diff options
Diffstat (limited to 'Documentation/vm')
-rw-r--r-- | Documentation/vm/hmm.rst | 172 | ||||
-rw-r--r-- | Documentation/vm/split_page_table_lock.rst | 10 | ||||
-rw-r--r-- | Documentation/vm/zswap.rst | 13 |
3 files changed, 50 insertions, 145 deletions
diff --git a/Documentation/vm/hmm.rst b/Documentation/vm/hmm.rst index 710ce1c701bf..95fec5968362 100644 --- a/Documentation/vm/hmm.rst +++ b/Documentation/vm/hmm.rst @@ -147,60 +147,26 @@ Address space mirroring implementation and API Address space mirroring's main objective is to allow duplication of a range of CPU page table into a device page table; HMM helps keep both synchronized. A device driver that wants to mirror a process address space must start with the -registration of an hmm_mirror struct:: - - int hmm_mirror_register(struct hmm_mirror *mirror, - struct mm_struct *mm); - -The mirror struct has a set of callbacks that are used -to propagate CPU page tables:: - - struct hmm_mirror_ops { - /* release() - release hmm_mirror - * - * @mirror: pointer to struct hmm_mirror - * - * This is called when the mm_struct is being released. The callback - * must ensure that all access to any pages obtained from this mirror - * is halted before the callback returns. All future access should - * fault. - */ - void (*release)(struct hmm_mirror *mirror); - - /* sync_cpu_device_pagetables() - synchronize page tables - * - * @mirror: pointer to struct hmm_mirror - * @update: update information (see struct mmu_notifier_range) - * Return: -EAGAIN if update.blockable false and callback need to - * block, 0 otherwise. - * - * This callback ultimately originates from mmu_notifiers when the CPU - * page table is updated. The device driver must update its page table - * in response to this callback. The update argument tells what action - * to perform. - * - * The device driver must not return from this callback until the device - * page tables are completely updated (TLBs flushed, etc); this is a - * synchronous call. - */ - int (*sync_cpu_device_pagetables)(struct hmm_mirror *mirror, - const struct hmm_update *update); - }; - -The device driver must perform the update action to the range (mark range -read only, or fully unmap, etc.). The device must complete the update before -the driver callback returns. +registration of a mmu_interval_notifier:: + + int mmu_interval_notifier_insert(struct mmu_interval_notifier *interval_sub, + struct mm_struct *mm, unsigned long start, + unsigned long length, + const struct mmu_interval_notifier_ops *ops); + +During the ops->invalidate() callback the device driver must perform the +update action to the range (mark range read only, or fully unmap, etc.). The +device must complete the update before the driver callback returns. When the device driver wants to populate a range of virtual addresses, it can -use either:: +use:: - long hmm_range_snapshot(struct hmm_range *range); - long hmm_range_fault(struct hmm_range *range, bool block); + long hmm_range_fault(struct hmm_range *range, unsigned int flags); -The first one (hmm_range_snapshot()) will only fetch present CPU page table +With the HMM_RANGE_SNAPSHOT flag, it will only fetch present CPU page table entries and will not trigger a page fault on missing or non-present entries. -The second one does trigger a page fault on missing or read-only entries if -write access is requested (see below). Page faults use the generic mm page +Without that flag, it does trigger a page fault on missing or read-only entries +if write access is requested (see below). Page faults use the generic mm page fault code path just like a CPU page fault. Both functions copy CPU page table entries into their pfns array argument. Each @@ -217,70 +183,46 @@ The usage pattern is:: struct hmm_range range; ... + range.notifier = &interval_sub; range.start = ...; range.end = ...; range.pfns = ...; range.flags = ...; range.values = ...; range.pfn_shift = ...; - hmm_range_register(&range); - /* - * Just wait for range to be valid, safe to ignore return value as we - * will use the return value of hmm_range_snapshot() below under the - * mmap_sem to ascertain the validity of the range. - */ - hmm_range_wait_until_valid(&range, TIMEOUT_IN_MSEC); + if (!mmget_not_zero(interval_sub->notifier.mm)) + return -EFAULT; again: + range.notifier_seq = mmu_interval_read_begin(&interval_sub); down_read(&mm->mmap_sem); - ret = hmm_range_snapshot(&range); + ret = hmm_range_fault(&range, HMM_RANGE_SNAPSHOT); if (ret) { up_read(&mm->mmap_sem); - if (ret == -EBUSY) { - /* - * No need to check hmm_range_wait_until_valid() return value - * on retry we will get proper error with hmm_range_snapshot() - */ - hmm_range_wait_until_valid(&range, TIMEOUT_IN_MSEC); - goto again; - } - hmm_range_unregister(&range); + if (ret == -EBUSY) + goto again; return ret; } + up_read(&mm->mmap_sem); + take_lock(driver->update); - if (!hmm_range_valid(&range)) { + if (mmu_interval_read_retry(&ni, range.notifier_seq) { release_lock(driver->update); - up_read(&mm->mmap_sem); goto again; } - // Use pfns array content to update device page table + /* Use pfns array content to update device page table, + * under the update lock */ - hmm_range_unregister(&range); release_lock(driver->update); - up_read(&mm->mmap_sem); return 0; } The driver->update lock is the same lock that the driver takes inside its -sync_cpu_device_pagetables() callback. That lock must be held before calling -hmm_range_valid() to avoid any race with a concurrent CPU page table update. - -HMM implements all this on top of the mmu_notifier API because we wanted a -simpler API and also to be able to perform optimizations latter on like doing -concurrent device updates in multi-devices scenario. - -HMM also serves as an impedance mismatch between how CPU page table updates -are done (by CPU write to the page table and TLB flushes) and how devices -update their own page table. Device updates are a multi-step process. First, -appropriate commands are written to a buffer, then this buffer is scheduled for -execution on the device. It is only once the device has executed commands in -the buffer that the update is done. Creating and scheduling the update command -buffer can happen concurrently for multiple devices. Waiting for each device to -report commands as executed is serialized (there is no point in doing this -concurrently). - +invalidate() callback. That lock must be held before calling +mmu_interval_read_retry() to avoid any race with a concurrent CPU page table +update. Leverage default_flags and pfn_flags_mask ========================================= @@ -340,58 +282,8 @@ Migration to and from device memory =================================== Because the CPU cannot access device memory, migration must use the device DMA -engine to perform copy from and to device memory. For this we need a new -migration helper:: - - int migrate_vma(const struct migrate_vma_ops *ops, - struct vm_area_struct *vma, - unsigned long mentries, - unsigned long start, - unsigned long end, - unsigned long *src, - unsigned long *dst, - void *private); - -Unlike other migration functions it works on a range of virtual address, there -are two reasons for that. First, device DMA copy has a high setup overhead cost -and thus batching multiple pages is needed as otherwise the migration overhead -makes the whole exercise pointless. The second reason is because the -migration might be for a range of addresses the device is actively accessing. - -The migrate_vma_ops struct defines two callbacks. First one (alloc_and_copy()) -controls destination memory allocation and copy operation. Second one is there -to allow the device driver to perform cleanup operations after migration:: - - struct migrate_vma_ops { - void (*alloc_and_copy)(struct vm_area_struct *vma, - const unsigned long *src, - unsigned long *dst, - unsigned long start, - unsigned long end, - void *private); - void (*finalize_and_map)(struct vm_area_struct *vma, - const unsigned long *src, - const unsigned long *dst, - unsigned long start, - unsigned long end, - void *private); - }; - -It is important to stress that these migration helpers allow for holes in the -virtual address range. Some pages in the range might not be migrated for all -the usual reasons (page is pinned, page is locked, ...). This helper does not -fail but just skips over those pages. - -The alloc_and_copy() might decide to not migrate all pages in the -range (for reasons under the callback control). For those, the callback just -has to leave the corresponding dst entry empty. - -Finally, the migration of the struct page might fail (for file backed page) for -various reasons (failure to freeze reference, or update page cache, ...). If -that happens, then the finalize_and_map() can catch any pages that were not -migrated. Note those pages were still copied to a new page and thus we wasted -bandwidth but this is considered as a rare event and a price that we are -willing to pay to keep all the code simpler. +engine to perform copy from and to device memory. For this we need to use +migrate_vma_setup(), migrate_vma_pages(), and migrate_vma_finalize() helpers. Memory cgroup (memcg) and rss accounting diff --git a/Documentation/vm/split_page_table_lock.rst b/Documentation/vm/split_page_table_lock.rst index 889b00be469f..ff51f4a5494d 100644 --- a/Documentation/vm/split_page_table_lock.rst +++ b/Documentation/vm/split_page_table_lock.rst @@ -54,9 +54,9 @@ Hugetlb-specific helpers: Support of split page table lock by an architecture =================================================== -There's no need in special enabling of PTE split page table lock: -everything required is done by pgtable_page_ctor() and pgtable_page_dtor(), -which must be called on PTE table allocation / freeing. +There's no need in special enabling of PTE split page table lock: everything +required is done by pgtable_pte_page_ctor() and pgtable_pte_page_dtor(), which +must be called on PTE table allocation / freeing. Make sure the architecture doesn't use slab allocator for page table allocation: slab uses page->slab_cache for its pages. @@ -74,7 +74,7 @@ paths: i.e X86_PAE preallocate few PMDs on pgd_alloc(). With everything in place you can set CONFIG_ARCH_ENABLE_SPLIT_PMD_PTLOCK. -NOTE: pgtable_page_ctor() and pgtable_pmd_page_ctor() can fail -- it must +NOTE: pgtable_pte_page_ctor() and pgtable_pmd_page_ctor() can fail -- it must be handled properly. page->ptl @@ -94,7 +94,7 @@ trick: split lock with enabled DEBUG_SPINLOCK or DEBUG_LOCK_ALLOC, but costs one more cache line for indirect access; -The spinlock_t allocated in pgtable_page_ctor() for PTE table and in +The spinlock_t allocated in pgtable_pte_page_ctor() for PTE table and in pgtable_pmd_page_ctor() for PMD table. Please, never access page->ptl directly -- use appropriate helper. diff --git a/Documentation/vm/zswap.rst b/Documentation/vm/zswap.rst index 1444ecd40911..61f6185188cd 100644 --- a/Documentation/vm/zswap.rst +++ b/Documentation/vm/zswap.rst @@ -130,6 +130,19 @@ checking for the same-value filled pages during store operation. However, the existing pages which are marked as same-value filled pages remain stored unchanged in zswap until they are either loaded or invalidated. +To prevent zswap from shrinking pool when zswap is full and there's a high +pressure on swap (this will result in flipping pages in and out zswap pool +without any real benefit but with a performance drop for the system), a +special parameter has been introduced to implement a sort of hysteresis to +refuse taking pages into zswap pool until it has sufficient space if the limit +has been hit. To set the threshold at which zswap would start accepting pages +again after it became full, use the sysfs ``accept_threhsold_percent`` +attribute, e. g.:: + + echo 80 > /sys/module/zswap/parameters/accept_threhsold_percent + +Setting this parameter to 100 will disable the hysteresis. + A debugfs interface is provided for various statistic about pool size, number of pages stored, same-value filled pages and various counters for the reasons pages are rejected. |