 0; + + return *data; +} + +/** + * s2io_rldram_test - offline test for access to the RldRam chip on the NIC + * @sp - private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @data - variable that returns the result of each of the test + * conducted by the driver. + * Description: + * This is one of the offline test that tests the read and write + * access to the RldRam chip on the NIC. + * Return value: + * 0 on success. + */ + +static int s2io_rldram_test(struct s2io_nic *sp, uint64_t *data) +{ + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64; + int cnt, iteration = 0, test_fail = 0; + + val64 = readq(&bar0->adapter_control); + val64 &= ~ADAPTER_ECC_EN; + writeq(val64, &bar0->adapter_control); + + val64 = readq(&bar0->mc_rldram_test_ctrl); + val64 |= MC_RLDRAM_TEST_MODE; + SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); + + val64 = readq(&bar0->mc_rldram_mrs); + val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; + SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); + + val64 |= MC_RLDRAM_MRS_ENABLE; + SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); + + while (iteration < 2) { + val64 = 0x55555555aaaa0000ULL; + if (iteration == 1) + val64 ^= 0xFFFFFFFFFFFF0000ULL; + writeq(val64, &bar0->mc_rldram_test_d0); + + val64 = 0xaaaa5a5555550000ULL; + if (iteration == 1) + val64 ^= 0xFFFFFFFFFFFF0000ULL; + writeq(val64, &bar0->mc_rldram_test_d1); + + val64 = 0x55aaaaaaaa5a0000ULL; + if (iteration == 1) + val64 ^= 0xFFFFFFFFFFFF0000ULL; + writeq(val64, &bar0->mc_rldram_test_d2); + + val64 = (u64) (0x0000003ffffe0100ULL); + writeq(val64, &bar0->mc_rldram_test_add); + + val64 = MC_RLDRAM_TEST_MODE | + MC_RLDRAM_TEST_WRITE | + MC_RLDRAM_TEST_GO; + SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); + + for (cnt = 0; cnt < 5; cnt++) { + val64 = readq(&bar0->mc_rldram_test_ctrl); + if (val64 & MC_RLDRAM_TEST_DONE) + break; + msleep(200); + } + + if (cnt == 5) + break; + + val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; + SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF); + + for (cnt = 0; cnt < 5; cnt++) { + val64 = readq(&bar0->mc_rldram_test_ctrl); + if (val64 & MC_RLDRAM_TEST_DONE) + break; + msleep(500); + } + + if (cnt == 5) + break; + + val64 = readq(&bar0->mc_rldram_test_ctrl); + if (!(val64 & MC_RLDRAM_TEST_PASS)) + test_fail = 1; + + iteration++; + } + + *data = test_fail; + + /* Bring the adapter out of test mode */ + SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF); + + return test_fail; +} + +/** + * s2io_ethtool_test - conducts 6 tsets to determine the health of card. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @ethtest : pointer to a ethtool command specific structure that will be + * returned to the user. + * @data : variable that returns the result of each of the test + * conducted by the driver. + * Description: + * This function conducts 6 tests ( 4 offline and 2 online) to determine + * the health of the card. + * Return value: + * void + */ + +static void s2io_ethtool_test(struct net_device *dev, + struct ethtool_test *ethtest, + uint64_t *data) +{ + struct s2io_nic *sp = netdev_priv(dev); + int orig_state = netif_running(sp->dev); + + if (ethtest->flags == ETH_TEST_FL_OFFLINE) { + /* Offline Tests. */ + if (orig_state) + s2io_close(sp->dev); + + if (s2io_register_test(sp, &data[0])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + s2io_reset(sp); + + if (s2io_rldram_test(sp, &data[3])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + s2io_reset(sp); + + if (s2io_eeprom_test(sp, &data[1])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + if (s2io_bist_test(sp, &data[4])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + if (orig_state) + s2io_open(sp->dev); + + data[2] = 0; + } else { + /* Online Tests. */ + if (!orig_state) { + DBG_PRINT(ERR_DBG, "%s: is not up, cannot run test\n", + dev->name); + data[0] = -1; + data[1] = -1; + data[2] = -1; + data[3] = -1; + data[4] = -1; + } + + if (s2io_link_test(sp, &data[2])) + ethtest->flags |= ETH_TEST_FL_FAILED; + + data[0] = 0; + data[1] = 0; + data[3] = 0; + data[4] = 0; + } +} + +static void s2io_get_ethtool_stats(struct net_device *dev, + struct ethtool_stats *estats, + u64 *tmp_stats) +{ + int i = 0, k; + struct s2io_nic *sp = netdev_priv(dev); + struct stat_block *stats = sp->mac_control.stats_info; + struct swStat *swstats = &stats->sw_stat; + struct xpakStat *xstats = &stats->xpak_stat; + + s2io_updt_stats(sp); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_frms_oflow) << 32 | + le32_to_cpu(stats->tmac_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_data_octets_oflow) << 32 | + le32_to_cpu(stats->tmac_data_octets); + tmp_stats[i++] = le64_to_cpu(stats->tmac_drop_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_mcst_frms_oflow) << 32 | + le32_to_cpu(stats->tmac_mcst_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_bcst_frms_oflow) << 32 | + le32_to_cpu(stats->tmac_bcst_frms); + tmp_stats[i++] = le64_to_cpu(stats->tmac_pause_ctrl_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_ttl_octets_oflow) << 32 | + le32_to_cpu(stats->tmac_ttl_octets); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_ucst_frms_oflow) << 32 | + le32_to_cpu(stats->tmac_ucst_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_nucst_frms_oflow) << 32 | + le32_to_cpu(stats->tmac_nucst_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_any_err_frms_oflow) << 32 | + le32_to_cpu(stats->tmac_any_err_frms); + tmp_stats[i++] = le64_to_cpu(stats->tmac_ttl_less_fb_octets); + tmp_stats[i++] = le64_to_cpu(stats->tmac_vld_ip_octets); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_vld_ip_oflow) << 32 | + le32_to_cpu(stats->tmac_vld_ip); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_drop_ip_oflow) << 32 | + le32_to_cpu(stats->tmac_drop_ip); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_icmp_oflow) << 32 | + le32_to_cpu(stats->tmac_icmp); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->tmac_rst_tcp_oflow) << 32 | + le32_to_cpu(stats->tmac_rst_tcp); + tmp_stats[i++] = le64_to_cpu(stats->tmac_tcp); + tmp_stats[i++] = (u64)le32_to_cpu(stats->tmac_udp_oflow) << 32 | + le32_to_cpu(stats->tmac_udp); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_vld_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_vld_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_data_octets_oflow) << 32 | + le32_to_cpu(stats->rmac_data_octets); + tmp_stats[i++] = le64_to_cpu(stats->rmac_fcs_err_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_drop_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_vld_mcst_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_vld_mcst_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_vld_bcst_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_vld_bcst_frms); + tmp_stats[i++] = le32_to_cpu(stats->rmac_in_rng_len_err_frms); + tmp_stats[i++] = le32_to_cpu(stats->rmac_out_rng_len_err_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_long_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_pause_ctrl_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_unsup_ctrl_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_ttl_octets_oflow) << 32 | + le32_to_cpu(stats->rmac_ttl_octets); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_accepted_ucst_frms_oflow) << 32 + | le32_to_cpu(stats->rmac_accepted_ucst_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_accepted_nucst_frms_oflow) + << 32 | le32_to_cpu(stats->rmac_accepted_nucst_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_discarded_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_discarded_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_drop_events_oflow) + << 32 | le32_to_cpu(stats->rmac_drop_events); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_less_fb_octets); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_usized_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_usized_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_osized_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_osized_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_frag_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_frag_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_jabber_frms_oflow) << 32 | + le32_to_cpu(stats->rmac_jabber_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_64_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_65_127_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_128_255_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_256_511_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_512_1023_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_1024_1518_frms); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_ip_oflow) << 32 | + le32_to_cpu(stats->rmac_ip); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ip_octets); + tmp_stats[i++] = le32_to_cpu(stats->rmac_hdr_err_ip); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_drop_ip_oflow) << 32 | + le32_to_cpu(stats->rmac_drop_ip); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_icmp_oflow) << 32 | + le32_to_cpu(stats->rmac_icmp); + tmp_stats[i++] = le64_to_cpu(stats->rmac_tcp); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_udp_oflow) << 32 | + le32_to_cpu(stats->rmac_udp); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_err_drp_udp_oflow) << 32 | + le32_to_cpu(stats->rmac_err_drp_udp); + tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_err_sym); + tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q0); + tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q1); + tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q2); + tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q3); + tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q4); + tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q5); + tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q6); + tmp_stats[i++] = le64_to_cpu(stats->rmac_frms_q7); + tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q0); + tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q1); + tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q2); + tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q3); + tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q4); + tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q5); + tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q6); + tmp_stats[i++] = le16_to_cpu(stats->rmac_full_q7); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_pause_cnt_oflow) << 32 | + le32_to_cpu(stats->rmac_pause_cnt); + tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_data_err_cnt); + tmp_stats[i++] = le64_to_cpu(stats->rmac_xgmii_ctrl_err_cnt); + tmp_stats[i++] = + (u64)le32_to_cpu(stats->rmac_accepted_ip_oflow) << 32 | + le32_to_cpu(stats->rmac_accepted_ip); + tmp_stats[i++] = le32_to_cpu(stats->rmac_err_tcp); + tmp_stats[i++] = le32_to_cpu(stats->rd_req_cnt); + tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_cnt); + tmp_stats[i++] = le32_to_cpu(stats->new_rd_req_rtry_cnt); + tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_cnt); + tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_rd_ack_cnt); + tmp_stats[i++] = le32_to_cpu(stats->wr_req_cnt); + tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_cnt); + tmp_stats[i++] = le32_to_cpu(stats->new_wr_req_rtry_cnt); + tmp_stats[i++] = le32_to_cpu(stats->wr_rtry_cnt); + tmp_stats[i++] = le32_to_cpu(stats->wr_disc_cnt); + tmp_stats[i++] = le32_to_cpu(stats->rd_rtry_wr_ack_cnt); + tmp_stats[i++] = le32_to_cpu(stats->txp_wr_cnt); + tmp_stats[i++] = le32_to_cpu(stats->txd_rd_cnt); + tmp_stats[i++] = le32_to_cpu(stats->txd_wr_cnt); + tmp_stats[i++] = le32_to_cpu(stats->rxd_rd_cnt); + tmp_stats[i++] = le32_to_cpu(stats->rxd_wr_cnt); + tmp_stats[i++] = le32_to_cpu(stats->txf_rd_cnt); + tmp_stats[i++] = le32_to_cpu(stats->rxf_wr_cnt); + + /* Enhanced statistics exist only for Hercules */ + if (sp->device_type == XFRAME_II_DEVICE) { + tmp_stats[i++] = + le64_to_cpu(stats->rmac_ttl_1519_4095_frms); + tmp_stats[i++] = + le64_to_cpu(stats->rmac_ttl_4096_8191_frms); + tmp_stats[i++] = + le64_to_cpu(stats->rmac_ttl_8192_max_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_ttl_gt_max_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_osized_alt_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_jabber_alt_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_gt_max_alt_frms); + tmp_stats[i++] = le64_to_cpu(stats->rmac_vlan_frms); + tmp_stats[i++] = le32_to_cpu(stats->rmac_len_discard); + tmp_stats[i++] = le32_to_cpu(stats->rmac_fcs_discard); + tmp_stats[i++] = le32_to_cpu(stats->rmac_pf_discard); + tmp_stats[i++] = le32_to_cpu(stats->rmac_da_discard); + tmp_stats[i++] = le32_to_cpu(stats->rmac_red_discard); + tmp_stats[i++] = le32_to_cpu(stats->rmac_rts_discard); + tmp_stats[i++] = le32_to_cpu(stats->rmac_ingm_full_discard); + tmp_stats[i++] = le32_to_cpu(stats->link_fault_cnt); + } + + tmp_stats[i++] = 0; + tmp_stats[i++] = swstats->single_ecc_errs; + tmp_stats[i++] = swstats->double_ecc_errs; + tmp_stats[i++] = swstats->parity_err_cnt; + tmp_stats[i++] = swstats->serious_err_cnt; + tmp_stats[i++] = swstats->soft_reset_cnt; + tmp_stats[i++] = swstats->fifo_full_cnt; + for (k = 0; k < MAX_RX_RINGS; k++) + tmp_stats[i++] = swstats->ring_full_cnt[k]; + tmp_stats[i++] = xstats->alarm_transceiver_temp_high; + tmp_stats[i++] = xstats->alarm_transceiver_temp_low; + tmp_stats[i++] = xstats->alarm_laser_bias_current_high; + tmp_stats[i++] = xstats->alarm_laser_bias_current_low; + tmp_stats[i++] = xstats->alarm_laser_output_power_high; + tmp_stats[i++] = xstats->alarm_laser_output_power_low; + tmp_stats[i++] = xstats->warn_transceiver_temp_high; + tmp_stats[i++] = xstats->warn_transceiver_temp_low; + tmp_stats[i++] = xstats->warn_laser_bias_current_high; + tmp_stats[i++] = xstats->warn_laser_bias_current_low; + tmp_stats[i++] = xstats->warn_laser_output_power_high; + tmp_stats[i++] = xstats->warn_laser_output_power_low; + tmp_stats[i++] = swstats->clubbed_frms_cnt; + tmp_stats[i++] = swstats->sending_both; + tmp_stats[i++] = swstats->outof_sequence_pkts; + tmp_stats[i++] = swstats->flush_max_pkts; + if (swstats->num_aggregations) { + u64 tmp = swstats->sum_avg_pkts_aggregated; + int count = 0; + /* + * Since 64-bit divide does not work on all platforms, + * do repeated subtraction. + */ + while (tmp >= swstats->num_aggregations) { + tmp -= swstats->num_aggregations; + count++; + } + tmp_stats[i++] = count; + } else + tmp_stats[i++] = 0; + tmp_stats[i++] = swstats->mem_alloc_fail_cnt; + tmp_stats[i++] = swstats->pci_map_fail_cnt; + tmp_stats[i++] = swstats->watchdog_timer_cnt; + tmp_stats[i++] = swstats->mem_allocated; + tmp_stats[i++] = swstats->mem_freed; + tmp_stats[i++] = swstats->link_up_cnt; + tmp_stats[i++] = swstats->link_down_cnt; + tmp_stats[i++] = swstats->link_up_time; + tmp_stats[i++] = swstats->link_down_time; + + tmp_stats[i++] = swstats->tx_buf_abort_cnt; + tmp_stats[i++] = swstats->tx_desc_abort_cnt; + tmp_stats[i++] = swstats->tx_parity_err_cnt; + tmp_stats[i++] = swstats->tx_link_loss_cnt; + tmp_stats[i++] = swstats->tx_list_proc_err_cnt; + + tmp_stats[i++] = swstats->rx_parity_err_cnt; + tmp_stats[i++] = swstats->rx_abort_cnt; + tmp_stats[i++] = swstats->rx_parity_abort_cnt; + tmp_stats[i++] = swstats->rx_rda_fail_cnt; + tmp_stats[i++] = swstats->rx_unkn_prot_cnt; + tmp_stats[i++] = swstats->rx_fcs_err_cnt; + tmp_stats[i++] = swstats->rx_buf_size_err_cnt; + tmp_stats[i++] = swstats->rx_rxd_corrupt_cnt; + tmp_stats[i++] = swstats->rx_unkn_err_cnt; + tmp_stats[i++] = swstats->tda_err_cnt; + tmp_stats[i++] = swstats->pfc_err_cnt; + tmp_stats[i++] = swstats->pcc_err_cnt; + tmp_stats[i++] = swstats->tti_err_cnt; + tmp_stats[i++] = swstats->tpa_err_cnt; + tmp_stats[i++] = swstats->sm_err_cnt; + tmp_stats[i++] = swstats->lso_err_cnt; + tmp_stats[i++] = swstats->mac_tmac_err_cnt; + tmp_stats[i++] = swstats->mac_rmac_err_cnt; + tmp_stats[i++] = swstats->xgxs_txgxs_err_cnt; + tmp_stats[i++] = swstats->xgxs_rxgxs_err_cnt; + tmp_stats[i++] = swstats->rc_err_cnt; + tmp_stats[i++] = swstats->prc_pcix_err_cnt; + tmp_stats[i++] = swstats->rpa_err_cnt; + tmp_stats[i++] = swstats->rda_err_cnt; + tmp_stats[i++] = swstats->rti_err_cnt; + tmp_stats[i++] = swstats->mc_err_cnt; +} + +static int s2io_ethtool_get_regs_len(struct net_device *dev) +{ + return XENA_REG_SPACE; +} + + +static int s2io_get_eeprom_len(struct net_device *dev) +{ + return XENA_EEPROM_SPACE; +} + +static int s2io_get_sset_count(struct net_device *dev, int sset) +{ + struct s2io_nic *sp = netdev_priv(dev); + + switch (sset) { + case ETH_SS_TEST: + return S2IO_TEST_LEN; + case ETH_SS_STATS: + switch (sp->device_type) { + case XFRAME_I_DEVICE: + return XFRAME_I_STAT_LEN; + case XFRAME_II_DEVICE: + return XFRAME_II_STAT_LEN; + default: + return 0; + } + default: + return -EOPNOTSUPP; + } +} + +static void s2io_ethtool_get_strings(struct net_device *dev, + u32 stringset, u8 *data) +{ + int stat_size = 0; + struct s2io_nic *sp = netdev_priv(dev); + + switch (stringset) { + case ETH_SS_TEST: + memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); + break; + case ETH_SS_STATS: + stat_size = sizeof(ethtool_xena_stats_keys); + memcpy(data, ðtool_xena_stats_keys, stat_size); + if (sp->device_type == XFRAME_II_DEVICE) { + memcpy(data + stat_size, + ðtool_enhanced_stats_keys, + sizeof(ethtool_enhanced_stats_keys)); + stat_size += sizeof(ethtool_enhanced_stats_keys); + } + + memcpy(data + stat_size, ðtool_driver_stats_keys, + sizeof(ethtool_driver_stats_keys)); + } +} + +static int s2io_set_features(struct net_device *dev, u32 features) +{ + struct s2io_nic *sp = netdev_priv(dev); + u32 changed = (features ^ dev->features) & NETIF_F_LRO; + + if (changed && netif_running(dev)) { + int rc; + + s2io_stop_all_tx_queue(sp); + s2io_card_down(sp); + dev->features = features; + rc = s2io_card_up(sp); + if (rc) + s2io_reset(sp); + else + s2io_start_all_tx_queue(sp); + + return rc ? rc : 1; + } + + return 0; +} + +static const struct ethtool_ops netdev_ethtool_ops = { + .get_settings = s2io_ethtool_gset, + .set_settings = s2io_ethtool_sset, + .get_drvinfo = s2io_ethtool_gdrvinfo, + .get_regs_len = s2io_ethtool_get_regs_len, + .get_regs = s2io_ethtool_gregs, + .get_link = ethtool_op_get_link, + .get_eeprom_len = s2io_get_eeprom_len, + .get_eeprom = s2io_ethtool_geeprom, + .set_eeprom = s2io_ethtool_seeprom, + .get_ringparam = s2io_ethtool_gringparam, + .get_pauseparam = s2io_ethtool_getpause_data, + .set_pauseparam = s2io_ethtool_setpause_data, + .self_test = s2io_ethtool_test, + .get_strings = s2io_ethtool_get_strings, + .set_phys_id = s2io_ethtool_set_led, + .get_ethtool_stats = s2io_get_ethtool_stats, + .get_sset_count = s2io_get_sset_count, +}; + +/** + * s2io_ioctl - Entry point for the Ioctl + * @dev : Device pointer. + * @ifr : An IOCTL specefic structure, that can contain a pointer to + * a proprietary structure used to pass information to the driver. + * @cmd : This is used to distinguish between the different commands that + * can be passed to the IOCTL functions. + * Description: + * Currently there are no special functionality supported in IOCTL, hence + * function always return EOPNOTSUPPORTED + */ + +static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) +{ + return -EOPNOTSUPP; +} + +/** + * s2io_change_mtu - entry point to change MTU size for the device. + * @dev : device pointer. + * @new_mtu : the new MTU size for the device. + * Description: A driver entry point to change MTU size for the device. + * Before changing the MTU the device must be stopped. + * Return value: + * 0 on success and an appropriate (-)ve integer as defined in errno.h + * file on failure. + */ + +static int s2io_change_mtu(struct net_device *dev, int new_mtu) +{ + struct s2io_nic *sp = netdev_priv(dev); + int ret = 0; + + if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { + DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", dev->name); + return -EPERM; + } + + dev->mtu = new_mtu; + if (netif_running(dev)) { + s2io_stop_all_tx_queue(sp); + s2io_card_down(sp); + ret = s2io_card_up(sp); + if (ret) { + DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", + __func__); + return ret; + } + s2io_wake_all_tx_queue(sp); + } else { /* Device is down */ + struct XENA_dev_config __iomem *bar0 = sp->bar0; + u64 val64 = new_mtu; + + writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); + } + + return ret; +} + +/** + * s2io_set_link - Set the LInk status + * @data: long pointer to device private structue + * Description: Sets the link status for the adapter + */ + +static void s2io_set_link(struct work_struct *work) +{ + struct s2io_nic *nic = container_of(work, struct s2io_nic, + set_link_task); + struct net_device *dev = nic->dev; + struct XENA_dev_config __iomem *bar0 = nic->bar0; + register u64 val64; + u16 subid; + + rtnl_lock(); + + if (!netif_running(dev)) + goto out_unlock; + + if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) { + /* The card is being reset, no point doing anything */ + goto out_unlock; + } + + subid = nic->pdev->subsystem_device; + if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) { + /* + * Allow a small delay for the NICs self initiated + * cleanup to complete. + */ + msleep(100); + } + + val64 = readq(&bar0->adapter_status); + if (LINK_IS_UP(val64)) { + if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) { + if (verify_xena_quiescence(nic)) { + val64 = readq(&bar0->adapter_control); + val64 |= ADAPTER_CNTL_EN; + writeq(val64, &bar0->adapter_control); + if (CARDS_WITH_FAULTY_LINK_INDICATORS( + nic->device_type, subid)) { + val64 = readq(&bar0->gpio_control); + val64 |= GPIO_CTRL_GPIO_0; + writeq(val64, &bar0->gpio_control); + val64 = readq(&bar0->gpio_control); + } else { + val64 |= ADAPTER_LED_ON; + writeq(val64, &bar0->adapter_control); + } + nic->device_enabled_once = true; + } else { + DBG_PRINT(ERR_DBG, + "%s: Error: device is not Quiescent\n", + dev->name); + s2io_stop_all_tx_queue(nic); + } + } + val64 = readq(&bar0->adapter_control); + val64 |= ADAPTER_LED_ON; + writeq(val64, &bar0->adapter_control); + s2io_link(nic, LINK_UP); + } else { + if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type, + subid)) { + val64 = readq(&bar0->gpio_control); + val64 &= ~GPIO_CTRL_GPIO_0; + writeq(val64, &bar0->gpio_control); + val64 = readq(&bar0->gpio_control); + } + /* turn off LED */ + val64 = readq(&bar0->adapter_control); + val64 = val64 & (~ADAPTER_LED_ON); + writeq(val64, &bar0->adapter_control); + s2io_link(nic, LINK_DOWN); + } + clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state)); + +out_unlock: + rtnl_unlock(); +} + +static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp, + struct buffAdd *ba, + struct sk_buff **skb, u64 *temp0, u64 *temp1, + u64 *temp2, int size) +{ + struct net_device *dev = sp->dev; + struct swStat *stats = &sp->mac_control.stats_info->sw_stat; + + if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) { + struct RxD1 *rxdp1 = (struct RxD1 *)rxdp; + /* allocate skb */ + if (*skb) { + DBG_PRINT(INFO_DBG, "SKB is not NULL\n"); + /* + * As Rx frame are not going to be processed, + * using same mapped address for the Rxd + * buffer pointer + */ + rxdp1->Buffer0_ptr = *temp0; + } else { + *skb = dev_alloc_skb(size); + if (!(*skb)) { + DBG_PRINT(INFO_DBG, + "%s: Out of memory to allocate %s\n", + dev->name, "1 buf mode SKBs"); + stats->mem_alloc_fail_cnt++; + return -ENOMEM ; + } + stats->mem_allocated += (*skb)->truesize; + /* storing the mapped addr in a temp variable + * such it will be used for next rxd whose + * Host Control is NULL + */ + rxdp1->Buffer0_ptr = *temp0 = + pci_map_single(sp->pdev, (*skb)->data, + size - NET_IP_ALIGN, + PCI_DMA_FROMDEVICE); + if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr)) + goto memalloc_failed; + rxdp->Host_Control = (unsigned long) (*skb); + } + } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) { + struct RxD3 *rxdp3 = (struct RxD3 *)rxdp; + /* Two buffer Mode */ + if (*skb) { + rxdp3->Buffer2_ptr = *temp2; + rxdp3->Buffer0_ptr = *temp0; + rxdp3->Buffer1_ptr = *temp1; + } else { + *skb = dev_alloc_skb(size); + if (!(*skb)) { + DBG_PRINT(INFO_DBG, + "%s: Out of memory to allocate %s\n", + dev->name, + "2 buf mode SKBs"); + stats->mem_alloc_fail_cnt++; + return -ENOMEM; + } + stats->mem_allocated += (*skb)->truesize; + rxdp3->Buffer2_ptr = *temp2 = + pci_map_single(sp->pdev, (*skb)->data, + dev->mtu + 4, + PCI_DMA_FROMDEVICE); + if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr)) + goto memalloc_failed; + rxdp3->Buffer0_ptr = *temp0 = + pci_map_single(sp->pdev, ba->ba_0, BUF0_LEN, + PCI_DMA_FROMDEVICE); + if (pci_dma_mapping_error(sp->pdev, + rxdp3->Buffer0_ptr)) { + pci_unmap_single(sp->pdev, + (dma_addr_t)rxdp3->Buffer2_ptr, + dev->mtu + 4, + PCI_DMA_FROMDEVICE); + goto memalloc_failed; + } + rxdp->Host_Control = (unsigned long) (*skb); + + /* Buffer-1 will be dummy buffer not used */ + rxdp3->Buffer1_ptr = *temp1 = + pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN, + PCI_DMA_FROMDEVICE); + if (pci_dma_mapping_error(sp->pdev, + rxdp3->Buffer1_ptr)) { + pci_unmap_single(sp->pdev, + (dma_addr_t)rxdp3->Buffer0_ptr, + BUF0_LEN, PCI_DMA_FROMDEVICE); + pci_unmap_single(sp->pdev, + (dma_addr_t)rxdp3->Buffer2_ptr, + dev->mtu + 4, + PCI_DMA_FROMDEVICE); + goto memalloc_failed; + } + } + } + return 0; + +memalloc_failed: + stats->pci_map_fail_cnt++; + stats->mem_freed += (*skb)->truesize; + dev_kfree_skb(*skb); + return -ENOMEM; +} + +static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp, + int size) +{ + struct net_device *dev = sp->dev; + if (sp->rxd_mode == RXD_MODE_1) { + rxdp->Control_2 = SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN); + } else if (sp->rxd_mode == RXD_MODE_3B) { + rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN); + rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1); + rxdp->Control_2 |= SET_BUFFER2_SIZE_3(dev->mtu + 4); + } +} + +static int rxd_owner_bit_reset(struct s2io_nic *sp) +{ + int i, j, k, blk_cnt = 0, size; + struct config_param *config = &sp->config; + struct mac_info *mac_control = &sp->mac_control; + struct net_device *dev = sp->dev; + struct RxD_t *rxdp = NULL; + struct sk_buff *skb = NULL; + struct buffAdd *ba = NULL; + u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0; + + /* Calculate the size based on ring mode */ + size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + + HEADER_802_2_SIZE + HEADER_SNAP_SIZE; + if (sp->rxd_mode == RXD_MODE_1) + size += NET_IP_ALIGN; + else if (sp->rxd_mode == RXD_MODE_3B) + size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4; + + for (i = 0; i < config->rx_ring_num; i++) { + struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; + struct ring_info *ring = &mac_control->rings[i]; + + blk_cnt = rx_cfg->num_rxd / (rxd_count[sp->rxd_mode] + 1); + + for (j = 0; j < blk_cnt; j++) { + for (k = 0; k < rxd_count[sp->rxd_mode]; k++) { + rxdp = ring->rx_blocks[j].rxds[k].virt_addr; + if (sp->rxd_mode == RXD_MODE_3B) + ba = &ring->ba[j][k]; + if (set_rxd_buffer_pointer(sp, rxdp, ba, &skb, + (u64 *)&temp0_64, + (u64 *)&temp1_64, + (u64 *)&temp2_64, + size) == -ENOMEM) { + return 0; + } + + set_rxd_buffer_size(sp, rxdp, size); + wmb(); + /* flip the Ownership bit to Hardware */ + rxdp->Control_1 |= RXD_OWN_XENA; + } + } + } + return 0; + +} + +static int s2io_add_isr(struct s2io_nic *sp) +{ + int ret = 0; + struct net_device *dev = sp->dev; + int err = 0; + + if (sp->config.intr_type == MSI_X) + ret = s2io_enable_msi_x(sp); + if (ret) { + DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name); + sp->config.intr_type = INTA; + } + + /* + * Store the values of the MSIX table in + * the struct s2io_nic structure + */ + store_xmsi_data(sp); + + /* After proper initialization of H/W, register ISR */ + if (sp->config.intr_type == MSI_X) { + int i, msix_rx_cnt = 0; + + for (i = 0; i < sp->num_entries; i++) { + if (sp->s2io_entries[i].in_use == MSIX_FLG) { + if (sp->s2io_entries[i].type == + MSIX_RING_TYPE) { + sprintf(sp->desc[i], "%s:MSI-X-%d-RX", + dev->name, i); + err = request_irq(sp->entries[i].vector, + s2io_msix_ring_handle, + 0, + sp->desc[i], + sp->s2io_entries[i].arg); + } else if (sp->s2io_entries[i].type == + MSIX_ALARM_TYPE) { + sprintf(sp->desc[i], "%s:MSI-X-%d-TX", + dev->name, i); + err = request_irq(sp->entries[i].vector, + s2io_msix_fifo_handle, + 0, + sp->desc[i], + sp->s2io_entries[i].arg); + + } + /* if either data or addr is zero print it. */ + if (!(sp->msix_info[i].addr && + sp->msix_info[i].data)) { + DBG_PRINT(ERR_DBG, + "%s @Addr:0x%llx Data:0x%llx\n", + sp->desc[i], + (unsigned long long) + sp->msix_info[i].addr, + (unsigned long long) + ntohl(sp->msix_info[i].data)); + } else + msix_rx_cnt++; + if (err) { + remove_msix_isr(sp); + + DBG_PRINT(ERR_DBG, + "%s:MSI-X-%d registration " + "failed\n", dev->name, i); + + DBG_PRINT(ERR_DBG, + "%s: Defaulting to INTA\n", + dev->name); + sp->config.intr_type = INTA; + break; + } + sp->s2io_entries[i].in_use = + MSIX_REGISTERED_SUCCESS; + } + } + if (!err) { + pr_info("MSI-X-RX %d entries enabled\n", --msix_rx_cnt); + DBG_PRINT(INFO_DBG, + "MSI-X-TX entries enabled through alarm vector\n"); + } + } + if (sp->config.intr_type == INTA) { + err = request_irq((int)sp->pdev->irq, s2io_isr, IRQF_SHARED, + sp->name, dev); + if (err) { + DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", + dev->name); + return -1; + } + } + return 0; +} + +static void s2io_rem_isr(struct s2io_nic *sp) +{ + if (sp->config.intr_type == MSI_X) + remove_msix_isr(sp); + else + remove_inta_isr(sp); +} + +static void do_s2io_card_down(struct s2io_nic *sp, int do_io) +{ + int cnt = 0; + struct XENA_dev_config __iomem *bar0 = sp->bar0; + register u64 val64 = 0; + struct config_param *config; + config = &sp->config; + + if (!is_s2io_card_up(sp)) + return; + + del_timer_sync(&sp->alarm_timer); + /* If s2io_set_link task is executing, wait till it completes. */ + while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) + msleep(50); + clear_bit(__S2IO_STATE_CARD_UP, &sp->state); + + /* Disable napi */ + if (sp->config.napi) { + int off = 0; + if (config->intr_type == MSI_X) { + for (; off < sp->config.rx_ring_num; off++) + napi_disable(&sp->mac_control.rings[off].napi); + } + else + napi_disable(&sp->napi); + } + + /* disable Tx and Rx traffic on the NIC */ + if (do_io) + stop_nic(sp); + + s2io_rem_isr(sp); + + /* stop the tx queue, indicate link down */ + s2io_link(sp, LINK_DOWN); + + /* Check if the device is Quiescent and then Reset the NIC */ + while (do_io) { + /* As per the HW requirement we need to replenish the + * receive buffer to avoid the ring bump. Since there is + * no intention of processing the Rx frame at this pointwe are + * just setting the ownership bit of rxd in Each Rx + * ring to HW and set the appropriate buffer size + * based on the ring mode + */ + rxd_owner_bit_reset(sp); + + val64 = readq(&bar0->adapter_status); + if (verify_xena_quiescence(sp)) { + if (verify_pcc_quiescent(sp, sp->device_enabled_once)) + break; + } + + msleep(50); + cnt++; + if (cnt == 10) { + DBG_PRINT(ERR_DBG, "Device not Quiescent - " + "adapter status reads 0x%llx\n", + (unsigned long long)val64); + break; + } + } + if (do_io) + s2io_reset(sp); + + /* Free all Tx buffers */ + free_tx_buffers(sp); + + /* Free all Rx buffers */ + free_rx_buffers(sp); + + clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state)); +} + +static void s2io_card_down(struct s2io_nic *sp) +{ + do_s2io_card_down(sp, 1); +} + +static int s2io_card_up(struct s2io_nic *sp) +{ + int i, ret = 0; + struct config_param *config; + struct mac_info *mac_control; + struct net_device *dev = (struct net_device *)sp->dev; + u16 interruptible; + + /* Initialize the H/W I/O registers */ + ret = init_nic(sp); + if (ret != 0) { + DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", + dev->name); + if (ret != -EIO) + s2io_reset(sp); + return ret; + } + + /* + * Initializing the Rx buffers. For now we are considering only 1 + * Rx ring and initializing buffers into 30 Rx blocks + */ + config = &sp->config; + mac_control = &sp->mac_control; + + for (i = 0; i < config->rx_ring_num; i++) { + struct ring_info *ring = &mac_control->rings[i]; + + ring->mtu = dev->mtu; + ring->lro = !!(dev->features & NETIF_F_LRO); + ret = fill_rx_buffers(sp, ring, 1); + if (ret) { + DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", + dev->name); + s2io_reset(sp); + free_rx_buffers(sp); + return -ENOMEM; + } + DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, + ring->rx_bufs_left); + } + + /* Initialise napi */ + if (config->napi) { + if (config->intr_type == MSI_X) { + for (i = 0; i < sp->config.rx_ring_num; i++) + napi_enable(&sp->mac_control.rings[i].napi); + } else { + napi_enable(&sp->napi); + } + } + + /* Maintain the state prior to the open */ + if (sp->promisc_flg) + sp->promisc_flg = 0; + if (sp->m_cast_flg) { + sp->m_cast_flg = 0; + sp->all_multi_pos = 0; + } + + /* Setting its receive mode */ + s2io_set_multicast(dev); + + if (dev->features & NETIF_F_LRO) { + /* Initialize max aggregatable pkts per session based on MTU */ + sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu; + /* Check if we can use (if specified) user provided value */ + if (lro_max_pkts < sp->lro_max_aggr_per_sess) + sp->lro_max_aggr_per_sess = lro_max_pkts; + } + + /* Enable Rx Traffic and interrupts on the NIC */ + if (start_nic(sp)) { + DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); + s2io_reset(sp); + free_rx_buffers(sp); + return -ENODEV; + } + + /* Add interrupt service routine */ + if (s2io_add_isr(sp) != 0) { + if (sp->config.intr_type == MSI_X) + s2io_rem_isr(sp); + s2io_reset(sp); + free_rx_buffers(sp); + return -ENODEV; + } + + S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2)); + + set_bit(__S2IO_STATE_CARD_UP, &sp->state); + + /* Enable select interrupts */ + en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS); + if (sp->config.intr_type != INTA) { + interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR; + en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); + } else { + interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR; + interruptible |= TX_PIC_INTR; + en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS); + } + + return 0; +} + +/** + * s2io_restart_nic - Resets the NIC. + * @data : long pointer to the device private structure + * Description: + * This function is scheduled to be run by the s2io_tx_watchdog + * function after 0.5 secs to reset the NIC. The idea is to reduce + * the run time of the watch dog routine which is run holding a + * spin lock. + */ + +static void s2io_restart_nic(struct work_struct *work) +{ + struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task); + struct net_device *dev = sp->dev; + + rtnl_lock(); + + if (!netif_running(dev)) + goto out_unlock; + + s2io_card_down(sp); + if (s2io_card_up(sp)) { + DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", dev->name); + } + s2io_wake_all_tx_queue(sp); + DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", dev->name); +out_unlock: + rtnl_unlock(); +} + +/** + * s2io_tx_watchdog - Watchdog for transmit side. + * @dev : Pointer to net device structure + * Description: + * This function is triggered if the Tx Queue is stopped + * for a pre-defined amount of time when the Interface is still up. + * If the Interface is jammed in such a situation, the hardware is + * reset (by s2io_close) and restarted again (by s2io_open) to + * overcome any problem that might have been caused in the hardware. + * Return value: + * void + */ + +static void s2io_tx_watchdog(struct net_device *dev) +{ + struct s2io_nic *sp = netdev_priv(dev); + struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; + + if (netif_carrier_ok(dev)) { + swstats->watchdog_timer_cnt++; + schedule_work(&sp->rst_timer_task); + swstats->soft_reset_cnt++; + } +} + +/** + * rx_osm_handler - To perform some OS related operations on SKB. + * @sp: private member of the device structure,pointer to s2io_nic structure. + * @skb : the socket buffer pointer. + * @len : length of the packet + * @cksum : FCS checksum of the frame. + * @ring_no : the ring from which this RxD was extracted. + * Description: + * This function is called by the Rx interrupt serivce routine to perform + * some OS related operations on the SKB before passing it to the upper + * layers. It mainly checks if the checksum is OK, if so adds it to the + * SKBs cksum variable, increments the Rx packet count and passes the SKB + * to the upper layer. If the checksum is wrong, it increments the Rx + * packet error count, frees the SKB and returns error. + * Return value: + * SUCCESS on success and -1 on failure. + */ +static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp) +{ + struct s2io_nic *sp = ring_data->nic; + struct net_device *dev = (struct net_device *)ring_data->dev; + struct sk_buff *skb = (struct sk_buff *) + ((unsigned long)rxdp->Host_Control); + int ring_no = ring_data->ring_no; + u16 l3_csum, l4_csum; + unsigned long long err = rxdp->Control_1 & RXD_T_CODE; + struct lro *uninitialized_var(lro); + u8 err_mask; + struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; + + skb->dev = dev; + + if (err) { + /* Check for parity error */ + if (err & 0x1) + swstats->parity_err_cnt++; + + err_mask = err >> 48; + switch (err_mask) { + case 1: + swstats->rx_parity_err_cnt++; + break; + + case 2: + swstats->rx_abort_cnt++; + break; + + case 3: + swstats->rx_parity_abort_cnt++; + break; + + case 4: + swstats->rx_rda_fail_cnt++; + break; + + case 5: + swstats->rx_unkn_prot_cnt++; + break; + + case 6: + swstats->rx_fcs_err_cnt++; + break; + + case 7: + swstats->rx_buf_size_err_cnt++; + break; + + case 8: + swstats->rx_rxd_corrupt_cnt++; + break; + + case 15: + swstats->rx_unkn_err_cnt++; + break; + } + /* + * Drop the packet if bad transfer code. Exception being + * 0x5, which could be due to unsupported IPv6 extension header. + * In this case, we let stack handle the packet. + * Note that in this case, since checksum will be incorrect, + * stack will validate the same. + */ + if (err_mask != 0x5) { + DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n", + dev->name, err_mask); + dev->stats.rx_crc_errors++; + swstats->mem_freed + += skb->truesize; + dev_kfree_skb(skb); + ring_data->rx_bufs_left -= 1; + rxdp->Host_Control = 0; + return 0; + } + } + + rxdp->Host_Control = 0; + if (sp->rxd_mode == RXD_MODE_1) { + int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2); + + skb_put(skb, len); + } else if (sp->rxd_mode == RXD_MODE_3B) { + int get_block = ring_data->rx_curr_get_info.block_index; + int get_off = ring_data->rx_curr_get_info.offset; + int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2); + int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2); + unsigned char *buff = skb_push(skb, buf0_len); + + struct buffAdd *ba = &ring_data->ba[get_block][get_off]; + memcpy(buff, ba->ba_0, buf0_len); + skb_put(skb, buf2_len); + } + + if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && + ((!ring_data->lro) || + (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) && + (dev->features & NETIF_F_RXCSUM)) { + l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); + l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); + if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { + /* + * NIC verifies if the Checksum of the received + * frame is Ok or not and accordingly returns + * a flag in the RxD. + */ + skb->ip_summed = CHECKSUM_UNNECESSARY; + if (ring_data->lro) { + u32 tcp_len = 0; + u8 *tcp; + int ret = 0; + + ret = s2io_club_tcp_session(ring_data, + skb->data, &tcp, + &tcp_len, &lro, + rxdp, sp); + switch (ret) { + case 3: /* Begin anew */ + lro->parent = skb; + goto aggregate; + case 1: /* Aggregate */ + lro_append_pkt(sp, lro, skb, tcp_len); + goto aggregate; + case 4: /* Flush session */ + lro_append_pkt(sp, lro, skb, tcp_len); + queue_rx_frame(lro->parent, + lro->vlan_tag); + clear_lro_session(lro); + swstats->flush_max_pkts++; + goto aggregate; + case 2: /* Flush both */ + lro->parent->data_len = lro->frags_len; + swstats->sending_both++; + queue_rx_frame(lro->parent, + lro->vlan_tag); + clear_lro_session(lro); + goto send_up; + case 0: /* sessions exceeded */ + case -1: /* non-TCP or not L2 aggregatable */ + case 5: /* + * First pkt in session not + * L3/L4 aggregatable + */ + break; + default: + DBG_PRINT(ERR_DBG, + "%s: Samadhana!!\n", + __func__); + BUG(); + } + } + } else { + /* + * Packet with erroneous checksum, let the + * upper layers deal with it. + */ + skb_checksum_none_assert(skb); + } + } else + skb_checksum_none_assert(skb); + + swstats->mem_freed += skb->truesize; +send_up: + skb_record_rx_queue(skb, ring_no); + queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2)); +aggregate: + sp->mac_control.rings[ring_no].rx_bufs_left -= 1; + return SUCCESS; +} + +/** + * s2io_link - stops/starts the Tx queue. + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * @link : inidicates whether link is UP/DOWN. + * Description: + * This function stops/starts the Tx queue depending on whether the link + * status of the NIC is is down or up. This is called by the Alarm + * interrupt handler whenever a link change interrupt comes up. + * Return value: + * void. + */ + +static void s2io_link(struct s2io_nic *sp, int link) +{ + struct net_device *dev = (struct net_device *)sp->dev; + struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; + + if (link != sp->last_link_state) { + init_tti(sp, link); + if (link == LINK_DOWN) { + DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); + s2io_stop_all_tx_queue(sp); + netif_carrier_off(dev); + if (swstats->link_up_cnt) + swstats->link_up_time = + jiffies - sp->start_time; + swstats->link_down_cnt++; + } else { + DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); + if (swstats->link_down_cnt) + swstats->link_down_time = + jiffies - sp->start_time; + swstats->link_up_cnt++; + netif_carrier_on(dev); + s2io_wake_all_tx_queue(sp); + } + } + sp->last_link_state = link; + sp->start_time = jiffies; +} + +/** + * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . + * @sp : private member of the device structure, which is a pointer to the + * s2io_nic structure. + * Description: + * This function initializes a few of the PCI and PCI-X configuration registers + * with recommended values. + * Return value: + * void + */ + +static void s2io_init_pci(struct s2io_nic *sp) +{ + u16 pci_cmd = 0, pcix_cmd = 0; + + /* Enable Data Parity Error Recovery in PCI-X command register. */ + pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + &(pcix_cmd)); + pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + (pcix_cmd | 1)); + pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, + &(pcix_cmd)); + + /* Set the PErr Response bit in PCI command register. */ + pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); + pci_write_config_word(sp->pdev, PCI_COMMAND, + (pci_cmd | PCI_COMMAND_PARITY)); + pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); +} + +static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type, + u8 *dev_multiq) +{ + int i; + + if ((tx_fifo_num > MAX_TX_FIFOS) || (tx_fifo_num < 1)) { + DBG_PRINT(ERR_DBG, "Requested number of tx fifos " + "(%d) not supported\n", tx_fifo_num); + + if (tx_fifo_num < 1) + tx_fifo_num = 1; + else + tx_fifo_num = MAX_TX_FIFOS; + + DBG_PRINT(ERR_DBG, "Default to %d tx fifos\n", tx_fifo_num); + } + + if (multiq) + *dev_multiq = multiq; + + if (tx_steering_type && (1 == tx_fifo_num)) { + if (tx_steering_type != TX_DEFAULT_STEERING) + DBG_PRINT(ERR_DBG, + "Tx steering is not supported with " + "one fifo. Disabling Tx steering.\n"); + tx_steering_type = NO_STEERING; + } + + if ((tx_steering_type < NO_STEERING) || + (tx_steering_type > TX_DEFAULT_STEERING)) { + DBG_PRINT(ERR_DBG, + "Requested transmit steering not supported\n"); + DBG_PRINT(ERR_DBG, "Disabling transmit steering\n"); + tx_steering_type = NO_STEERING; + } + + if (rx_ring_num > MAX_RX_RINGS) { + DBG_PRINT(ERR_DBG, + "Requested number of rx rings not supported\n"); + DBG_PRINT(ERR_DBG, "Default to %d rx rings\n", + MAX_RX_RINGS); + rx_ring_num = MAX_RX_RINGS; + } + + if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) { + DBG_PRINT(ERR_DBG, "Wrong intr_type requested. " + "Defaulting to INTA\n"); + *dev_intr_type = INTA; + } + + if ((*dev_intr_type == MSI_X) && + ((pdev->device != PCI_DEVICE_ID_HERC_WIN) && + (pdev->device != PCI_DEVICE_ID_HERC_UNI))) { + DBG_PRINT(ERR_DBG, "Xframe I does not support MSI_X. " + "Defaulting to INTA\n"); + *dev_intr_type = INTA; + } + + if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) { + DBG_PRINT(ERR_DBG, "Requested ring mode not supported\n"); + DBG_PRINT(ERR_DBG, "Defaulting to 1-buffer mode\n"); + rx_ring_mode = 1; + } + + for (i = 0; i < MAX_RX_RINGS; i++) + if (rx_ring_sz[i] > MAX_RX_BLOCKS_PER_RING) { + DBG_PRINT(ERR_DBG, "Requested rx ring size not " + "supported\nDefaulting to %d\n", + MAX_RX_BLOCKS_PER_RING); + rx_ring_sz[i] = MAX_RX_BLOCKS_PER_RING; + } + + return SUCCESS; +} + +/** + * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS + * or Traffic class respectively. + * @nic: device private variable + * Description: The function configures the receive steering to + * desired receive ring. + * Return Value: SUCCESS on success and + * '-1' on failure (endian settings incorrect). + */ +static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring) +{ + struct XENA_dev_config __iomem *bar0 = nic->bar0; + register u64 val64 = 0; + + if (ds_codepoint > 63) + return FAILURE; + + val64 = RTS_DS_MEM_DATA(ring); + writeq(val64, &bar0->rts_ds_mem_data); + + val64 = RTS_DS_MEM_CTRL_WE | + RTS_DS_MEM_CTRL_STROBE_NEW_CMD | + RTS_DS_MEM_CTRL_OFFSET(ds_codepoint); + + writeq(val64, &bar0->rts_ds_mem_ctrl); + + return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl, + RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED, + S2IO_BIT_RESET); +} + +static const struct net_device_ops s2io_netdev_ops = { + .ndo_open = s2io_open, + .ndo_stop = s2io_close, + .ndo_get_stats = s2io_get_stats, + .ndo_start_xmit = s2io_xmit, + .ndo_validate_addr = eth_validate_addr, + .ndo_set_multicast_list = s2io_set_multicast, + .ndo_do_ioctl = s2io_ioctl, + .ndo_set_mac_address = s2io_set_mac_addr, + .ndo_change_mtu = s2io_change_mtu, + .ndo_set_features = s2io_set_features, + .ndo_tx_timeout = s2io_tx_watchdog, +#ifdef CONFIG_NET_POLL_CONTROLLER + .ndo_poll_controller = s2io_netpoll, +#endif +}; + +/** + * s2io_init_nic - Initialization of the adapter . + * @pdev : structure containing the PCI related information of the device. + * @pre: List of PCI devices supported by the driver listed in s2io_tbl. + * Description: + * The function initializes an adapter identified by the pci_dec structure. + * All OS related initialization including memory and device structure and + * initlaization of the device private variable is done. Also the swapper + * control register is initialized to enable read and write into the I/O + * registers of the device. + * Return value: + * returns 0 on success and negative on failure. + */ + +static int __devinit +s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) +{ + struct s2io_nic *sp; + struct net_device *dev; + int i, j, ret; + int dma_flag = false; + u32 mac_up, mac_down; + u64 val64 = 0, tmp64 = 0; + struct XENA_dev_config __iomem *bar0 = NULL; + u16 subid; + struct config_param *config; + struct mac_info *mac_control; + int mode; + u8 dev_intr_type = intr_type; + u8 dev_multiq = 0; + + ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq); + if (ret) + return ret; + + ret = pci_enable_device(pdev); + if (ret) { + DBG_PRINT(ERR_DBG, + "%s: pci_enable_device failed\n", __func__); + return ret; + } + + if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { + DBG_PRINT(INIT_DBG, "%s: Using 64bit DMA\n", __func__); + dma_flag = true; + if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) { + DBG_PRINT(ERR_DBG, + "Unable to obtain 64bit DMA " + "for consistent allocations\n"); + pci_disable_device(pdev); + return -ENOMEM; + } + } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { + DBG_PRINT(INIT_DBG, "%s: Using 32bit DMA\n", __func__); + } else { + pci_disable_device(pdev); + return -ENOMEM; + } + ret = pci_request_regions(pdev, s2io_driver_name); + if (ret) { + DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x\n", + __func__, ret); + pci_disable_device(pdev); + return -ENODEV; + } + if (dev_multiq) + dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num); + else + dev = alloc_etherdev(sizeof(struct s2io_nic)); + if (dev == NULL) { + DBG_PRINT(ERR_DBG, "Device allocation failed\n"); + pci_disable_device(pdev); + pci_release_regions(pdev); + return -ENODEV; + } + + pci_set_master(pdev); + pci_set_drvdata(pdev, dev); + SET_NETDEV_DEV(dev, &pdev->dev); + + /* Private member variable initialized to s2io NIC structure */ + sp = netdev_priv(dev); + sp->dev = dev; + sp->pdev = pdev; + sp->high_dma_flag = dma_flag; + sp->device_enabled_once = false; + if (rx_ring_mode == 1) + sp->rxd_mode = RXD_MODE_1; + if (rx_ring_mode == 2) + sp->rxd_mode = RXD_MODE_3B; + + sp->config.intr_type = dev_intr_type; + + if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) || + (pdev->device == PCI_DEVICE_ID_HERC_UNI)) + sp->device_type = XFRAME_II_DEVICE; + else + sp->device_type = XFRAME_I_DEVICE; + + + /* Initialize some PCI/PCI-X fields of the NIC. */ + s2io_init_pci(sp); + + /* + * Setting the device configuration parameters. + * Most of these parameters can be specified by the user during + * module insertion as they are module loadable parameters. If + * these parameters are not not specified during load time, they + * are initialized with default values. + */ + config = &sp->config; + mac_control = &sp->mac_control; + + config->napi = napi; + config->tx_steering_type = tx_steering_type; + + /* Tx side parameters. */ + if (config->tx_steering_type == TX_PRIORITY_STEERING) + config->tx_fifo_num = MAX_TX_FIFOS; + else + config->tx_fifo_num = tx_fifo_num; + + /* Initialize the fifos used for tx steering */ + if (config->tx_fifo_num < 5) { + if (config->tx_fifo_num == 1) + sp->total_tcp_fifos = 1; + else + sp->total_tcp_fifos = config->tx_fifo_num - 1; + sp->udp_fifo_idx = config->tx_fifo_num - 1; + sp->total_udp_fifos = 1; + sp->other_fifo_idx = sp->total_tcp_fifos - 1; + } else { + sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM - + FIFO_OTHER_MAX_NUM); + sp->udp_fifo_idx = sp->total_tcp_fifos; + sp->total_udp_fifos = FIFO_UDP_MAX_NUM; + sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM; + } + + config->multiq = dev_multiq; + for (i = 0; i < config->tx_fifo_num; i++) { + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + + tx_cfg->fifo_len = tx_fifo_len[i]; + tx_cfg->fifo_priority = i; + } + + /* mapping the QoS priority to the configured fifos */ + for (i = 0; i < MAX_TX_FIFOS; i++) + config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i]; + + /* map the hashing selector table to the configured fifos */ + for (i = 0; i < config->tx_fifo_num; i++) + sp->fifo_selector[i] = fifo_selector[i]; + + + config->tx_intr_type = TXD_INT_TYPE_UTILZ; + for (i = 0; i < config->tx_fifo_num; i++) { + struct tx_fifo_config *tx_cfg = &config->tx_cfg[i]; + + tx_cfg->f_no_snoop = (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); + if (tx_cfg->fifo_len < 65) { + config->tx_intr_type = TXD_INT_TYPE_PER_LIST; + break; + } + } + /* + 2 because one Txd for skb->data and one Txd for UFO */ + config->max_txds = MAX_SKB_FRAGS + 2; + + /* Rx side parameters. */ + config->rx_ring_num = rx_ring_num; + for (i = 0; i < config->rx_ring_num; i++) { + struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; + struct ring_info *ring = &mac_control->rings[i]; + + rx_cfg->num_rxd = rx_ring_sz[i] * (rxd_count[sp->rxd_mode] + 1); + rx_cfg->ring_priority = i; + ring->rx_bufs_left = 0; + ring->rxd_mode = sp->rxd_mode; + ring->rxd_count = rxd_count[sp->rxd_mode]; + ring->pdev = sp->pdev; + ring->dev = sp->dev; + } + + for (i = 0; i < rx_ring_num; i++) { + struct rx_ring_config *rx_cfg = &config->rx_cfg[i]; + + rx_cfg->ring_org = RING_ORG_BUFF1; + rx_cfg->f_no_snoop = (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); + } + + /* Setting Mac Control parameters */ + mac_control->rmac_pause_time = rmac_pause_time; + mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; + mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; + + + /* initialize the shared memory used by the NIC and the host */ + if (init_shared_mem(sp)) { + DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", dev->name); + ret = -ENOMEM; + goto mem_alloc_failed; + } + + sp->bar0 = pci_ioremap_bar(pdev, 0); + if (!sp->bar0) { + DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n", + dev->name); + ret = -ENOMEM; + goto bar0_remap_failed; + } + + sp->bar1 = pci_ioremap_bar(pdev, 2); + if (!sp->bar1) { + DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n", + dev->name); + ret = -ENOMEM; + goto bar1_remap_failed; + } + + dev->irq = pdev->irq; + dev->base_addr = (unsigned long)sp->bar0; + + /* Initializing the BAR1 address as the start of the FIFO pointer. */ + for (j = 0; j < MAX_TX_FIFOS; j++) { + mac_control->tx_FIFO_start[j] = sp->bar1 + (j * 0x00020000); + } + + /* Driver entry points */ + dev->netdev_ops = &s2io_netdev_ops; + SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); + dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | + NETIF_F_TSO | NETIF_F_TSO6 | + NETIF_F_RXCSUM | NETIF_F_LRO; + dev->features |= dev->hw_features | + NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; + if (sp->device_type & XFRAME_II_DEVICE) { + dev->hw_features |= NETIF_F_UFO; + if (ufo) + dev->features |= NETIF_F_UFO; + } + if (sp->high_dma_flag == true) + dev->features |= NETIF_F_HIGHDMA; + dev->watchdog_timeo = WATCH_DOG_TIMEOUT; + INIT_WORK(&sp->rst_timer_task, s2io_restart_nic); + INIT_WORK(&sp->set_link_task, s2io_set_link); + + pci_save_state(sp->pdev); + + /* Setting swapper control on the NIC, for proper reset operation */ + if (s2io_set_swapper(sp)) { + DBG_PRINT(ERR_DBG, "%s: swapper settings are wrong\n", + dev->name); + ret = -EAGAIN; + goto set_swap_failed; + } + + /* Verify if the Herc works on the slot its placed into */ + if (sp->device_type & XFRAME_II_DEVICE) { + mode = s2io_verify_pci_mode(sp); + if (mode < 0) { + DBG_PRINT(ERR_DBG, "%s: Unsupported PCI bus mode\n", + __func__); + ret = -EBADSLT; + goto set_swap_failed; + } + } + + if (sp->config.intr_type == MSI_X) { + sp->num_entries = config->rx_ring_num + 1; + ret = s2io_enable_msi_x(sp); + + if (!ret) { + ret = s2io_test_msi(sp); + /* rollback MSI-X, will re-enable during add_isr() */ + remove_msix_isr(sp); + } + if (ret) { + + DBG_PRINT(ERR_DBG, + "MSI-X requested but failed to enable\n"); + sp->config.intr_type = INTA; + } + } + + if (config->intr_type == MSI_X) { + for (i = 0; i < config->rx_ring_num ; i++) { + struct ring_info *ring = &mac_control->rings[i]; + + netif_napi_add(dev, &ring->napi, s2io_poll_msix, 64); + } + } else { + netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64); + } + + /* Not needed for Herc */ + if (sp->device_type & XFRAME_I_DEVICE) { + /* + * Fix for all "FFs" MAC address problems observed on + * Alpha platforms + */ + fix_mac_address(sp); + s2io_reset(sp); + } + + /* + * MAC address initialization. + * For now only one mac address will be read and used. + */ + bar0 = sp->bar0; + val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | + RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET); + writeq(val64, &bar0->rmac_addr_cmd_mem); + wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem, + RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, + S2IO_BIT_RESET); + tmp64 = readq(&bar0->rmac_addr_data0_mem); + mac_down = (u32)tmp64; + mac_up = (u32) (tmp64 >> 32); + + sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); + sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); + sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); + sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); + sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); + sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); + + /* Set the factory defined MAC address initially */ + dev->addr_len = ETH_ALEN; + memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); + memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN); + + /* initialize number of multicast & unicast MAC entries variables */ + if (sp->device_type == XFRAME_I_DEVICE) { + config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES; + config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES; + config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET; + } else if (sp->device_type == XFRAME_II_DEVICE) { + config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES; + config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES; + config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET; + } + + /* store mac addresses from CAM to s2io_nic structure */ + do_s2io_store_unicast_mc(sp); + + /* Configure MSIX vector for number of rings configured plus one */ + if ((sp->device_type == XFRAME_II_DEVICE) && + (config->intr_type == MSI_X)) + sp->num_entries = config->rx_ring_num + 1; + + /* Store the values of the MSIX table in the s2io_nic structure */ + store_xmsi_data(sp); + /* reset Nic and bring it to known state */ + s2io_reset(sp); + + /* + * Initialize link state flags + * and the card state parameter + */ + sp->state = 0; + + /* Initialize spinlocks */ + for (i = 0; i < sp->config.tx_fifo_num; i++) { + struct fifo_info *fifo = &mac_control->fifos[i]; + + spin_lock_init(&fifo->tx_lock); + } + + /* + * SXE-002: Configure link and activity LED to init state + * on driver load. + */ + subid = sp->pdev->subsystem_device; + if ((subid & 0xFF) >= 0x07) { + val64 = readq(&bar0->gpio_control); + val64 |= 0x0000800000000000ULL; + writeq(val64, &bar0->gpio_control); + val64 = 0x0411040400000000ULL; + writeq(val64, (void __iomem *)bar0 + 0x2700); + val64 = readq(&bar0->gpio_control); + } + + sp->rx_csum = 1; /* Rx chksum verify enabled by default */ + + if (register_netdev(dev)) { + DBG_PRINT(ERR_DBG, "Device registration failed\n"); + ret = -ENODEV; + goto register_failed; + } + s2io_vpd_read(sp); + DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2010 Exar Corp.\n"); + DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n", dev->name, + sp->product_name, pdev->revision); + DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name, + s2io_driver_version); + DBG_PRINT(ERR_DBG, "%s: MAC Address: %pM\n", dev->name, dev->dev_addr); + DBG_PRINT(ERR_DBG, "Serial number: %s\n", sp->serial_num); + if (sp->device_type & XFRAME_II_DEVICE) { + mode = s2io_print_pci_mode(sp); + if (mode < 0) { + ret = -EBADSLT; + unregister_netdev(dev); + goto set_swap_failed; + } + } + switch (sp->rxd_mode) { + case RXD_MODE_1: + DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n", + dev->name); + break; + case RXD_MODE_3B: + DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n", + dev->name); + break; + } + + switch (sp->config.napi) { + case 0: + DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name); + break; + case 1: + DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name); + break; + } + + DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name, + sp->config.tx_fifo_num); + + DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name, + sp->config.rx_ring_num); + + switch (sp->config.intr_type) { + case INTA: + DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name); + break; + case MSI_X: + DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name); + break; + } + if (sp->config.multiq) { + for (i = 0; i < sp->config.tx_fifo_num; i++) { + struct fifo_info *fifo = &mac_control->fifos[i]; + + fifo->multiq = config->multiq; + } + DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n", + dev->name); + } else + DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n", + dev->name); + + switch (sp->config.tx_steering_type) { + case NO_STEERING: + DBG_PRINT(ERR_DBG, "%s: No steering enabled for transmit\n", + dev->name); + break; + case TX_PRIORITY_STEERING: + DBG_PRINT(ERR_DBG, + "%s: Priority steering enabled for transmit\n", + dev->name); + break; + case TX_DEFAULT_STEERING: + DBG_PRINT(ERR_DBG, + "%s: Default steering enabled for transmit\n", + dev->name); + } + + DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n", + dev->name); + if (ufo) + DBG_PRINT(ERR_DBG, + "%s: UDP Fragmentation Offload(UFO) enabled\n", + dev->name); + /* Initialize device name */ + sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name); + + if (vlan_tag_strip) + sp->vlan_strip_flag = 1; + else + sp->vlan_strip_flag = 0; + + /* + * Make Link state as off at this point, when the Link change + * interrupt comes the state will be automatically changed to + * the right state. + */ + netif_carrier_off(dev); + + return 0; + +register_failed: +set_swap_failed: + iounmap(sp->bar1); +bar1_remap_failed: + iounmap(sp->bar0); +bar0_remap_failed: +mem_alloc_failed: + free_shared_mem(sp); + pci_disable_device(pdev); + pci_release_regions(pdev); + pci_set_drvdata(pdev, NULL); + free_netdev(dev); + + return ret; +} + +/** + * s2io_rem_nic - Free the PCI device + * @pdev: structure containing the PCI related information of the device. + * Description: This function is called by the Pci subsystem to release a + * PCI device and free up all resource held up by the device. This could + * be in response to a Hot plug event or when the driver is to be removed + * from memory. + */ + +static void __devexit s2io_rem_nic(struct pci_dev *pdev) +{ + struct net_device *dev = pci_get_drvdata(pdev); + struct s2io_nic *sp; + + if (dev == NULL) { + DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); + return; + } + + sp = netdev_priv(dev); + + cancel_work_sync(&sp->rst_timer_task); + cancel_work_sync(&sp->set_link_task); + + unregister_netdev(dev); + + free_shared_mem(sp); + iounmap(sp->bar0); + iounmap(sp->bar1); + pci_release_regions(pdev); + pci_set_drvdata(pdev, NULL); + free_netdev(dev); + pci_disable_device(pdev); +} + +/** + * s2io_starter - Entry point for the driver + * Description: This function is the entry point for the driver. It verifies + * the module loadable parameters and initializes PCI configuration space. + */ + +static int __init s2io_starter(void) +{ + return pci_register_driver(&s2io_driver); +} + +/** + * s2io_closer - Cleanup routine for the driver + * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. + */ + +static __exit void s2io_closer(void) +{ + pci_unregister_driver(&s2io_driver); + DBG_PRINT(INIT_DBG, "cleanup done\n"); +} + +module_init(s2io_starter); +module_exit(s2io_closer); + +static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip, + struct tcphdr **tcp, struct RxD_t *rxdp, + struct s2io_nic *sp) +{ + int ip_off; + u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len; + + if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) { + DBG_PRINT(INIT_DBG, + "%s: Non-TCP frames not supported for LRO\n", + __func__); + return -1; + } + + /* Checking for DIX type or DIX type with VLAN */ + if ((l2_type == 0) || (l2_type == 4)) { + ip_off = HEADER_ETHERNET_II_802_3_SIZE; + /* + * If vlan stripping is disabled and the frame is VLAN tagged, + * shift the offset by the VLAN header size bytes. + */ + if ((!sp->vlan_strip_flag) && + (rxdp->Control_1 & RXD_FRAME_VLAN_TAG)) + ip_off += HEADER_VLAN_SIZE; + } else { + /* LLC, SNAP etc are considered non-mergeable */ + return -1; + } + + *ip = (struct iphdr *)((u8 *)buffer + ip_off); + ip_len = (u8)((*ip)->ihl); + ip_len <<= 2; + *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len); + + return 0; +} + +static int check_for_socket_match(struct lro *lro, struct iphdr *ip, + struct tcphdr *tcp) +{ + DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); + if ((lro->iph->saddr != ip->saddr) || + (lro->iph->daddr != ip->daddr) || + (lro->tcph->source != tcp->source) || + (lro->tcph->dest != tcp->dest)) + return -1; + return 0; +} + +static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp) +{ + return ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2); +} + +static void initiate_new_session(struct lro *lro, u8 *l2h, + struct iphdr *ip, struct tcphdr *tcp, + u32 tcp_pyld_len, u16 vlan_tag) +{ + DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); + lro->l2h = l2h; + lro->iph = ip; + lro->tcph = tcp; + lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq); + lro->tcp_ack = tcp->ack_seq; + lro->sg_num = 1; + lro->total_len = ntohs(ip->tot_len); + lro->frags_len = 0; + lro->vlan_tag = vlan_tag; + /* + * Check if we saw TCP timestamp. + * Other consistency checks have already been done. + */ + if (tcp->doff == 8) { + __be32 *ptr; + ptr = (__be32 *)(tcp+1); + lro->saw_ts = 1; + lro->cur_tsval = ntohl(*(ptr+1)); + lro->cur_tsecr = *(ptr+2); + } + lro->in_use = 1; +} + +static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro) +{ + struct iphdr *ip = lro->iph; + struct tcphdr *tcp = lro->tcph; + __sum16 nchk; + struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; + + DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); + + /* Update L3 header */ + ip->tot_len = htons(lro->total_len); + ip->check = 0; + nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl); + ip->check = nchk; + + /* Update L4 header */ + tcp->ack_seq = lro->tcp_ack; + tcp->window = lro->window; + + /* Update tsecr field if this session has timestamps enabled */ + if (lro->saw_ts) { + __be32 *ptr = (__be32 *)(tcp + 1); + *(ptr+2) = lro->cur_tsecr; + } + + /* Update counters required for calculation of + * average no. of packets aggregated. + */ + swstats->sum_avg_pkts_aggregated += lro->sg_num; + swstats->num_aggregations++; +} + +static void aggregate_new_rx(struct lro *lro, struct iphdr *ip, + struct tcphdr *tcp, u32 l4_pyld) +{ + DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); + lro->total_len += l4_pyld; + lro->frags_len += l4_pyld; + lro->tcp_next_seq += l4_pyld; + lro->sg_num++; + + /* Update ack seq no. and window ad(from this pkt) in LRO object */ + lro->tcp_ack = tcp->ack_seq; + lro->window = tcp->window; + + if (lro->saw_ts) { + __be32 *ptr; + /* Update tsecr and tsval from this packet */ + ptr = (__be32 *)(tcp+1); + lro->cur_tsval = ntohl(*(ptr+1)); + lro->cur_tsecr = *(ptr + 2); + } +} + +static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip, + struct tcphdr *tcp, u32 tcp_pyld_len) +{ + u8 *ptr; + + DBG_PRINT(INFO_DBG, "%s: Been here...\n", __func__); + + if (!tcp_pyld_len) { + /* Runt frame or a pure ack */ + return -1; + } + + if (ip->ihl != 5) /* IP has options */ + return -1; + + /* If we see CE codepoint in IP header, packet is not mergeable */ + if (INET_ECN_is_ce(ipv4_get_dsfield(ip))) + return -1; + + /* If we see ECE or CWR flags in TCP header, packet is not mergeable */ + if (tcp->urg || tcp->psh || tcp->rst || + tcp->syn || tcp->fin || + tcp->ece || tcp->cwr || !tcp->ack) { + /* + * Currently recognize only the ack control word and + * any other control field being set would result in + * flushing the LRO session + */ + return -1; + } + + /* + * Allow only one TCP timestamp option. Don't aggregate if + * any other options are detected. + */ + if (tcp->doff != 5 && tcp->doff != 8) + return -1; + + if (tcp->doff == 8) { + ptr = (u8 *)(tcp + 1); + while (*ptr == TCPOPT_NOP) + ptr++; + if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP) + return -1; + + /* Ensure timestamp value increases monotonically */ + if (l_lro) + if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2)))) + return -1; + + /* timestamp echo reply should be non-zero */ + if (*((__be32 *)(ptr+6)) == 0) + return -1; + } + + return 0; +} + +static int s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, + u8 **tcp, u32 *tcp_len, struct lro **lro, + struct RxD_t *rxdp, struct s2io_nic *sp) +{ + struct iphdr *ip; + struct tcphdr *tcph; + int ret = 0, i; + u16 vlan_tag = 0; + struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; + + ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp, + rxdp, sp); + if (ret) + return ret; + + DBG_PRINT(INFO_DBG, "IP Saddr: %x Daddr: %x\n", ip->saddr, ip->daddr); + + vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2); + tcph = (struct tcphdr *)*tcp; + *tcp_len = get_l4_pyld_length(ip, tcph); + for (i = 0; i < MAX_LRO_SESSIONS; i++) { + struct lro *l_lro = &ring_data->lro0_n[i]; + if (l_lro->in_use) { + if (check_for_socket_match(l_lro, ip, tcph)) + continue; + /* Sock pair matched */ + *lro = l_lro; + + if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) { + DBG_PRINT(INFO_DBG, "%s: Out of sequence. " + "expected 0x%x, actual 0x%x\n", + __func__, + (*lro)->tcp_next_seq, + ntohl(tcph->seq)); + + swstats->outof_sequence_pkts++; + ret = 2; + break; + } + + if (!verify_l3_l4_lro_capable(l_lro, ip, tcph, + *tcp_len)) + ret = 1; /* Aggregate */ + else + ret = 2; /* Flush both */ + break; + } + } + + if (ret == 0) { + /* Before searching for available LRO objects, + * check if the pkt is L3/L4 aggregatable. If not + * don't create new LRO session. Just send this + * packet up. + */ + if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) + return 5; + + for (i = 0; i < MAX_LRO_SESSIONS; i++) { + struct lro *l_lro = &ring_data->lro0_n[i]; + if (!(l_lro->in_use)) { + *lro = l_lro; + ret = 3; /* Begin anew */ + break; + } + } + } + + if (ret == 0) { /* sessions exceeded */ + DBG_PRINT(INFO_DBG, "%s: All LRO sessions already in use\n", + __func__); + *lro = NULL; + return ret; + } + + switch (ret) { + case 3: + initiate_new_session(*lro, buffer, ip, tcph, *tcp_len, + vlan_tag); + break; + case 2: + update_L3L4_header(sp, *lro); + break; + case 1: + aggregate_new_rx(*lro, ip, tcph, *tcp_len); + if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) { + update_L3L4_header(sp, *lro); + ret = 4; /* Flush the LRO */ + } + break; + default: + DBG_PRINT(ERR_DBG, "%s: Don't know, can't say!!\n", __func__); + break; + } + + return ret; +} + +static void clear_lro_session(struct lro *lro) +{ + static u16 lro_struct_size = sizeof(struct lro); + + memset(lro, 0, lro_struct_size); +} + +static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag) +{ + struct net_device *dev = skb->dev; + struct s2io_nic *sp = netdev_priv(dev); + + skb->protocol = eth_type_trans(skb, dev); + if (vlan_tag && sp->vlan_strip_flag) + __vlan_hwaccel_put_tag(skb, vlan_tag); + if (sp->config.napi) + netif_receive_skb(skb); + else + netif_rx(skb); +} + +static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro, + struct sk_buff *skb, u32 tcp_len) +{ + struct sk_buff *first = lro->parent; + struct swStat *swstats = &sp->mac_control.stats_info->sw_stat; + + first->len += tcp_len; + first->data_len = lro->frags_len; + skb_pull(skb, (skb->len - tcp_len)); + if (skb_shinfo(first)->frag_list) + lro->last_frag->next = skb; + else + skb_shinfo(first)->frag_list = skb; + first->truesize += skb->truesize; + lro->last_frag = skb; + swstats->clubbed_frms_cnt++; +} + +/** + * s2io_io_error_detected - called when PCI error is detected + * @pdev: Pointer to PCI device + * @state: The current pci connection state + * + * This function is called after a PCI bus error affecting + * this device has been detected. + */ +static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev, + pci_channel_state_t state) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct s2io_nic *sp = netdev_priv(netdev); + + netif_device_detach(netdev); + + if (state == pci_channel_io_perm_failure) + return PCI_ERS_RESULT_DISCONNECT; + + if (netif_running(netdev)) { + /* Bring down the card, while avoiding PCI I/O */ + do_s2io_card_down(sp, 0); + } + pci_disable_device(pdev); + + return PCI_ERS_RESULT_NEED_RESET; +} + +/** + * s2io_io_slot_reset - called after the pci bus has been reset. + * @pdev: Pointer to PCI device + * + * Restart the card from scratch, as if from a cold-boot. + * At this point, the card has exprienced a hard reset, + * followed by fixups by BIOS, and has its config space + * set up identically to what it was at cold boot. + */ +static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct s2io_nic *sp = netdev_priv(netdev); + + if (pci_enable_device(pdev)) { + pr_err("Cannot re-enable PCI device after reset.\n"); + return PCI_ERS_RESULT_DISCONNECT; + } + + pci_set_master(pdev); + s2io_reset(sp); + + return PCI_ERS_RESULT_RECOVERED; +} + +/** + * s2io_io_resume - called when traffic can start flowing again. + * @pdev: Pointer to PCI device + * + * This callback is called when the error recovery driver tells + * us that its OK to resume normal operation. + */ +static void s2io_io_resume(struct pci_dev *pdev) +{ + struct net_device *netdev = pci_get_drvdata(pdev); + struct s2io_nic *sp = netdev_priv(netdev); + + if (netif_running(netdev)) { + if (s2io_card_up(sp)) { + pr_err("Can't bring device back up after reset.\n"); + return; + } + + if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) { + s2io_card_down(sp); + pr_err("Can't restore mac addr after reset.\n"); + return; + } + } + + netif_device_attach(netdev); + netif_tx_wake_all_queues(netdev); +} |