summaryrefslogtreecommitdiffstats
path: root/arch/xtensa/Kconfig
diff options
context:
space:
mode:
Diffstat (limited to 'arch/xtensa/Kconfig')
-rw-r--r--arch/xtensa/Kconfig484
1 files changed, 303 insertions, 181 deletions
diff --git a/arch/xtensa/Kconfig b/arch/xtensa/Kconfig
index ebc135bda921..32ee759a3fda 100644
--- a/arch/xtensa/Kconfig
+++ b/arch/xtensa/Kconfig
@@ -3,14 +3,15 @@ config XTENSA
def_bool y
select ARCH_32BIT_OFF_T
select ARCH_HAS_BINFMT_FLAT if !MMU
- select ARCH_HAS_SYNC_DMA_FOR_CPU
- select ARCH_HAS_SYNC_DMA_FOR_DEVICE
- select ARCH_NO_COHERENT_DMA_MMAP if !MMU
+ select ARCH_HAS_DMA_PREP_COHERENT if MMU
+ select ARCH_HAS_SYNC_DMA_FOR_CPU if MMU
+ select ARCH_HAS_SYNC_DMA_FOR_DEVICE if MMU
+ select ARCH_HAS_UNCACHED_SEGMENT if MMU
select ARCH_USE_QUEUED_RWLOCKS
select ARCH_USE_QUEUED_SPINLOCKS
select ARCH_WANT_FRAME_POINTERS
select ARCH_WANT_IPC_PARSE_VERSION
- select BUILDTIME_EXTABLE_SORT
+ select BUILDTIME_TABLE_SORT
select CLONE_BACKWARDS
select COMMON_CLK
select DMA_REMAP if MMU
@@ -20,9 +21,10 @@ config XTENSA
select GENERIC_PCI_IOMAP
select GENERIC_SCHED_CLOCK
select GENERIC_STRNCPY_FROM_USER if KASAN
- select HAVE_ARCH_JUMP_LABEL
- select HAVE_ARCH_KASAN if MMU
+ select HAVE_ARCH_JUMP_LABEL if !XIP_KERNEL
+ select HAVE_ARCH_KASAN if MMU && !XIP_KERNEL
select HAVE_ARCH_TRACEHOOK
+ select HAVE_COPY_THREAD_TLS
select HAVE_DEBUG_KMEMLEAK
select HAVE_DMA_CONTIGUOUS
select HAVE_EXIT_THREAD
@@ -178,11 +180,11 @@ config HAVE_SMP
depends on XTENSA_VARIANT_CUSTOM
select XTENSA_MX
help
- This option is use to indicate that the system-on-a-chip (SOC)
+ This option is used to indicate that the system-on-a-chip (SOC)
supports Multiprocessing. Multiprocessor support implemented above
the CPU core definition and currently needs to be selected manually.
- Multiprocessor support in implemented with external cache and
+ Multiprocessor support is implemented with external cache and
interrupt controllers.
The MX interrupt distributer adds Interprocessor Interrupts
@@ -214,151 +216,6 @@ config HOTPLUG_CPU
Say N if you want to disable CPU hotplug.
-config INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
- bool "Initialize Xtensa MMU inside the Linux kernel code"
- depends on !XTENSA_VARIANT_FSF && !XTENSA_VARIANT_DC232B
- default y if XTENSA_VARIANT_DC233C || XTENSA_VARIANT_CUSTOM
- help
- Earlier version initialized the MMU in the exception vector
- before jumping to _startup in head.S and had an advantage that
- it was possible to place a software breakpoint at 'reset' and
- then enter your normal kernel breakpoints once the MMU was mapped
- to the kernel mappings (0XC0000000).
-
- This unfortunately won't work for U-Boot and likely also wont
- work for using KEXEC to have a hot kernel ready for doing a
- KDUMP.
-
- So now the MMU is initialized in head.S but it's necessary to
- use hardware breakpoints (gdb 'hbreak' cmd) to break at _startup.
- xt-gdb can't place a Software Breakpoint in the 0XD region prior
- to mapping the MMU and after mapping even if the area of low memory
- was mapped gdb wouldn't remove the breakpoint on hitting it as the
- PC wouldn't match. Since Hardware Breakpoints are recommended for
- Linux configurations it seems reasonable to just assume they exist
- and leave this older mechanism for unfortunate souls that choose
- not to follow Tensilica's recommendation.
-
- Selecting this will cause U-Boot to set the KERNEL Load and Entry
- address at 0x00003000 instead of the mapped std of 0xD0003000.
-
- If in doubt, say Y.
-
-config MEMMAP_CACHEATTR
- hex "Cache attributes for the memory address space"
- depends on !MMU
- default 0x22222222
- help
- These cache attributes are set up for noMMU systems. Each hex digit
- specifies cache attributes for the corresponding 512MB memory
- region: bits 0..3 -- for addresses 0x00000000..0x1fffffff,
- bits 4..7 -- for addresses 0x20000000..0x3fffffff, and so on.
-
- Cache attribute values are specific for the MMU type.
- For region protection MMUs:
- 1: WT cached,
- 2: cache bypass,
- 4: WB cached,
- f: illegal.
- For ful MMU:
- bit 0: executable,
- bit 1: writable,
- bits 2..3:
- 0: cache bypass,
- 1: WB cache,
- 2: WT cache,
- 3: special (c and e are illegal, f is reserved).
- For MPU:
- 0: illegal,
- 1: WB cache,
- 2: WB, no-write-allocate cache,
- 3: WT cache,
- 4: cache bypass.
-
-config KSEG_PADDR
- hex "Physical address of the KSEG mapping"
- depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX && MMU
- default 0x00000000
- help
- This is the physical address where KSEG is mapped. Please refer to
- the chosen KSEG layout help for the required address alignment.
- Unpacked kernel image (including vectors) must be located completely
- within KSEG.
- Physical memory below this address is not available to linux.
-
- If unsure, leave the default value here.
-
-config KERNEL_LOAD_ADDRESS
- hex "Kernel load address"
- default 0x60003000 if !MMU
- default 0x00003000 if MMU && INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
- default 0xd0003000 if MMU && !INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
- help
- This is the address where the kernel is loaded.
- It is virtual address for MMUv2 configurations and physical address
- for all other configurations.
-
- If unsure, leave the default value here.
-
-config VECTORS_OFFSET
- hex "Kernel vectors offset"
- default 0x00003000
- help
- This is the offset of the kernel image from the relocatable vectors
- base.
-
- If unsure, leave the default value here.
-
-choice
- prompt "KSEG layout"
- depends on MMU
- default XTENSA_KSEG_MMU_V2
-
-config XTENSA_KSEG_MMU_V2
- bool "MMUv2: 128MB cached + 128MB uncached"
- help
- MMUv2 compatible kernel memory map: TLB way 5 maps 128MB starting
- at KSEG_PADDR to 0xd0000000 with cache and to 0xd8000000
- without cache.
- KSEG_PADDR must be aligned to 128MB.
-
-config XTENSA_KSEG_256M
- bool "256MB cached + 256MB uncached"
- depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
- help
- TLB way 6 maps 256MB starting at KSEG_PADDR to 0xb0000000
- with cache and to 0xc0000000 without cache.
- KSEG_PADDR must be aligned to 256MB.
-
-config XTENSA_KSEG_512M
- bool "512MB cached + 512MB uncached"
- depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
- help
- TLB way 6 maps 512MB starting at KSEG_PADDR to 0xa0000000
- with cache and to 0xc0000000 without cache.
- KSEG_PADDR must be aligned to 256MB.
-
-endchoice
-
-config HIGHMEM
- bool "High Memory Support"
- depends on MMU
- help
- Linux can use the full amount of RAM in the system by
- default. However, the default MMUv2 setup only maps the
- lowermost 128 MB of memory linearly to the areas starting
- at 0xd0000000 (cached) and 0xd8000000 (uncached).
- When there are more than 128 MB memory in the system not
- all of it can be "permanently mapped" by the kernel.
- The physical memory that's not permanently mapped is called
- "high memory".
-
- If you are compiling a kernel which will never run on a
- machine with more than 128 MB total physical RAM, answer
- N here.
-
- If unsure, say Y.
-
config FAST_SYSCALL_XTENSA
bool "Enable fast atomic syscalls"
default n
@@ -385,6 +242,54 @@ config FAST_SYSCALL_SPILL_REGISTERS
If unsure, say N.
+config USER_ABI_CALL0
+ bool
+
+choice
+ prompt "Userspace ABI"
+ default USER_ABI_DEFAULT
+ help
+ Select supported userspace ABI.
+
+ If unsure, choose the default ABI.
+
+config USER_ABI_DEFAULT
+ bool "Default ABI only"
+ help
+ Assume default userspace ABI. For XEA2 cores it is windowed ABI.
+ call0 ABI binaries may be run on such kernel, but signal delivery
+ will not work correctly for them.
+
+config USER_ABI_CALL0_ONLY
+ bool "Call0 ABI only"
+ select USER_ABI_CALL0
+ help
+ Select this option to support only call0 ABI in userspace.
+ Windowed ABI binaries will crash with a segfault caused by
+ an illegal instruction exception on the first 'entry' opcode.
+
+ Choose this option if you're planning to run only user code
+ built with call0 ABI.
+
+config USER_ABI_CALL0_PROBE
+ bool "Support both windowed and call0 ABI by probing"
+ select USER_ABI_CALL0
+ help
+ Select this option to support both windowed and call0 userspace
+ ABIs. When enabled all processes are started with PS.WOE disabled
+ and a fast user exception handler for an illegal instruction is
+ used to turn on PS.WOE bit on the first 'entry' opcode executed by
+ the userspace.
+
+ This option should be enabled for the kernel that must support
+ both call0 and windowed ABIs in userspace at the same time.
+
+ Note that Xtensa ISA does not guarantee that entry opcode will
+ raise an illegal instruction exception on cores with XEA2 when
+ PS.WOE is disabled, check whether the target core supports it.
+
+endchoice
+
endmenu
config XTENSA_CALIBRATE_CCOUNT
@@ -397,6 +302,9 @@ config XTENSA_CALIBRATE_CCOUNT
config SERIAL_CONSOLE
def_bool n
+config PLATFORM_HAVE_XIP
+ def_bool n
+
menu "Platform options"
choice
@@ -423,6 +331,7 @@ config XTENSA_PLATFORM_XTFPGA
select PLATFORM_WANT_DEFAULT_MEM if !MMU
select SERIAL_CONSOLE
select XTENSA_CALIBRATE_CCOUNT
+ select PLATFORM_HAVE_XIP
help
XTFPGA is the name of Tensilica board family (LX60, LX110, LX200, ML605).
This hardware is capable of running a full Linux distribution.
@@ -514,34 +423,6 @@ config SIMDISK1_FILENAME
Another simulated disk in a host file for a buildroot-independent
storage.
-config FORCE_MAX_ZONEORDER
- int "Maximum zone order"
- default "11"
- help
- The kernel memory allocator divides physically contiguous memory
- blocks into "zones", where each zone is a power of two number of
- pages. This option selects the largest power of two that the kernel
- keeps in the memory allocator. If you need to allocate very large
- blocks of physically contiguous memory, then you may need to
- increase this value.
-
- This config option is actually maximum order plus one. For example,
- a value of 11 means that the largest free memory block is 2^10 pages.
-
-config PLATFORM_WANT_DEFAULT_MEM
- def_bool n
-
-config DEFAULT_MEM_START
- hex
- prompt "PAGE_OFFSET/PHYS_OFFSET" if !MMU && PLATFORM_WANT_DEFAULT_MEM
- default 0x60000000 if PLATFORM_WANT_DEFAULT_MEM
- default 0x00000000
- help
- This is the base address used for both PAGE_OFFSET and PHYS_OFFSET
- in noMMU configurations.
-
- If unsure, leave the default value here.
-
config XTFPGA_LCD
bool "Enable XTFPGA LCD driver"
depends on XTENSA_PLATFORM_XTFPGA
@@ -572,6 +453,247 @@ config XTFPGA_LCD_8BIT_ACCESS
only be used with 8-bit interface. Please consult prototyping user
guide for your board for the correct interface width.
+comment "Kernel memory layout"
+
+config INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
+ bool "Initialize Xtensa MMU inside the Linux kernel code"
+ depends on !XTENSA_VARIANT_FSF && !XTENSA_VARIANT_DC232B
+ default y if XTENSA_VARIANT_DC233C || XTENSA_VARIANT_CUSTOM
+ help
+ Earlier version initialized the MMU in the exception vector
+ before jumping to _startup in head.S and had an advantage that
+ it was possible to place a software breakpoint at 'reset' and
+ then enter your normal kernel breakpoints once the MMU was mapped
+ to the kernel mappings (0XC0000000).
+
+ This unfortunately won't work for U-Boot and likely also wont
+ work for using KEXEC to have a hot kernel ready for doing a
+ KDUMP.
+
+ So now the MMU is initialized in head.S but it's necessary to
+ use hardware breakpoints (gdb 'hbreak' cmd) to break at _startup.
+ xt-gdb can't place a Software Breakpoint in the 0XD region prior
+ to mapping the MMU and after mapping even if the area of low memory
+ was mapped gdb wouldn't remove the breakpoint on hitting it as the
+ PC wouldn't match. Since Hardware Breakpoints are recommended for
+ Linux configurations it seems reasonable to just assume they exist
+ and leave this older mechanism for unfortunate souls that choose
+ not to follow Tensilica's recommendation.
+
+ Selecting this will cause U-Boot to set the KERNEL Load and Entry
+ address at 0x00003000 instead of the mapped std of 0xD0003000.
+
+ If in doubt, say Y.
+
+config XIP_KERNEL
+ bool "Kernel Execute-In-Place from ROM"
+ depends on PLATFORM_HAVE_XIP
+ help
+ Execute-In-Place allows the kernel to run from non-volatile storage
+ directly addressable by the CPU, such as NOR flash. This saves RAM
+ space since the text section of the kernel is not loaded from flash
+ to RAM. Read-write sections, such as the data section and stack,
+ are still copied to RAM. The XIP kernel is not compressed since
+ it has to run directly from flash, so it will take more space to
+ store it. The flash address used to link the kernel object files,
+ and for storing it, is configuration dependent. Therefore, if you
+ say Y here, you must know the proper physical address where to
+ store the kernel image depending on your own flash memory usage.
+
+ Also note that the make target becomes "make xipImage" rather than
+ "make Image" or "make uImage". The final kernel binary to put in
+ ROM memory will be arch/xtensa/boot/xipImage.
+
+ If unsure, say N.
+
+config MEMMAP_CACHEATTR
+ hex "Cache attributes for the memory address space"
+ depends on !MMU
+ default 0x22222222
+ help
+ These cache attributes are set up for noMMU systems. Each hex digit
+ specifies cache attributes for the corresponding 512MB memory
+ region: bits 0..3 -- for addresses 0x00000000..0x1fffffff,
+ bits 4..7 -- for addresses 0x20000000..0x3fffffff, and so on.
+
+ Cache attribute values are specific for the MMU type.
+ For region protection MMUs:
+ 1: WT cached,
+ 2: cache bypass,
+ 4: WB cached,
+ f: illegal.
+ For ful MMU:
+ bit 0: executable,
+ bit 1: writable,
+ bits 2..3:
+ 0: cache bypass,
+ 1: WB cache,
+ 2: WT cache,
+ 3: special (c and e are illegal, f is reserved).
+ For MPU:
+ 0: illegal,
+ 1: WB cache,
+ 2: WB, no-write-allocate cache,
+ 3: WT cache,
+ 4: cache bypass.
+
+config KSEG_PADDR
+ hex "Physical address of the KSEG mapping"
+ depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX && MMU
+ default 0x00000000
+ help
+ This is the physical address where KSEG is mapped. Please refer to
+ the chosen KSEG layout help for the required address alignment.
+ Unpacked kernel image (including vectors) must be located completely
+ within KSEG.
+ Physical memory below this address is not available to linux.
+
+ If unsure, leave the default value here.
+
+config KERNEL_VIRTUAL_ADDRESS
+ hex "Kernel virtual address"
+ depends on MMU && XIP_KERNEL
+ default 0xd0003000
+ help
+ This is the virtual address where the XIP kernel is mapped.
+ XIP kernel may be mapped into KSEG or KIO region, virtual address
+ provided here must match kernel load address provided in
+ KERNEL_LOAD_ADDRESS.
+
+config KERNEL_LOAD_ADDRESS
+ hex "Kernel load address"
+ default 0x60003000 if !MMU
+ default 0x00003000 if MMU && INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
+ default 0xd0003000 if MMU && !INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
+ help
+ This is the address where the kernel is loaded.
+ It is virtual address for MMUv2 configurations and physical address
+ for all other configurations.
+
+ If unsure, leave the default value here.
+
+choice
+ prompt "Relocatable vectors location"
+ default XTENSA_VECTORS_IN_TEXT
+ help
+ Choose whether relocatable vectors are merged into the kernel .text
+ or placed separately at runtime. This option does not affect
+ configurations without VECBASE register where vectors are always
+ placed at their hardware-defined locations.
+
+config XTENSA_VECTORS_IN_TEXT
+ bool "Merge relocatable vectors into kernel text"
+ depends on !MTD_XIP
+ help
+ This option puts relocatable vectors into the kernel .text section
+ with proper alignment.
+ This is a safe choice for most configurations.
+
+config XTENSA_VECTORS_SEPARATE
+ bool "Put relocatable vectors at fixed address"
+ help
+ This option puts relocatable vectors at specific virtual address.
+ Vectors are merged with the .init data in the kernel image and
+ are copied into their designated location during kernel startup.
+ Use it to put vectors into IRAM or out of FLASH on kernels with
+ XIP-aware MTD support.
+
+endchoice
+
+config VECTORS_ADDR
+ hex "Kernel vectors virtual address"
+ default 0x00000000
+ depends on XTENSA_VECTORS_SEPARATE
+ help
+ This is the virtual address of the (relocatable) vectors base.
+ It must be within KSEG if MMU is used.
+
+config XIP_DATA_ADDR
+ hex "XIP kernel data virtual address"
+ depends on XIP_KERNEL
+ default 0x00000000
+ help
+ This is the virtual address where XIP kernel data is copied.
+ It must be within KSEG if MMU is used.
+
+config PLATFORM_WANT_DEFAULT_MEM
+ def_bool n
+
+config DEFAULT_MEM_START
+ hex
+ prompt "PAGE_OFFSET/PHYS_OFFSET" if !MMU && PLATFORM_WANT_DEFAULT_MEM
+ default 0x60000000 if PLATFORM_WANT_DEFAULT_MEM
+ default 0x00000000
+ help
+ This is the base address used for both PAGE_OFFSET and PHYS_OFFSET
+ in noMMU configurations.
+
+ If unsure, leave the default value here.
+
+choice
+ prompt "KSEG layout"
+ depends on MMU
+ default XTENSA_KSEG_MMU_V2
+
+config XTENSA_KSEG_MMU_V2
+ bool "MMUv2: 128MB cached + 128MB uncached"
+ help
+ MMUv2 compatible kernel memory map: TLB way 5 maps 128MB starting
+ at KSEG_PADDR to 0xd0000000 with cache and to 0xd8000000
+ without cache.
+ KSEG_PADDR must be aligned to 128MB.
+
+config XTENSA_KSEG_256M
+ bool "256MB cached + 256MB uncached"
+ depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
+ help
+ TLB way 6 maps 256MB starting at KSEG_PADDR to 0xb0000000
+ with cache and to 0xc0000000 without cache.
+ KSEG_PADDR must be aligned to 256MB.
+
+config XTENSA_KSEG_512M
+ bool "512MB cached + 512MB uncached"
+ depends on INITIALIZE_XTENSA_MMU_INSIDE_VMLINUX
+ help
+ TLB way 6 maps 512MB starting at KSEG_PADDR to 0xa0000000
+ with cache and to 0xc0000000 without cache.
+ KSEG_PADDR must be aligned to 256MB.
+
+endchoice
+
+config HIGHMEM
+ bool "High Memory Support"
+ depends on MMU
+ help
+ Linux can use the full amount of RAM in the system by
+ default. However, the default MMUv2 setup only maps the
+ lowermost 128 MB of memory linearly to the areas starting
+ at 0xd0000000 (cached) and 0xd8000000 (uncached).
+ When there are more than 128 MB memory in the system not
+ all of it can be "permanently mapped" by the kernel.
+ The physical memory that's not permanently mapped is called
+ "high memory".
+
+ If you are compiling a kernel which will never run on a
+ machine with more than 128 MB total physical RAM, answer
+ N here.
+
+ If unsure, say Y.
+
+config FORCE_MAX_ZONEORDER
+ int "Maximum zone order"
+ default "11"
+ help
+ The kernel memory allocator divides physically contiguous memory
+ blocks into "zones", where each zone is a power of two number of
+ pages. This option selects the largest power of two that the kernel
+ keeps in the memory allocator. If you need to allocate very large
+ blocks of physically contiguous memory, then you may need to
+ increase this value.
+
+ This config option is actually maximum order plus one. For example,
+ a value of 11 means that the largest free memory block is 2^10 pages.
+
endmenu
menu "Power management options"
OpenPOWER on IntegriCloud