summaryrefslogtreecommitdiffstats
path: root/Documentation/filesystems
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/adfs.txt24
-rw-r--r--Documentation/filesystems/autofs.rst (renamed from Documentation/filesystems/autofs.txt)263
-rw-r--r--Documentation/filesystems/automount-support.txt2
-rw-r--r--Documentation/filesystems/ceph.txt14
-rw-r--r--Documentation/filesystems/cifs/AUTHORS63
-rw-r--r--Documentation/filesystems/cifs/CHANGES4
-rw-r--r--Documentation/filesystems/cifs/README743
-rw-r--r--Documentation/filesystems/cifs/TODO125
-rw-r--r--Documentation/filesystems/cifs/cifs.txt45
-rw-r--r--Documentation/filesystems/cifs/cifsroot.txt97
-rwxr-xr-xDocumentation/filesystems/cifs/winucase_convert.pl62
-rw-r--r--Documentation/filesystems/coda.txt4
-rw-r--r--Documentation/filesystems/debugfs.txt50
-rw-r--r--Documentation/filesystems/directory-locking.rst (renamed from Documentation/filesystems/directory-locking)40
-rw-r--r--Documentation/filesystems/erofs.txt211
-rw-r--r--Documentation/filesystems/ext4/bigalloc.rst32
-rw-r--r--Documentation/filesystems/ext4/blockgroup.rst10
-rw-r--r--Documentation/filesystems/ext4/blocks.rst4
-rw-r--r--Documentation/filesystems/ext4/directory.rst2
-rw-r--r--Documentation/filesystems/ext4/group_descr.rst9
-rw-r--r--Documentation/filesystems/ext4/inodes.rst10
-rw-r--r--Documentation/filesystems/ext4/overview.rst1
-rw-r--r--Documentation/filesystems/ext4/super.rst22
-rw-r--r--Documentation/filesystems/ext4/verity.rst41
-rw-r--r--Documentation/filesystems/f2fs.txt215
-rw-r--r--Documentation/filesystems/fscrypt.rst869
-rw-r--r--Documentation/filesystems/fsverity.rst734
-rw-r--r--Documentation/filesystems/fuse.rst (renamed from Documentation/filesystems/fuse.txt)163
-rw-r--r--Documentation/filesystems/index.rst19
-rw-r--r--Documentation/filesystems/jfs.txt52
-rw-r--r--Documentation/filesystems/locking.rst (renamed from Documentation/filesystems/Locking)261
-rw-r--r--Documentation/filesystems/mandatory-locking.txt10
-rw-r--r--Documentation/filesystems/mount_api.txt12
-rw-r--r--Documentation/filesystems/nfs/exporting.rst (renamed from Documentation/filesystems/nfs/Exporting)31
-rw-r--r--Documentation/filesystems/nfs/fault_injection.txt69
-rw-r--r--Documentation/filesystems/nfs/idmapper.txt75
-rw-r--r--Documentation/filesystems/nfs/nfs-rdma.txt274
-rw-r--r--Documentation/filesystems/nfs/nfs.txt136
-rw-r--r--Documentation/filesystems/nfs/nfsd-admin-interfaces.txt41
-rw-r--r--Documentation/filesystems/nfs/nfsroot.txt355
-rw-r--r--Documentation/filesystems/nfs/pnfs-block-server.txt37
-rw-r--r--Documentation/filesystems/nfs/pnfs-scsi-server.txt23
-rw-r--r--Documentation/filesystems/overlayfs.rst (renamed from Documentation/filesystems/overlayfs.txt)12
-rw-r--r--Documentation/filesystems/path-lookup.rst68
-rw-r--r--Documentation/filesystems/porting686
-rw-r--r--Documentation/filesystems/porting.rst852
-rw-r--r--Documentation/filesystems/ubifs-authentication.rst (renamed from Documentation/filesystems/ubifs-authentication.md)70
-rw-r--r--Documentation/filesystems/ufs.txt60
-rw-r--r--Documentation/filesystems/vfat.rst387
-rw-r--r--Documentation/filesystems/vfat.txt347
-rw-r--r--Documentation/filesystems/vfs.rst2
-rw-r--r--Documentation/filesystems/virtiofs.rst60
-rw-r--r--Documentation/filesystems/zonefs.txt404
53 files changed, 4265 insertions, 3937 deletions
diff --git a/Documentation/filesystems/adfs.txt b/Documentation/filesystems/adfs.txt
index 5949766353f7..0baa8e8c1fc1 100644
--- a/Documentation/filesystems/adfs.txt
+++ b/Documentation/filesystems/adfs.txt
@@ -1,3 +1,27 @@
+Filesystems supported by ADFS
+-----------------------------
+
+The ADFS module supports the following Filecore formats which have:
+
+- new maps
+- new directories or big directories
+
+In terms of the named formats, this means we support:
+
+- E and E+, with or without boot block
+- F and F+
+
+We fully support reading files from these filesystems, and writing to
+existing files within their existing allocation. Essentially, we do
+not support changing any of the filesystem metadata.
+
+This is intended to support loopback mounted Linux native filesystems
+on a RISC OS Filecore filesystem, but will allow the data within files
+to be changed.
+
+If write support (ADFS_FS_RW) is configured, we allow rudimentary
+directory updates, specifically updating the access mode and timestamp.
+
Mount options for ADFS
----------------------
diff --git a/Documentation/filesystems/autofs.txt b/Documentation/filesystems/autofs.rst
index 3af38c7fd26d..681c6a492bc0 100644
--- a/Documentation/filesystems/autofs.txt
+++ b/Documentation/filesystems/autofs.rst
@@ -1,12 +1,9 @@
-<head>
-<style> p { max-width:50em} ol, ul {max-width: 40em}</style>
-</head>
-
+=====================
autofs - how it works
=====================
Purpose
--------
+=======
The goal of autofs is to provide on-demand mounting and race free
automatic unmounting of various other filesystems. This provides two
@@ -28,7 +25,7 @@ key advantages:
first accessed a name.
Context
--------
+=======
The "autofs" filesystem module is only one part of an autofs system.
There also needs to be a user-space program which looks up names
@@ -43,7 +40,7 @@ filesystem type. Several "autofs" filesystems can be mounted and they
can each be managed separately, or all managed by the same daemon.
Content
--------
+=======
An autofs filesystem can contain 3 sorts of objects: directories,
symbolic links and mount traps. Mount traps are directories with
@@ -52,9 +49,10 @@ extra properties as described in the next section.
Objects can only be created by the automount daemon: symlinks are
created with a regular `symlink` system call, while directories and
mount traps are created with `mkdir`. The determination of whether a
-directory should be a mount trap or not is quite _ad hoc_, largely for
-historical reasons, and is determined in part by the
-*direct*/*indirect*/*offset* mount options, and the *maxproto* mount option.
+directory should be a mount trap is based on a master map. This master
+map is consulted by autofs to determine which directories are mount
+points. Mount points can be *direct*/*indirect*/*offset*.
+On most systems, the default master map is located at */etc/auto.master*.
If neither the *direct* or *offset* mount options are given (so the
mount is considered to be *indirect*), then the root directory is
@@ -80,7 +78,7 @@ where in the tree they are (root, top level, or lower), the *maxproto*,
and whether the mount was *indirect* or not.
Mount Traps
----------------
+===========
A core element of the implementation of autofs is the Mount Traps
which are provided by the Linux VFS. Any directory provided by a
@@ -201,7 +199,7 @@ initiated or is being considered, otherwise it returns 0.
Mountpoint expiry
------------------
+=================
The VFS has a mechanism for automatically expiring unused mounts,
much as it can expire any unused dentry information from the dcache.
@@ -301,7 +299,7 @@ completed (together with removing any directories that might have been
necessary), or has been aborted.
Communicating with autofs: detecting the daemon
------------------------------------------------
+===============================================
There are several forms of communication between the automount daemon
and the filesystem. As we have already seen, the daemon can create and
@@ -317,33 +315,39 @@ If the daemon ever has to be stopped and restarted a new pgid can be
provided through an ioctl as will be described below.
Communicating with autofs: the event pipe
------------------------------------------
+=========================================
When an autofs filesystem is mounted, the 'write' end of a pipe must
be passed using the 'fd=' mount option. autofs will write
notification messages to this pipe for the daemon to respond to.
-For version 5, the format of the message is:
-
- struct autofs_v5_packet {
- int proto_version; /* Protocol version */
- int type; /* Type of packet */
- autofs_wqt_t wait_queue_token;
- __u32 dev;
- __u64 ino;
- __u32 uid;
- __u32 gid;
- __u32 pid;
- __u32 tgid;
- __u32 len;
- char name[NAME_MAX+1];
+For version 5, the format of the message is::
+
+ struct autofs_v5_packet {
+ struct autofs_packet_hdr hdr;
+ autofs_wqt_t wait_queue_token;
+ __u32 dev;
+ __u64 ino;
+ __u32 uid;
+ __u32 gid;
+ __u32 pid;
+ __u32 tgid;
+ __u32 len;
+ char name[NAME_MAX+1];
};
-where the type is one of
+And the format of the header is::
+
+ struct autofs_packet_hdr {
+ int proto_version; /* Protocol version */
+ int type; /* Type of packet */
+ };
- autofs_ptype_missing_indirect
- autofs_ptype_expire_indirect
- autofs_ptype_missing_direct
- autofs_ptype_expire_direct
+where the type is one of ::
+
+ autofs_ptype_missing_indirect
+ autofs_ptype_expire_indirect
+ autofs_ptype_missing_direct
+ autofs_ptype_expire_direct
so messages can indicate that a name is missing (something tried to
access it but it isn't there) or that it has been selected for expiry.
@@ -360,7 +364,7 @@ acknowledged using one of the ioctls below with the relevant
`wait_queue_token`.
Communicating with autofs: root directory ioctls
-------------------------------------------------
+================================================
The root directory of an autofs filesystem will respond to a number of
ioctls. The process issuing the ioctl must have the CAP_SYS_ADMIN
@@ -368,58 +372,66 @@ capability, or must be the automount daemon.
The available ioctl commands are:
-- **AUTOFS_IOC_READY**: a notification has been handled. The argument
- to the ioctl command is the "wait_queue_token" number
- corresponding to the notification being acknowledged.
-- **AUTOFS_IOC_FAIL**: similar to above, but indicates failure with
- the error code `ENOENT`.
-- **AUTOFS_IOC_CATATONIC**: Causes the autofs to enter "catatonic"
- mode meaning that it stops sending notifications to the daemon.
- This mode is also entered if a write to the pipe fails.
-- **AUTOFS_IOC_PROTOVER**: This returns the protocol version in use.
-- **AUTOFS_IOC_PROTOSUBVER**: Returns the protocol sub-version which
- is really a version number for the implementation.
-- **AUTOFS_IOC_SETTIMEOUT**: This passes a pointer to an unsigned
- long. The value is used to set the timeout for expiry, and
- the current timeout value is stored back through the pointer.
-- **AUTOFS_IOC_ASKUMOUNT**: Returns, in the pointed-to `int`, 1 if
- the filesystem could be unmounted. This is only a hint as
- the situation could change at any instant. This call can be
- used to avoid a more expensive full unmount attempt.
-- **AUTOFS_IOC_EXPIRE**: as described above, this asks if there is
- anything suitable to expire. A pointer to a packet:
-
- struct autofs_packet_expire_multi {
- int proto_version; /* Protocol version */
- int type; /* Type of packet */
- autofs_wqt_t wait_queue_token;
- int len;
- char name[NAME_MAX+1];
- };
+- **AUTOFS_IOC_READY**:
+ a notification has been handled. The argument
+ to the ioctl command is the "wait_queue_token" number
+ corresponding to the notification being acknowledged.
+- **AUTOFS_IOC_FAIL**:
+ similar to above, but indicates failure with
+ the error code `ENOENT`.
+- **AUTOFS_IOC_CATATONIC**:
+ Causes the autofs to enter "catatonic"
+ mode meaning that it stops sending notifications to the daemon.
+ This mode is also entered if a write to the pipe fails.
+- **AUTOFS_IOC_PROTOVER**:
+ This returns the protocol version in use.
+- **AUTOFS_IOC_PROTOSUBVER**:
+ Returns the protocol sub-version which
+ is really a version number for the implementation.
+- **AUTOFS_IOC_SETTIMEOUT**:
+ This passes a pointer to an unsigned
+ long. The value is used to set the timeout for expiry, and
+ the current timeout value is stored back through the pointer.
+- **AUTOFS_IOC_ASKUMOUNT**:
+ Returns, in the pointed-to `int`, 1 if
+ the filesystem could be unmounted. This is only a hint as
+ the situation could change at any instant. This call can be
+ used to avoid a more expensive full unmount attempt.
+- **AUTOFS_IOC_EXPIRE**:
+ as described above, this asks if there is
+ anything suitable to expire. A pointer to a packet::
+
+ struct autofs_packet_expire_multi {
+ struct autofs_packet_hdr hdr;
+ autofs_wqt_t wait_queue_token;
+ int len;
+ char name[NAME_MAX+1];
+ };
- is required. This is filled in with the name of something
- that can be unmounted or removed. If nothing can be expired,
- `errno` is set to `EAGAIN`. Even though a `wait_queue_token`
- is present in the structure, no "wait queue" is established
- and no acknowledgment is needed.
-- **AUTOFS_IOC_EXPIRE_MULTI**: This is similar to
- **AUTOFS_IOC_EXPIRE** except that it causes notification to be
- sent to the daemon, and it blocks until the daemon acknowledges.
- The argument is an integer which can contain two different flags.
+ is required. This is filled in with the name of something
+ that can be unmounted or removed. If nothing can be expired,
+ `errno` is set to `EAGAIN`. Even though a `wait_queue_token`
+ is present in the structure, no "wait queue" is established
+ and no acknowledgment is needed.
+- **AUTOFS_IOC_EXPIRE_MULTI**:
+ This is similar to
+ **AUTOFS_IOC_EXPIRE** except that it causes notification to be
+ sent to the daemon, and it blocks until the daemon acknowledges.
+ The argument is an integer which can contain two different flags.
- **AUTOFS_EXP_IMMEDIATE** causes `last_used` time to be ignored
- and objects are expired if the are not in use.
+ **AUTOFS_EXP_IMMEDIATE** causes `last_used` time to be ignored
+ and objects are expired if the are not in use.
- **AUTOFS_EXP_FORCED** causes the in use status to be ignored
- and objects are expired ieven if they are in use. This assumes
- that the daemon has requested this because it is capable of
- performing the umount.
+ **AUTOFS_EXP_FORCED** causes the in use status to be ignored
+ and objects are expired ieven if they are in use. This assumes
+ that the daemon has requested this because it is capable of
+ performing the umount.
- **AUTOFS_EXP_LEAVES** will select a leaf rather than a top-level
- name to expire. This is only safe when *maxproto* is 4.
+ **AUTOFS_EXP_LEAVES** will select a leaf rather than a top-level
+ name to expire. This is only safe when *maxproto* is 4.
Communicating with autofs: char-device ioctls
----------------------------------------------
+=============================================
It is not always possible to open the root of an autofs filesystem,
particularly a *direct* mounted filesystem. If the automount daemon
@@ -429,9 +441,9 @@ need there is a "miscellaneous" character device (major 10, minor 235)
which can be used to communicate directly with the autofs filesystem.
It requires CAP_SYS_ADMIN for access.
-The `ioctl`s that can be used on this device are described in a separate
+The 'ioctl's that can be used on this device are described in a separate
document `autofs-mount-control.txt`, and are summarised briefly here.
-Each ioctl is passed a pointer to an `autofs_dev_ioctl` structure:
+Each ioctl is passed a pointer to an `autofs_dev_ioctl` structure::
struct autofs_dev_ioctl {
__u32 ver_major;
@@ -469,41 +481,50 @@ that the kernel module can support.
Commands are:
-- **AUTOFS_DEV_IOCTL_VERSION_CMD**: does nothing, except validate and
- set version numbers.
-- **AUTOFS_DEV_IOCTL_OPENMOUNT_CMD**: return an open file descriptor
- on the root of an autofs filesystem. The filesystem is identified
- by name and device number, which is stored in `openmount.devid`.
- Device numbers for existing filesystems can be found in
- `/proc/self/mountinfo`.
-- **AUTOFS_DEV_IOCTL_CLOSEMOUNT_CMD**: same as `close(ioctlfd)`.
-- **AUTOFS_DEV_IOCTL_SETPIPEFD_CMD**: if the filesystem is in
- catatonic mode, this can provide the write end of a new pipe
- in `setpipefd.pipefd` to re-establish communication with a daemon.
- The process group of the calling process is used to identify the
- daemon.
-- **AUTOFS_DEV_IOCTL_REQUESTER_CMD**: `path` should be a
- name within the filesystem that has been auto-mounted on.
- On successful return, `requester.uid` and `requester.gid` will be
- the UID and GID of the process which triggered that mount.
-- **AUTOFS_DEV_IOCTL_ISMOUNTPOINT_CMD**: Check if path is a
- mountpoint of a particular type - see separate documentation for
- details.
-- **AUTOFS_DEV_IOCTL_PROTOVER_CMD**:
-- **AUTOFS_DEV_IOCTL_PROTOSUBVER_CMD**:
-- **AUTOFS_DEV_IOCTL_READY_CMD**:
-- **AUTOFS_DEV_IOCTL_FAIL_CMD**:
-- **AUTOFS_DEV_IOCTL_CATATONIC_CMD**:
-- **AUTOFS_DEV_IOCTL_TIMEOUT_CMD**:
-- **AUTOFS_DEV_IOCTL_EXPIRE_CMD**:
-- **AUTOFS_DEV_IOCTL_ASKUMOUNT_CMD**: These all have the same
- function as the similarly named **AUTOFS_IOC** ioctls, except
- that **FAIL** can be given an explicit error number in `fail.status`
- instead of assuming `ENOENT`, and this **EXPIRE** command
- corresponds to **AUTOFS_IOC_EXPIRE_MULTI**.
+- **AUTOFS_DEV_IOCTL_VERSION_CMD**:
+ does nothing, except validate and
+ set version numbers.
+- **AUTOFS_DEV_IOCTL_OPENMOUNT_CMD**:
+ return an open file descriptor
+ on the root of an autofs filesystem. The filesystem is identified
+ by name and device number, which is stored in `openmount.devid`.
+ Device numbers for existing filesystems can be found in
+ `/proc/self/mountinfo`.
+- **AUTOFS_DEV_IOCTL_CLOSEMOUNT_CMD**:
+ same as `close(ioctlfd)`.
+- **AUTOFS_DEV_IOCTL_SETPIPEFD_CMD**:
+ if the filesystem is in
+ catatonic mode, this can provide the write end of a new pipe
+ in `setpipefd.pipefd` to re-establish communication with a daemon.
+ The process group of the calling process is used to identify the
+ daemon.
+- **AUTOFS_DEV_IOCTL_REQUESTER_CMD**:
+ `path` should be a
+ name within the filesystem that has been auto-mounted on.
+ On successful return, `requester.uid` and `requester.gid` will be
+ the UID and GID of the process which triggered that mount.
+- **AUTOFS_DEV_IOCTL_ISMOUNTPOINT_CMD**:
+ Check if path is a
+ mountpoint of a particular type - see separate documentation for
+ details.
+
+- **AUTOFS_DEV_IOCTL_PROTOVER_CMD**
+- **AUTOFS_DEV_IOCTL_PROTOSUBVER_CMD**
+- **AUTOFS_DEV_IOCTL_READY_CMD**
+- **AUTOFS_DEV_IOCTL_FAIL_CMD**
+- **AUTOFS_DEV_IOCTL_CATATONIC_CMD**
+- **AUTOFS_DEV_IOCTL_TIMEOUT_CMD**
+- **AUTOFS_DEV_IOCTL_EXPIRE_CMD**
+- **AUTOFS_DEV_IOCTL_ASKUMOUNT_CMD**
+
+These all have the same
+function as the similarly named **AUTOFS_IOC** ioctls, except
+that **FAIL** can be given an explicit error number in `fail.status`
+instead of assuming `ENOENT`, and this **EXPIRE** command
+corresponds to **AUTOFS_IOC_EXPIRE_MULTI**.
Catatonic mode
---------------
+==============
As mentioned, an autofs mount can enter "catatonic" mode. This
happens if a write to the notification pipe fails, or if it is
@@ -527,7 +548,7 @@ Catatonic mode can only be left via the
**AUTOFS_DEV_IOCTL_OPENMOUNT_CMD** ioctl on the `/dev/autofs`.
The "ignore" mount option
--------------------------
+=========================
The "ignore" mount option can be used to provide a generic indicator
to applications that the mount entry should be ignored when displaying
@@ -542,18 +563,18 @@ This is intended to be used by user space programs to exclude autofs
mounts from consideration when reading the mounts list.
autofs, name spaces, and shared mounts
---------------------------------------
+======================================
With bind mounts and name spaces it is possible for an autofs
filesystem to appear at multiple places in one or more filesystem
name spaces. For this to work sensibly, the autofs filesystem should
-always be mounted "shared". e.g.
+always be mounted "shared". e.g. ::
-> `mount --make-shared /autofs/mount/point`
+ mount --make-shared /autofs/mount/point
The automount daemon is only able to manage a single mount location for
an autofs filesystem and if mounts on that are not 'shared', other
locations will not behave as expected. In particular access to those
-other locations will likely result in the `ELOOP` error
+other locations will likely result in the `ELOOP` error ::
-> Too many levels of symbolic links
+ Too many levels of symbolic links
diff --git a/Documentation/filesystems/automount-support.txt b/Documentation/filesystems/automount-support.txt
index b0afd3d55eaf..7d9f82607562 100644
--- a/Documentation/filesystems/automount-support.txt
+++ b/Documentation/filesystems/automount-support.txt
@@ -9,7 +9,7 @@ also be requested by userspace.
IN-KERNEL AUTOMOUNTING
======================
-See section "Mount Traps" of Documentation/filesystems/autofs.txt
+See section "Mount Traps" of Documentation/filesystems/autofs.rst
Then from userspace, you can just do something like:
diff --git a/Documentation/filesystems/ceph.txt b/Documentation/filesystems/ceph.txt
index d2c6a5ccf0f5..b19b6a03f91c 100644
--- a/Documentation/filesystems/ceph.txt
+++ b/Documentation/filesystems/ceph.txt
@@ -158,6 +158,20 @@ Mount Options
copies. Currently, it's only used in copy_file_range, which will revert
to the default VFS implementation if this option is used.
+ recover_session=<no|clean>
+ Set auto reconnect mode in the case where the client is blacklisted. The
+ available modes are "no" and "clean". The default is "no".
+
+ * no: never attempt to reconnect when client detects that it has been
+ blacklisted. Operations will generally fail after being blacklisted.
+
+ * clean: client reconnects to the ceph cluster automatically when it
+ detects that it has been blacklisted. During reconnect, client drops
+ dirty data/metadata, invalidates page caches and writable file handles.
+ After reconnect, file locks become stale because the MDS loses track
+ of them. If an inode contains any stale file locks, read/write on the
+ inode is not allowed until applications release all stale file locks.
+
More Information
================
diff --git a/Documentation/filesystems/cifs/AUTHORS b/Documentation/filesystems/cifs/AUTHORS
deleted file mode 100644
index 75865da2ce14..000000000000
--- a/Documentation/filesystems/cifs/AUTHORS
+++ /dev/null
@@ -1,63 +0,0 @@
-Original Author
-===============
-Steve French (sfrench@samba.org)
-
-The author wishes to express his appreciation and thanks to:
-Andrew Tridgell (Samba team) for his early suggestions about smb/cifs VFS
-improvements. Thanks to IBM for allowing me time and test resources to pursue
-this project, to Jim McDonough from IBM (and the Samba Team) for his help, to
-the IBM Linux JFS team for explaining many esoteric Linux filesystem features.
-Jeremy Allison of the Samba team has done invaluable work in adding the server
-side of the original CIFS Unix extensions and reviewing and implementing
-portions of the newer CIFS POSIX extensions into the Samba 3 file server. Thank
-Dave Boutcher of IBM Rochester (author of the OS/400 smb/cifs filesystem client)
-for proving years ago that very good smb/cifs clients could be done on Unix-like
-operating systems. Volker Lendecke, Andrew Tridgell, Urban Widmark, John
-Newbigin and others for their work on the Linux smbfs module. Thanks to
-the other members of the Storage Network Industry Association CIFS Technical
-Workgroup for their work specifying this highly complex protocol and finally
-thanks to the Samba team for their technical advice and encouragement.
-
-Patch Contributors
-------------------
-Zwane Mwaikambo
-Andi Kleen
-Amrut Joshi
-Shobhit Dayal
-Sergey Vlasov
-Richard Hughes
-Yury Umanets
-Mark Hamzy (for some of the early cifs IPv6 work)
-Domen Puncer
-Jesper Juhl (in particular for lots of whitespace/formatting cleanup)
-Vince Negri and Dave Stahl (for finding an important caching bug)
-Adrian Bunk (kcalloc cleanups)
-Miklos Szeredi
-Kazeon team for various fixes especially for 2.4 version.
-Asser Ferno (Change Notify support)
-Shaggy (Dave Kleikamp) for innumerable small fs suggestions and some good cleanup
-Gunter Kukkukk (testing and suggestions for support of old servers)
-Igor Mammedov (DFS support)
-Jeff Layton (many, many fixes, as well as great work on the cifs Kerberos code)
-Scott Lovenberg
-Pavel Shilovsky (for great work adding SMB2 support, and various SMB3 features)
-Aurelien Aptel (for DFS SMB3 work and some key bug fixes)
-Ronnie Sahlberg (for SMB3 xattr work, bug fixes, and lots of great work on compounding)
-Shirish Pargaonkar (for many ACL patches over the years)
-Sachin Prabhu (many bug fixes, including for reconnect, copy offload and security)
-Paulo Alcantara
-Long Li (some great work on RDMA, SMB Direct)
-
-
-Test case and Bug Report contributors
--------------------------------------
-Thanks to those in the community who have submitted detailed bug reports
-and debug of problems they have found: Jochen Dolze, David Blaine,
-Rene Scharfe, Martin Josefsson, Alexander Wild, Anthony Liguori,
-Lars Muller, Urban Widmark, Massimiliano Ferrero, Howard Owen,
-Olaf Kirch, Kieron Briggs, Nick Millington and others. Also special
-mention to the Stanford Checker (SWAT) which pointed out many minor
-bugs in error paths. Valuable suggestions also have come from Al Viro
-and Dave Miller.
-
-And thanks to the IBM LTC and Power test teams and SuSE and Citrix and RedHat testers for finding multiple bugs during excellent stress test runs.
diff --git a/Documentation/filesystems/cifs/CHANGES b/Documentation/filesystems/cifs/CHANGES
deleted file mode 100644
index 1df7f4910eb2..000000000000
--- a/Documentation/filesystems/cifs/CHANGES
+++ /dev/null
@@ -1,4 +0,0 @@
-See https://wiki.samba.org/index.php/LinuxCIFSKernel for summary
-information (that may be easier to read than parsing the output of
-"git log fs/cifs") about fixes/improvements to CIFS/SMB2/SMB3 support (changes
-to cifs.ko module) by kernel version (and cifs internal module version).
diff --git a/Documentation/filesystems/cifs/README b/Documentation/filesystems/cifs/README
deleted file mode 100644
index 4a804619cff2..000000000000
--- a/Documentation/filesystems/cifs/README
+++ /dev/null
@@ -1,743 +0,0 @@
-This module supports the SMB3 family of advanced network protocols (as well
-as older dialects, originally called "CIFS" or SMB1).
-
-The CIFS VFS module for Linux supports many advanced network filesystem
-features such as hierarchical DFS like namespace, hardlinks, locking and more.
-It was designed to comply with the SNIA CIFS Technical Reference (which
-supersedes the 1992 X/Open SMB Standard) as well as to perform best practice
-practical interoperability with Windows 2000, Windows XP, Samba and equivalent
-servers. This code was developed in participation with the Protocol Freedom
-Information Foundation. CIFS and now SMB3 has now become a defacto
-standard for interoperating between Macs and Windows and major NAS appliances.
-
-Please see
- MS-SMB2 (for detailed SMB2/SMB3/SMB3.1.1 protocol specification)
- http://protocolfreedom.org/ and
- http://samba.org/samba/PFIF/
-for more details.
-
-
-For questions or bug reports please contact:
- smfrench@gmail.com
-
-See the project page at: https://wiki.samba.org/index.php/LinuxCIFS_utils
-
-Build instructions:
-==================
-For Linux:
-1) Download the kernel (e.g. from http://www.kernel.org)
-and change directory into the top of the kernel directory tree
-(e.g. /usr/src/linux-2.5.73)
-2) make menuconfig (or make xconfig)
-3) select cifs from within the network filesystem choices
-4) save and exit
-5) make
-
-
-Installation instructions:
-=========================
-If you have built the CIFS vfs as module (successfully) simply
-type "make modules_install" (or if you prefer, manually copy the file to
-the modules directory e.g. /lib/modules/2.4.10-4GB/kernel/fs/cifs/cifs.ko).
-
-If you have built the CIFS vfs into the kernel itself, follow the instructions
-for your distribution on how to install a new kernel (usually you
-would simply type "make install").
-
-If you do not have the utility mount.cifs (in the Samba 4.x source tree and on
-the CIFS VFS web site) copy it to the same directory in which mount helpers
-reside (usually /sbin). Although the helper software is not
-required, mount.cifs is recommended. Most distros include a "cifs-utils"
-package that includes this utility so it is recommended to install this.
-
-Note that running the Winbind pam/nss module (logon service) on all of your
-Linux clients is useful in mapping Uids and Gids consistently across the
-domain to the proper network user. The mount.cifs mount helper can be
-found at cifs-utils.git on git.samba.org
-
-If cifs is built as a module, then the size and number of network buffers
-and maximum number of simultaneous requests to one server can be configured.
-Changing these from their defaults is not recommended. By executing modinfo
- modinfo kernel/fs/cifs/cifs.ko
-on kernel/fs/cifs/cifs.ko the list of configuration changes that can be made
-at module initialization time (by running insmod cifs.ko) can be seen.
-
-Recommendations
-===============
-To improve security the SMB2.1 dialect or later (usually will get SMB3) is now
-the new default. To use old dialects (e.g. to mount Windows XP) use "vers=1.0"
-on mount (or vers=2.0 for Windows Vista). Note that the CIFS (vers=1.0) is
-much older and less secure than the default dialect SMB3 which includes
-many advanced security features such as downgrade attack detection
-and encrypted shares and stronger signing and authentication algorithms.
-There are additional mount options that may be helpful for SMB3 to get
-improved POSIX behavior (NB: can use vers=3.0 to force only SMB3, never 2.1):
- "mfsymlinks" and "cifsacl" and "idsfromsid"
-
-Allowing User Mounts
-====================
-To permit users to mount and unmount over directories they own is possible
-with the cifs vfs. A way to enable such mounting is to mark the mount.cifs
-utility as suid (e.g. "chmod +s /sbin/mount.cifs). To enable users to
-umount shares they mount requires
-1) mount.cifs version 1.4 or later
-2) an entry for the share in /etc/fstab indicating that a user may
-unmount it e.g.
-//server/usersharename /mnt/username cifs user 0 0
-
-Note that when the mount.cifs utility is run suid (allowing user mounts),
-in order to reduce risks, the "nosuid" mount flag is passed in on mount to
-disallow execution of an suid program mounted on the remote target.
-When mount is executed as root, nosuid is not passed in by default,
-and execution of suid programs on the remote target would be enabled
-by default. This can be changed, as with nfs and other filesystems,
-by simply specifying "nosuid" among the mount options. For user mounts
-though to be able to pass the suid flag to mount requires rebuilding
-mount.cifs with the following flag: CIFS_ALLOW_USR_SUID
-
-There is a corresponding manual page for cifs mounting in the Samba 3.0 and
-later source tree in docs/manpages/mount.cifs.8
-
-Allowing User Unmounts
-======================
-To permit users to ummount directories that they have user mounted (see above),
-the utility umount.cifs may be used. It may be invoked directly, or if
-umount.cifs is placed in /sbin, umount can invoke the cifs umount helper
-(at least for most versions of the umount utility) for umount of cifs
-mounts, unless umount is invoked with -i (which will avoid invoking a umount
-helper). As with mount.cifs, to enable user unmounts umount.cifs must be marked
-as suid (e.g. "chmod +s /sbin/umount.cifs") or equivalent (some distributions
-allow adding entries to a file to the /etc/permissions file to achieve the
-equivalent suid effect). For this utility to succeed the target path
-must be a cifs mount, and the uid of the current user must match the uid
-of the user who mounted the resource.
-
-Also note that the customary way of allowing user mounts and unmounts is
-(instead of using mount.cifs and unmount.cifs as suid) to add a line
-to the file /etc/fstab for each //server/share you wish to mount, but
-this can become unwieldy when potential mount targets include many
-or unpredictable UNC names.
-
-Samba Considerations
-====================
-Most current servers support SMB2.1 and SMB3 which are more secure,
-but there are useful protocol extensions for the older less secure CIFS
-dialect, so to get the maximum benefit if mounting using the older dialect
-(CIFS/SMB1), we recommend using a server that supports the SNIA CIFS
-Unix Extensions standard (e.g. almost any version of Samba ie version
-2.2.5 or later) but the CIFS vfs works fine with a wide variety of CIFS servers.
-Note that uid, gid and file permissions will display default values if you do
-not have a server that supports the Unix extensions for CIFS (such as Samba
-2.2.5 or later). To enable the Unix CIFS Extensions in the Samba server, add
-the line:
-
- unix extensions = yes
-
-to your smb.conf file on the server. Note that the following smb.conf settings
-are also useful (on the Samba server) when the majority of clients are Unix or
-Linux:
-
- case sensitive = yes
- delete readonly = yes
- ea support = yes
-
-Note that server ea support is required for supporting xattrs from the Linux
-cifs client, and that EA support is present in later versions of Samba (e.g.
-3.0.6 and later (also EA support works in all versions of Windows, at least to
-shares on NTFS filesystems). Extended Attribute (xattr) support is an optional
-feature of most Linux filesystems which may require enabling via
-make menuconfig. Client support for extended attributes (user xattr) can be
-disabled on a per-mount basis by specifying "nouser_xattr" on mount.
-
-The CIFS client can get and set POSIX ACLs (getfacl, setfacl) to Samba servers
-version 3.10 and later. Setting POSIX ACLs requires enabling both XATTR and
-then POSIX support in the CIFS configuration options when building the cifs
-module. POSIX ACL support can be disabled on a per mount basic by specifying
-"noacl" on mount.
-
-Some administrators may want to change Samba's smb.conf "map archive" and
-"create mask" parameters from the default. Unless the create mask is changed
-newly created files can end up with an unnecessarily restrictive default mode,
-which may not be what you want, although if the CIFS Unix extensions are
-enabled on the server and client, subsequent setattr calls (e.g. chmod) can
-fix the mode. Note that creating special devices (mknod) remotely
-may require specifying a mkdev function to Samba if you are not using
-Samba 3.0.6 or later. For more information on these see the manual pages
-("man smb.conf") on the Samba server system. Note that the cifs vfs,
-unlike the smbfs vfs, does not read the smb.conf on the client system
-(the few optional settings are passed in on mount via -o parameters instead).
-Note that Samba 2.2.7 or later includes a fix that allows the CIFS VFS to delete
-open files (required for strict POSIX compliance). Windows Servers already
-supported this feature. Samba server does not allow symlinks that refer to files
-outside of the share, so in Samba versions prior to 3.0.6, most symlinks to
-files with absolute paths (ie beginning with slash) such as:
- ln -s /mnt/foo bar
-would be forbidden. Samba 3.0.6 server or later includes the ability to create
-such symlinks safely by converting unsafe symlinks (ie symlinks to server
-files that are outside of the share) to a samba specific format on the server
-that is ignored by local server applications and non-cifs clients and that will
-not be traversed by the Samba server). This is opaque to the Linux client
-application using the cifs vfs. Absolute symlinks will work to Samba 3.0.5 or
-later, but only for remote clients using the CIFS Unix extensions, and will
-be invisbile to Windows clients and typically will not affect local
-applications running on the same server as Samba.
-
-Use instructions:
-================
-Once the CIFS VFS support is built into the kernel or installed as a module
-(cifs.ko), you can use mount syntax like the following to access Samba or
-Mac or Windows servers:
-
- mount -t cifs //9.53.216.11/e$ /mnt -o username=myname,password=mypassword
-
-Before -o the option -v may be specified to make the mount.cifs
-mount helper display the mount steps more verbosely.
-After -o the following commonly used cifs vfs specific options
-are supported:
-
- username=<username>
- password=<password>
- domain=<domain name>
-
-Other cifs mount options are described below. Use of TCP names (in addition to
-ip addresses) is available if the mount helper (mount.cifs) is installed. If
-you do not trust the server to which are mounted, or if you do not have
-cifs signing enabled (and the physical network is insecure), consider use
-of the standard mount options "noexec" and "nosuid" to reduce the risk of
-running an altered binary on your local system (downloaded from a hostile server
-or altered by a hostile router).
-
-Although mounting using format corresponding to the CIFS URL specification is
-not possible in mount.cifs yet, it is possible to use an alternate format
-for the server and sharename (which is somewhat similar to NFS style mount
-syntax) instead of the more widely used UNC format (i.e. \\server\share):
- mount -t cifs tcp_name_of_server:share_name /mnt -o user=myname,pass=mypasswd
-
-When using the mount helper mount.cifs, passwords may be specified via alternate
-mechanisms, instead of specifying it after -o using the normal "pass=" syntax
-on the command line:
-1) By including it in a credential file. Specify credentials=filename as one
-of the mount options. Credential files contain two lines
- username=someuser
- password=your_password
-2) By specifying the password in the PASSWD environment variable (similarly
-the user name can be taken from the USER environment variable).
-3) By specifying the password in a file by name via PASSWD_FILE
-4) By specifying the password in a file by file descriptor via PASSWD_FD
-
-If no password is provided, mount.cifs will prompt for password entry
-
-Restrictions
-============
-Servers must support either "pure-TCP" (port 445 TCP/IP CIFS connections) or RFC
-1001/1002 support for "Netbios-Over-TCP/IP." This is not likely to be a
-problem as most servers support this.
-
-Valid filenames differ between Windows and Linux. Windows typically restricts
-filenames which contain certain reserved characters (e.g.the character :
-which is used to delimit the beginning of a stream name by Windows), while
-Linux allows a slightly wider set of valid characters in filenames. Windows
-servers can remap such characters when an explicit mapping is specified in
-the Server's registry. Samba starting with version 3.10 will allow such
-filenames (ie those which contain valid Linux characters, which normally
-would be forbidden for Windows/CIFS semantics) as long as the server is
-configured for Unix Extensions (and the client has not disabled
-/proc/fs/cifs/LinuxExtensionsEnabled). In addition the mount option
-"mapposix" can be used on CIFS (vers=1.0) to force the mapping of
-illegal Windows/NTFS/SMB characters to a remap range (this mount parm
-is the default for SMB3). This remap ("mapposix") range is also
-compatible with Mac (and "Services for Mac" on some older Windows).
-
-CIFS VFS Mount Options
-======================
-A partial list of the supported mount options follows:
- username The user name to use when trying to establish
- the CIFS session.
- password The user password. If the mount helper is
- installed, the user will be prompted for password
- if not supplied.
- ip The ip address of the target server
- unc The target server Universal Network Name (export) to
- mount.
- domain Set the SMB/CIFS workgroup name prepended to the
- username during CIFS session establishment
- forceuid Set the default uid for inodes to the uid
- passed in on mount. For mounts to servers
- which do support the CIFS Unix extensions, such as a
- properly configured Samba server, the server provides
- the uid, gid and mode so this parameter should not be
- specified unless the server and clients uid and gid
- numbering differ. If the server and client are in the
- same domain (e.g. running winbind or nss_ldap) and
- the server supports the Unix Extensions then the uid
- and gid can be retrieved from the server (and uid
- and gid would not have to be specified on the mount.
- For servers which do not support the CIFS Unix
- extensions, the default uid (and gid) returned on lookup
- of existing files will be the uid (gid) of the person
- who executed the mount (root, except when mount.cifs
- is configured setuid for user mounts) unless the "uid="
- (gid) mount option is specified. Also note that permission
- checks (authorization checks) on accesses to a file occur
- at the server, but there are cases in which an administrator
- may want to restrict at the client as well. For those
- servers which do not report a uid/gid owner
- (such as Windows), permissions can also be checked at the
- client, and a crude form of client side permission checking
- can be enabled by specifying file_mode and dir_mode on
- the client. (default)
- forcegid (similar to above but for the groupid instead of uid) (default)
- noforceuid Fill in file owner information (uid) by requesting it from
- the server if possible. With this option, the value given in
- the uid= option (on mount) will only be used if the server
- can not support returning uids on inodes.
- noforcegid (similar to above but for the group owner, gid, instead of uid)
- uid Set the default uid for inodes, and indicate to the
- cifs kernel driver which local user mounted. If the server
- supports the unix extensions the default uid is
- not used to fill in the owner fields of inodes (files)
- unless the "forceuid" parameter is specified.
- gid Set the default gid for inodes (similar to above).
- file_mode If CIFS Unix extensions are not supported by the server
- this overrides the default mode for file inodes.
- fsc Enable local disk caching using FS-Cache (off by default). This
- option could be useful to improve performance on a slow link,
- heavily loaded server and/or network where reading from the
- disk is faster than reading from the server (over the network).
- This could also impact scalability positively as the
- number of calls to the server are reduced. However, local
- caching is not suitable for all workloads for e.g. read-once
- type workloads. So, you need to consider carefully your
- workload/scenario before using this option. Currently, local
- disk caching is functional for CIFS files opened as read-only.
- dir_mode If CIFS Unix extensions are not supported by the server
- this overrides the default mode for directory inodes.
- port attempt to contact the server on this tcp port, before
- trying the usual ports (port 445, then 139).
- iocharset Codepage used to convert local path names to and from
- Unicode. Unicode is used by default for network path
- names if the server supports it. If iocharset is
- not specified then the nls_default specified
- during the local client kernel build will be used.
- If server does not support Unicode, this parameter is
- unused.
- rsize default read size (usually 16K). The client currently
- can not use rsize larger than CIFSMaxBufSize. CIFSMaxBufSize
- defaults to 16K and may be changed (from 8K to the maximum
- kmalloc size allowed by your kernel) at module install time
- for cifs.ko. Setting CIFSMaxBufSize to a very large value
- will cause cifs to use more memory and may reduce performance
- in some cases. To use rsize greater than 127K (the original
- cifs protocol maximum) also requires that the server support
- a new Unix Capability flag (for very large read) which some
- newer servers (e.g. Samba 3.0.26 or later) do. rsize can be
- set from a minimum of 2048 to a maximum of 130048 (127K or
- CIFSMaxBufSize, whichever is smaller)
- wsize default write size (default 57344)
- maximum wsize currently allowed by CIFS is 57344 (fourteen
- 4096 byte pages)
- actimeo=n attribute cache timeout in seconds (default 1 second).
- After this timeout, the cifs client requests fresh attribute
- information from the server. This option allows to tune the
- attribute cache timeout to suit the workload needs. Shorter
- timeouts mean better the cache coherency, but increased number
- of calls to the server. Longer timeouts mean reduced number
- of calls to the server at the expense of less stricter cache
- coherency checks (i.e. incorrect attribute cache for a short
- period of time).
- rw mount the network share read-write (note that the
- server may still consider the share read-only)
- ro mount network share read-only
- version used to distinguish different versions of the
- mount helper utility (not typically needed)
- sep if first mount option (after the -o), overrides
- the comma as the separator between the mount
- parms. e.g.
- -o user=myname,password=mypassword,domain=mydom
- could be passed instead with period as the separator by
- -o sep=.user=myname.password=mypassword.domain=mydom
- this might be useful when comma is contained within username
- or password or domain. This option is less important
- when the cifs mount helper cifs.mount (version 1.1 or later)
- is used.
- nosuid Do not allow remote executables with the suid bit
- program to be executed. This is only meaningful for mounts
- to servers such as Samba which support the CIFS Unix Extensions.
- If you do not trust the servers in your network (your mount
- targets) it is recommended that you specify this option for
- greater security.
- exec Permit execution of binaries on the mount.
- noexec Do not permit execution of binaries on the mount.
- dev Recognize block devices on the remote mount.
- nodev Do not recognize devices on the remote mount.
- suid Allow remote files on this mountpoint with suid enabled to
- be executed (default for mounts when executed as root,
- nosuid is default for user mounts).
- credentials Although ignored by the cifs kernel component, it is used by
- the mount helper, mount.cifs. When mount.cifs is installed it
- opens and reads the credential file specified in order
- to obtain the userid and password arguments which are passed to
- the cifs vfs.
- guest Although ignored by the kernel component, the mount.cifs
- mount helper will not prompt the user for a password
- if guest is specified on the mount options. If no
- password is specified a null password will be used.
- perm Client does permission checks (vfs_permission check of uid
- and gid of the file against the mode and desired operation),
- Note that this is in addition to the normal ACL check on the
- target machine done by the server software.
- Client permission checking is enabled by default.
- noperm Client does not do permission checks. This can expose
- files on this mount to access by other users on the local
- client system. It is typically only needed when the server
- supports the CIFS Unix Extensions but the UIDs/GIDs on the
- client and server system do not match closely enough to allow
- access by the user doing the mount, but it may be useful with
- non CIFS Unix Extension mounts for cases in which the default
- mode is specified on the mount but is not to be enforced on the
- client (e.g. perhaps when MultiUserMount is enabled)
- Note that this does not affect the normal ACL check on the
- target machine done by the server software (of the server
- ACL against the user name provided at mount time).
- serverino Use server's inode numbers instead of generating automatically
- incrementing inode numbers on the client. Although this will
- make it easier to spot hardlinked files (as they will have
- the same inode numbers) and inode numbers may be persistent,
- note that the server does not guarantee that the inode numbers
- are unique if multiple server side mounts are exported under a
- single share (since inode numbers on the servers might not
- be unique if multiple filesystems are mounted under the same
- shared higher level directory). Note that some older
- (e.g. pre-Windows 2000) do not support returning UniqueIDs
- or the CIFS Unix Extensions equivalent and for those
- this mount option will have no effect. Exporting cifs mounts
- under nfsd requires this mount option on the cifs mount.
- This is now the default if server supports the
- required network operation.
- noserverino Client generates inode numbers (rather than using the actual one
- from the server). These inode numbers will vary after
- unmount or reboot which can confuse some applications,
- but not all server filesystems support unique inode
- numbers.
- setuids If the CIFS Unix extensions are negotiated with the server
- the client will attempt to set the effective uid and gid of
- the local process on newly created files, directories, and
- devices (create, mkdir, mknod). If the CIFS Unix Extensions
- are not negotiated, for newly created files and directories
- instead of using the default uid and gid specified on
- the mount, cache the new file's uid and gid locally which means
- that the uid for the file can change when the inode is
- reloaded (or the user remounts the share).
- nosetuids The client will not attempt to set the uid and gid on
- on newly created files, directories, and devices (create,
- mkdir, mknod) which will result in the server setting the
- uid and gid to the default (usually the server uid of the
- user who mounted the share). Letting the server (rather than
- the client) set the uid and gid is the default. If the CIFS
- Unix Extensions are not negotiated then the uid and gid for
- new files will appear to be the uid (gid) of the mounter or the
- uid (gid) parameter specified on the mount.
- netbiosname When mounting to servers via port 139, specifies the RFC1001
- source name to use to represent the client netbios machine
- name when doing the RFC1001 netbios session initialize.
- direct Do not do inode data caching on files opened on this mount.
- This precludes mmapping files on this mount. In some cases
- with fast networks and little or no caching benefits on the
- client (e.g. when the application is doing large sequential
- reads bigger than page size without rereading the same data)
- this can provide better performance than the default
- behavior which caches reads (readahead) and writes
- (writebehind) through the local Linux client pagecache
- if oplock (caching token) is granted and held. Note that
- direct allows write operations larger than page size
- to be sent to the server.
- strictcache Use for switching on strict cache mode. In this mode the
- client read from the cache all the time it has Oplock Level II,
- otherwise - read from the server. All written data are stored
- in the cache, but if the client doesn't have Exclusive Oplock,
- it writes the data to the server.
- rwpidforward Forward pid of a process who opened a file to any read or write
- operation on that file. This prevent applications like WINE
- from failing on read and write if we use mandatory brlock style.
- acl Allow setfacl and getfacl to manage posix ACLs if server
- supports them. (default)
- noacl Do not allow setfacl and getfacl calls on this mount
- user_xattr Allow getting and setting user xattrs (those attributes whose
- name begins with "user." or "os2.") as OS/2 EAs (extended
- attributes) to the server. This allows support of the
- setfattr and getfattr utilities. (default)
- nouser_xattr Do not allow getfattr/setfattr to get/set/list xattrs
- mapchars Translate six of the seven reserved characters (not backslash)
- *?<>|:
- to the remap range (above 0xF000), which also
- allows the CIFS client to recognize files created with
- such characters by Windows's POSIX emulation. This can
- also be useful when mounting to most versions of Samba
- (which also forbids creating and opening files
- whose names contain any of these seven characters).
- This has no effect if the server does not support
- Unicode on the wire.
- nomapchars Do not translate any of these seven characters (default).
- nocase Request case insensitive path name matching (case
- sensitive is the default if the server supports it).
- (mount option "ignorecase" is identical to "nocase")
- posixpaths If CIFS Unix extensions are supported, attempt to
- negotiate posix path name support which allows certain
- characters forbidden in typical CIFS filenames, without
- requiring remapping. (default)
- noposixpaths If CIFS Unix extensions are supported, do not request
- posix path name support (this may cause servers to
- reject creatingfile with certain reserved characters).
- nounix Disable the CIFS Unix Extensions for this mount (tree
- connection). This is rarely needed, but it may be useful
- in order to turn off multiple settings all at once (ie
- posix acls, posix locks, posix paths, symlink support
- and retrieving uids/gids/mode from the server) or to
- work around a bug in server which implement the Unix
- Extensions.
- nobrl Do not send byte range lock requests to the server.
- This is necessary for certain applications that break
- with cifs style mandatory byte range locks (and most
- cifs servers do not yet support requesting advisory
- byte range locks).
- forcemandatorylock Even if the server supports posix (advisory) byte range
- locking, send only mandatory lock requests. For some
- (presumably rare) applications, originally coded for
- DOS/Windows, which require Windows style mandatory byte range
- locking, they may be able to take advantage of this option,
- forcing the cifs client to only send mandatory locks
- even if the cifs server would support posix advisory locks.
- "forcemand" is accepted as a shorter form of this mount
- option.
- nostrictsync If this mount option is set, when an application does an
- fsync call then the cifs client does not send an SMB Flush
- to the server (to force the server to write all dirty data
- for this file immediately to disk), although cifs still sends
- all dirty (cached) file data to the server and waits for the
- server to respond to the write. Since SMB Flush can be
- very slow, and some servers may be reliable enough (to risk
- delaying slightly flushing the data to disk on the server),
- turning on this option may be useful to improve performance for
- applications that fsync too much, at a small risk of server
- crash. If this mount option is not set, by default cifs will
- send an SMB flush request (and wait for a response) on every
- fsync call.
- nodfs Disable DFS (global name space support) even if the
- server claims to support it. This can help work around
- a problem with parsing of DFS paths with Samba server
- versions 3.0.24 and 3.0.25.
- remount remount the share (often used to change from ro to rw mounts
- or vice versa)
- cifsacl Report mode bits (e.g. on stat) based on the Windows ACL for
- the file. (EXPERIMENTAL)
- servern Specify the server 's netbios name (RFC1001 name) to use
- when attempting to setup a session to the server.
- This is needed for mounting to some older servers (such
- as OS/2 or Windows 98 and Windows ME) since they do not
- support a default server name. A server name can be up
- to 15 characters long and is usually uppercased.
- sfu When the CIFS Unix Extensions are not negotiated, attempt to
- create device files and fifos in a format compatible with
- Services for Unix (SFU). In addition retrieve bits 10-12
- of the mode via the SETFILEBITS extended attribute (as
- SFU does). In the future the bottom 9 bits of the
- mode also will be emulated using queries of the security
- descriptor (ACL).
- mfsymlinks Enable support for Minshall+French symlinks
- (see http://wiki.samba.org/index.php/UNIX_Extensions#Minshall.2BFrench_symlinks)
- This option is ignored when specified together with the
- 'sfu' option. Minshall+French symlinks are used even if
- the server supports the CIFS Unix Extensions.
- sign Must use packet signing (helps avoid unwanted data modification
- by intermediate systems in the route). Note that signing
- does not work with lanman or plaintext authentication.
- seal Must seal (encrypt) all data on this mounted share before
- sending on the network. Requires support for Unix Extensions.
- Note that this differs from the sign mount option in that it
- causes encryption of data sent over this mounted share but other
- shares mounted to the same server are unaffected.
- locallease This option is rarely needed. Fcntl F_SETLEASE is
- used by some applications such as Samba and NFSv4 server to
- check to see whether a file is cacheable. CIFS has no way
- to explicitly request a lease, but can check whether a file
- is cacheable (oplocked). Unfortunately, even if a file
- is not oplocked, it could still be cacheable (ie cifs client
- could grant fcntl leases if no other local processes are using
- the file) for cases for example such as when the server does not
- support oplocks and the user is sure that the only updates to
- the file will be from this client. Specifying this mount option
- will allow the cifs client to check for leases (only) locally
- for files which are not oplocked instead of denying leases
- in that case. (EXPERIMENTAL)
- sec Security mode. Allowed values are:
- none attempt to connection as a null user (no name)
- krb5 Use Kerberos version 5 authentication
- krb5i Use Kerberos authentication and packet signing
- ntlm Use NTLM password hashing (default)
- ntlmi Use NTLM password hashing with signing (if
- /proc/fs/cifs/PacketSigningEnabled on or if
- server requires signing also can be the default)
- ntlmv2 Use NTLMv2 password hashing
- ntlmv2i Use NTLMv2 password hashing with packet signing
- lanman (if configured in kernel config) use older
- lanman hash
-hard Retry file operations if server is not responding
-soft Limit retries to unresponsive servers (usually only
- one retry) before returning an error. (default)
-
-The mount.cifs mount helper also accepts a few mount options before -o
-including:
-
- -S take password from stdin (equivalent to setting the environment
- variable "PASSWD_FD=0"
- -V print mount.cifs version
- -? display simple usage information
-
-With most 2.6 kernel versions of modutils, the version of the cifs kernel
-module can be displayed via modinfo.
-
-Misc /proc/fs/cifs Flags and Debug Info
-=======================================
-Informational pseudo-files:
-DebugData Displays information about active CIFS sessions and
- shares, features enabled as well as the cifs.ko
- version.
-Stats Lists summary resource usage information as well as per
- share statistics.
-
-Configuration pseudo-files:
-SecurityFlags Flags which control security negotiation and
- also packet signing. Authentication (may/must)
- flags (e.g. for NTLM and/or NTLMv2) may be combined with
- the signing flags. Specifying two different password
- hashing mechanisms (as "must use") on the other hand
- does not make much sense. Default flags are
- 0x07007
- (NTLM, NTLMv2 and packet signing allowed). The maximum
- allowable flags if you want to allow mounts to servers
- using weaker password hashes is 0x37037 (lanman,
- plaintext, ntlm, ntlmv2, signing allowed). Some
- SecurityFlags require the corresponding menuconfig
- options to be enabled (lanman and plaintext require
- CONFIG_CIFS_WEAK_PW_HASH for example). Enabling
- plaintext authentication currently requires also
- enabling lanman authentication in the security flags
- because the cifs module only supports sending
- laintext passwords using the older lanman dialect
- form of the session setup SMB. (e.g. for authentication
- using plain text passwords, set the SecurityFlags
- to 0x30030):
-
- may use packet signing 0x00001
- must use packet signing 0x01001
- may use NTLM (most common password hash) 0x00002
- must use NTLM 0x02002
- may use NTLMv2 0x00004
- must use NTLMv2 0x04004
- may use Kerberos security 0x00008
- must use Kerberos 0x08008
- may use lanman (weak) password hash 0x00010
- must use lanman password hash 0x10010
- may use plaintext passwords 0x00020
- must use plaintext passwords 0x20020
- (reserved for future packet encryption) 0x00040
-
-cifsFYI If set to non-zero value, additional debug information
- will be logged to the system error log. This field
- contains three flags controlling different classes of
- debugging entries. The maximum value it can be set
- to is 7 which enables all debugging points (default 0).
- Some debugging statements are not compiled into the
- cifs kernel unless CONFIG_CIFS_DEBUG2 is enabled in the
- kernel configuration. cifsFYI may be set to one or
- nore of the following flags (7 sets them all):
-
- log cifs informational messages 0x01
- log return codes from cifs entry points 0x02
- log slow responses (ie which take longer than 1 second)
- CONFIG_CIFS_STATS2 must be enabled in .config 0x04
-
-
-traceSMB If set to one, debug information is logged to the
- system error log with the start of smb requests
- and responses (default 0)
-LookupCacheEnable If set to one, inode information is kept cached
- for one second improving performance of lookups
- (default 1)
-LinuxExtensionsEnabled If set to one then the client will attempt to
- use the CIFS "UNIX" extensions which are optional
- protocol enhancements that allow CIFS servers
- to return accurate UID/GID information as well
- as support symbolic links. If you use servers
- such as Samba that support the CIFS Unix
- extensions but do not want to use symbolic link
- support and want to map the uid and gid fields
- to values supplied at mount (rather than the
- actual values, then set this to zero. (default 1)
-
-These experimental features and tracing can be enabled by changing flags in
-/proc/fs/cifs (after the cifs module has been installed or built into the
-kernel, e.g. insmod cifs). To enable a feature set it to 1 e.g. to enable
-tracing to the kernel message log type:
-
- echo 7 > /proc/fs/cifs/cifsFYI
-
-cifsFYI functions as a bit mask. Setting it to 1 enables additional kernel
-logging of various informational messages. 2 enables logging of non-zero
-SMB return codes while 4 enables logging of requests that take longer
-than one second to complete (except for byte range lock requests).
-Setting it to 4 requires CONFIG_CIFS_STATS2 to be set in kernel configuration
-(.config). Setting it to seven enables all three. Finally, tracing
-the start of smb requests and responses can be enabled via:
-
- echo 1 > /proc/fs/cifs/traceSMB
-
-Per share (per client mount) statistics are available in /proc/fs/cifs/Stats.
-Additional information is available if CONFIG_CIFS_STATS2 is enabled in the
-kernel configuration (.config). The statistics returned include counters which
-represent the number of attempted and failed (ie non-zero return code from the
-server) SMB3 (or cifs) requests grouped by request type (read, write, close etc.).
-Also recorded is the total bytes read and bytes written to the server for
-that share. Note that due to client caching effects this can be less than the
-number of bytes read and written by the application running on the client.
-Statistics can be reset to zero by "echo 0 > /proc/fs/cifs/Stats" which may be
-useful if comparing performance of two different scenarios.
-
-Also note that "cat /proc/fs/cifs/DebugData" will display information about
-the active sessions and the shares that are mounted.
-
-Enabling Kerberos (extended security) works but requires version 1.2 or later
-of the helper program cifs.upcall to be present and to be configured in the
-/etc/request-key.conf file. The cifs.upcall helper program is from the Samba
-project(http://www.samba.org). NTLM and NTLMv2 and LANMAN support do not
-require this helper. Note that NTLMv2 security (which does not require the
-cifs.upcall helper program), instead of using Kerberos, is sufficient for
-some use cases.
-
-DFS support allows transparent redirection to shares in an MS-DFS name space.
-In addition, DFS support for target shares which are specified as UNC
-names which begin with host names (rather than IP addresses) requires
-a user space helper (such as cifs.upcall) to be present in order to
-translate host names to ip address, and the user space helper must also
-be configured in the file /etc/request-key.conf. Samba, Windows servers and
-many NAS appliances support DFS as a way of constructing a global name
-space to ease network configuration and improve reliability.
-
-To use cifs Kerberos and DFS support, the Linux keyutils package should be
-installed and something like the following lines should be added to the
-/etc/request-key.conf file:
-
-create cifs.spnego * * /usr/local/sbin/cifs.upcall %k
-create dns_resolver * * /usr/local/sbin/cifs.upcall %k
-
-CIFS kernel module parameters
-=============================
-These module parameters can be specified or modified either during the time of
-module loading or during the runtime by using the interface
- /proc/module/cifs/parameters/<param>
-
-i.e. echo "value" > /sys/module/cifs/parameters/<param>
-
-1. enable_oplocks - Enable or disable oplocks. Oplocks are enabled by default.
- [Y/y/1]. To disable use any of [N/n/0].
-
diff --git a/Documentation/filesystems/cifs/TODO b/Documentation/filesystems/cifs/TODO
deleted file mode 100644
index edbbccda1942..000000000000
--- a/Documentation/filesystems/cifs/TODO
+++ /dev/null
@@ -1,125 +0,0 @@
-Version 2.14 December 21, 2018
-
-A Partial List of Missing Features
-==================================
-
-Contributions are welcome. There are plenty of opportunities
-for visible, important contributions to this module. Here
-is a partial list of the known problems and missing features:
-
-a) SMB3 (and SMB3.1.1) missing optional features:
- - multichannel (started), integration with RDMA
- - directory leases (improved metadata caching), started (root dir only)
- - T10 copy offload ie "ODX" (copy chunk, and "Duplicate Extents" ioctl
- currently the only two server side copy mechanisms supported)
-
-b) improved sparse file support (fiemap and SEEK_HOLE are implemented
-but additional features would be supportable by the protocol).
-
-c) Directory entry caching relies on a 1 second timer, rather than
-using Directory Leases, currently only the root file handle is cached longer
-
-d) quota support (needs minor kernel change since quota calls
-to make it to network filesystems or deviceless filesystems)
-
-e) Additional use cases can be optimized to use "compounding"
-(e.g. open/query/close and open/setinfo/close) to reduce the number
-of roundtrips to the server and improve performance. Various cases
-(stat, statfs, create, unlink, mkdir) already have been improved by
-using compounding but more can be done. In addition we could significantly
-reduce redundant opens by using deferred close (with handle caching leases)
-and better using reference counters on file handles.
-
-f) Finish inotify support so kde and gnome file list windows
-will autorefresh (partially complete by Asser). Needs minor kernel
-vfs change to support removing D_NOTIFY on a file.
-
-g) Add GUI tool to configure /proc/fs/cifs settings and for display of
-the CIFS statistics (started)
-
-h) implement support for security and trusted categories of xattrs
-(requires minor protocol extension) to enable better support for SELINUX
-
-i) Add support for tree connect contexts (see MS-SMB2) a new SMB3.1.1 protocol
- feature (may be especially useful for virtualization).
-
-j) Create UID mapping facility so server UIDs can be mapped on a per
-mount or a per server basis to client UIDs or nobody if no mapping
-exists. Also better integration with winbind for resolving SID owners
-
-k) Add tools to take advantage of more smb3 specific ioctls and features
-(passthrough ioctl/fsctl is now implemented in cifs.ko to allow sending
-various SMB3 fsctls and query info and set info calls directly from user space)
-Add tools to make setting various non-POSIX metadata attributes easier
-from tools (e.g. extending what was done in smb-info tool).
-
-l) encrypted file support
-
-m) improved stats gathering tools (perhaps integration with nfsometer?)
-to extend and make easier to use what is currently in /proc/fs/cifs/Stats
-
-n) Add support for claims based ACLs ("DAC")
-
-o) mount helper GUI (to simplify the various configuration options on mount)
-
-p) Add support for witness protocol (perhaps ioctl to cifs.ko from user space
- tool listening on witness protocol RPC) to allow for notification of share
- move, server failover, and server adapter changes. And also improve other
- failover scenarios, e.g. when client knows multiple DFS entries point to
- different servers, and the server we are connected to has gone down.
-
-q) Allow mount.cifs to be more verbose in reporting errors with dialect
-or unsupported feature errors.
-
-r) updating cifs documentation, and user guide.
-
-s) Addressing bugs found by running a broader set of xfstests in standard
-file system xfstest suite.
-
-t) split cifs and smb3 support into separate modules so legacy (and less
-secure) CIFS dialect can be disabled in environments that don't need it
-and simplify the code.
-
-v) POSIX Extensions for SMB3.1.1 (started, create and mkdir support added
-so far).
-
-w) Add support for additional strong encryption types, and additional spnego
-authentication mechanisms (see MS-SMB2)
-
-x) Finish support for SMB3.1.1 compression
-
-KNOWN BUGS
-====================================
-See http://bugzilla.samba.org - search on product "CifsVFS" for
-current bug list. Also check http://bugzilla.kernel.org (Product = File System, Component = CIFS)
-
-1) existing symbolic links (Windows reparse points) are recognized but
-can not be created remotely. They are implemented for Samba and those that
-support the CIFS Unix extensions, although earlier versions of Samba
-overly restrict the pathnames.
-2) follow_link and readdir code does not follow dfs junctions
-but recognizes them
-
-Misc testing to do
-==================
-1) check out max path names and max path name components against various server
-types. Try nested symlinks (8 deep). Return max path name in stat -f information
-
-2) Improve xfstest's cifs/smb3 enablement and adapt xfstests where needed to test
-cifs/smb3 better
-
-3) Additional performance testing and optimization using iozone and similar -
-there are some easy changes that can be done to parallelize sequential writes,
-and when signing is disabled to request larger read sizes (larger than
-negotiated size) and send larger write sizes to modern servers.
-
-4) More exhaustively test against less common servers
-
-5) Continue to extend the smb3 "buildbot" which does automated xfstesting
-against Windows, Samba and Azure currently - to add additional tests and
-to allow the buildbot to execute the tests faster. The URL for the
-buildbot is: http://smb3-test-rhel-75.southcentralus.cloudapp.azure.com
-
-6) Address various coverity warnings (most are not bugs per-se, but
-the more warnings are addressed, the easier it is to spot real
-problems that static analyzers will point out in the future).
diff --git a/Documentation/filesystems/cifs/cifs.txt b/Documentation/filesystems/cifs/cifs.txt
deleted file mode 100644
index 1be3d21c286e..000000000000
--- a/Documentation/filesystems/cifs/cifs.txt
+++ /dev/null
@@ -1,45 +0,0 @@
- This is the client VFS module for the SMB3 NAS protocol as well
- as for older dialects such as the Common Internet File System (CIFS)
- protocol which was the successor to the Server Message Block
- (SMB) protocol, the native file sharing mechanism for most early
- PC operating systems. New and improved versions of CIFS are now
- called SMB2 and SMB3. Use of SMB3 (and later, including SMB3.1.1)
- is strongly preferred over using older dialects like CIFS due to
- security reaasons. All modern dialects, including the most recent,
- SMB3.1.1 are supported by the CIFS VFS module. The SMB3 protocol
- is implemented and supported by all major file servers
- such as all modern versions of Windows (including Windows 2016
- Server), as well as by Samba (which provides excellent
- CIFS/SMB2/SMB3 server support and tools for Linux and many other
- operating systems). Apple systems also support SMB3 well, as
- do most Network Attached Storage vendors, so this network
- filesystem client can mount to a wide variety of systems.
- It also supports mounting to the cloud (for example
- Microsoft Azure), including the necessary security features.
-
- The intent of this module is to provide the most advanced network
- file system function for SMB3 compliant servers, including advanced
- security features, excellent parallelized high performance i/o, better
- POSIX compliance, secure per-user session establishment, encryption,
- high performance safe distributed caching (leases/oplocks), optional packet
- signing, large files, Unicode support and other internationalization
- improvements. Since both Samba server and this filesystem client support
- the CIFS Unix extensions (and in the future SMB3 POSIX extensions),
- the combination can provide a reasonable alternative to other network and
- cluster file systems for fileserving in some Linux to Linux environments,
- not just in Linux to Windows (or Linux to Mac) environments.
-
- This filesystem has a mount utility (mount.cifs) and various user space
- tools (including smbinfo and setcifsacl) that can be obtained from
-
- https://git.samba.org/?p=cifs-utils.git
- or
- git://git.samba.org/cifs-utils.git
-
- mount.cifs should be installed in the directory with the other mount helpers.
-
- For more information on the module see the project wiki page at
-
- https://wiki.samba.org/index.php/LinuxCIFS
- and
- https://wiki.samba.org/index.php/LinuxCIFS_utils
diff --git a/Documentation/filesystems/cifs/cifsroot.txt b/Documentation/filesystems/cifs/cifsroot.txt
new file mode 100644
index 000000000000..0fa1a2c36a40
--- /dev/null
+++ b/Documentation/filesystems/cifs/cifsroot.txt
@@ -0,0 +1,97 @@
+Mounting root file system via SMB (cifs.ko)
+===========================================
+
+Written 2019 by Paulo Alcantara <palcantara@suse.de>
+Written 2019 by Aurelien Aptel <aaptel@suse.com>
+
+The CONFIG_CIFS_ROOT option enables experimental root file system
+support over the SMB protocol via cifs.ko.
+
+It introduces a new kernel command-line option called 'cifsroot='
+which will tell the kernel to mount the root file system over the
+network by utilizing SMB or CIFS protocol.
+
+In order to mount, the network stack will also need to be set up by
+using 'ip=' config option. For more details, see
+Documentation/filesystems/nfs/nfsroot.txt.
+
+A CIFS root mount currently requires the use of SMB1+UNIX Extensions
+which is only supported by the Samba server. SMB1 is the older
+deprecated version of the protocol but it has been extended to support
+POSIX features (See [1]). The equivalent extensions for the newer
+recommended version of the protocol (SMB3) have not been fully
+implemented yet which means SMB3 doesn't support some required POSIX
+file system objects (e.g. block devices, pipes, sockets).
+
+As a result, a CIFS root will default to SMB1 for now but the version
+to use can nonetheless be changed via the 'vers=' mount option. This
+default will change once the SMB3 POSIX extensions are fully
+implemented.
+
+Server configuration
+====================
+
+To enable SMB1+UNIX extensions you will need to set these global
+settings in Samba smb.conf:
+
+ [global]
+ server min protocol = NT1
+ unix extension = yes # default
+
+Kernel command line
+===================
+
+root=/dev/cifs
+
+This is just a virtual device that basically tells the kernel to mount
+the root file system via SMB protocol.
+
+cifsroot=//<server-ip>/<share>[,options]
+
+Enables the kernel to mount the root file system via SMB that are
+located in the <server-ip> and <share> specified in this option.
+
+The default mount options are set in fs/cifs/cifsroot.c.
+
+server-ip
+ IPv4 address of the server.
+
+share
+ Path to SMB share (rootfs).
+
+options
+ Optional mount options. For more information, see mount.cifs(8).
+
+Examples
+========
+
+Export root file system as a Samba share in smb.conf file.
+
+...
+[linux]
+ path = /path/to/rootfs
+ read only = no
+ guest ok = yes
+ force user = root
+ force group = root
+ browseable = yes
+ writeable = yes
+ admin users = root
+ public = yes
+ create mask = 0777
+ directory mask = 0777
+...
+
+Restart smb service.
+
+# systemctl restart smb
+
+Test it under QEMU on a kernel built with CONFIG_CIFS_ROOT and
+CONFIG_IP_PNP options enabled.
+
+# qemu-system-x86_64 -enable-kvm -cpu host -m 1024 \
+ -kernel /path/to/linux/arch/x86/boot/bzImage -nographic \
+ -append "root=/dev/cifs rw ip=dhcp cifsroot=//10.0.2.2/linux,username=foo,password=bar console=ttyS0 3"
+
+
+1: https://wiki.samba.org/index.php/UNIX_Extensions
diff --git a/Documentation/filesystems/cifs/winucase_convert.pl b/Documentation/filesystems/cifs/winucase_convert.pl
deleted file mode 100755
index 322a9c833f23..000000000000
--- a/Documentation/filesystems/cifs/winucase_convert.pl
+++ /dev/null
@@ -1,62 +0,0 @@
-#!/usr/bin/perl -w
-#
-# winucase_convert.pl -- convert "Windows 8 Upper Case Mapping Table.txt" to
-# a two-level set of C arrays.
-#
-# Copyright 2013: Jeff Layton <jlayton@redhat.com>
-#
-# This program is free software: you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation, either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with this program. If not, see <http://www.gnu.org/licenses/>.
-#
-
-while(<>) {
- next if (!/^0x(..)(..)\t0x(....)\t/);
- $firstchar = hex($1);
- $secondchar = hex($2);
- $uppercase = hex($3);
-
- $top[$firstchar][$secondchar] = $uppercase;
-}
-
-for ($i = 0; $i < 256; $i++) {
- next if (!$top[$i]);
-
- printf("static const wchar_t t2_%2.2x[256] = {", $i);
- for ($j = 0; $j < 256; $j++) {
- if (($j % 8) == 0) {
- print "\n\t";
- } else {
- print " ";
- }
- printf("0x%4.4x,", $top[$i][$j] ? $top[$i][$j] : 0);
- }
- print "\n};\n\n";
-}
-
-printf("static const wchar_t *const toplevel[256] = {", $i);
-for ($i = 0; $i < 256; $i++) {
- if (($i % 8) == 0) {
- print "\n\t";
- } elsif ($top[$i]) {
- print " ";
- } else {
- print " ";
- }
-
- if ($top[$i]) {
- printf("t2_%2.2x,", $i);
- } else {
- print "NULL,";
- }
-}
-print "\n};\n\n";
diff --git a/Documentation/filesystems/coda.txt b/Documentation/filesystems/coda.txt
index 545262c167c3..1711ad48e38a 100644
--- a/Documentation/filesystems/coda.txt
+++ b/Documentation/filesystems/coda.txt
@@ -421,14 +421,14 @@ kernel support.
The CodaCred structure defines a variety of user and group ids as
- they are set for the calling process. The vuid_t and guid_t are 32 bit
+ they are set for the calling process. The vuid_t and vgid_t are 32 bit
unsigned integers. It also defines group membership in an array. On
Unix the CodaCred has proven sufficient to implement good security
semantics for Coda but the structure may have to undergo modification
for the Windows environment when these mature.
struct CodaCred {
- vuid_t cr_uid, cr_euid, cr_suid, cr_fsuid; /* Real, effective, set, fs uid*/
+ vuid_t cr_uid, cr_euid, cr_suid, cr_fsuid; /* Real, effective, set, fs uid */
vgid_t cr_gid, cr_egid, cr_sgid, cr_fsgid; /* same for groups */
vgid_t cr_groups[NGROUPS]; /* Group membership for caller */
};
diff --git a/Documentation/filesystems/debugfs.txt b/Documentation/filesystems/debugfs.txt
index 9e27c843d00e..dc497b96fa4f 100644
--- a/Documentation/filesystems/debugfs.txt
+++ b/Documentation/filesystems/debugfs.txt
@@ -68,41 +68,49 @@ actually necessary; the debugfs code provides a number of helper functions
for simple situations. Files containing a single integer value can be
created with any of:
- struct dentry *debugfs_create_u8(const char *name, umode_t mode,
- struct dentry *parent, u8 *value);
- struct dentry *debugfs_create_u16(const char *name, umode_t mode,
- struct dentry *parent, u16 *value);
+ void debugfs_create_u8(const char *name, umode_t mode,
+ struct dentry *parent, u8 *value);
+ void debugfs_create_u16(const char *name, umode_t mode,
+ struct dentry *parent, u16 *value);
struct dentry *debugfs_create_u32(const char *name, umode_t mode,
struct dentry *parent, u32 *value);
- struct dentry *debugfs_create_u64(const char *name, umode_t mode,
- struct dentry *parent, u64 *value);
+ void debugfs_create_u64(const char *name, umode_t mode,
+ struct dentry *parent, u64 *value);
These files support both reading and writing the given value; if a specific
file should not be written to, simply set the mode bits accordingly. The
values in these files are in decimal; if hexadecimal is more appropriate,
the following functions can be used instead:
- struct dentry *debugfs_create_x8(const char *name, umode_t mode,
- struct dentry *parent, u8 *value);
- struct dentry *debugfs_create_x16(const char *name, umode_t mode,
- struct dentry *parent, u16 *value);
- struct dentry *debugfs_create_x32(const char *name, umode_t mode,
- struct dentry *parent, u32 *value);
- struct dentry *debugfs_create_x64(const char *name, umode_t mode,
- struct dentry *parent, u64 *value);
+ void debugfs_create_x8(const char *name, umode_t mode,
+ struct dentry *parent, u8 *value);
+ void debugfs_create_x16(const char *name, umode_t mode,
+ struct dentry *parent, u16 *value);
+ void debugfs_create_x32(const char *name, umode_t mode,
+ struct dentry *parent, u32 *value);
+ void debugfs_create_x64(const char *name, umode_t mode,
+ struct dentry *parent, u64 *value);
These functions are useful as long as the developer knows the size of the
value to be exported. Some types can have different widths on different
-architectures, though, complicating the situation somewhat. There is a
-function meant to help out in one special case:
+architectures, though, complicating the situation somewhat. There are
+functions meant to help out in such special cases:
- struct dentry *debugfs_create_size_t(const char *name, umode_t mode,
- struct dentry *parent,
- size_t *value);
+ void debugfs_create_size_t(const char *name, umode_t mode,
+ struct dentry *parent, size_t *value);
As might be expected, this function will create a debugfs file to represent
a variable of type size_t.
+Similarly, there are helpers for variables of type unsigned long, in decimal
+and hexadecimal:
+
+ struct dentry *debugfs_create_ulong(const char *name, umode_t mode,
+ struct dentry *parent,
+ unsigned long *value);
+ void debugfs_create_xul(const char *name, umode_t mode,
+ struct dentry *parent, unsigned long *value);
+
Boolean values can be placed in debugfs with:
struct dentry *debugfs_create_bool(const char *name, umode_t mode,
@@ -114,8 +122,8 @@ lower-case values, or 1 or 0. Any other input will be silently ignored.
Also, atomic_t values can be placed in debugfs with:
- struct dentry *debugfs_create_atomic_t(const char *name, umode_t mode,
- struct dentry *parent, atomic_t *value)
+ void debugfs_create_atomic_t(const char *name, umode_t mode,
+ struct dentry *parent, atomic_t *value)
A read of this file will get atomic_t values, and a write of this file
will set atomic_t values.
diff --git a/Documentation/filesystems/directory-locking b/Documentation/filesystems/directory-locking.rst
index 4e32cb961e5b..de12016ee419 100644
--- a/Documentation/filesystems/directory-locking
+++ b/Documentation/filesystems/directory-locking.rst
@@ -1,12 +1,17 @@
- Locking scheme used for directory operations is based on two
+=================
+Directory Locking
+=================
+
+
+Locking scheme used for directory operations is based on two
kinds of locks - per-inode (->i_rwsem) and per-filesystem
(->s_vfs_rename_mutex).
- When taking the i_rwsem on multiple non-directory objects, we
+When taking the i_rwsem on multiple non-directory objects, we
always acquire the locks in order by increasing address. We'll call
that "inode pointer" order in the following.
- For our purposes all operations fall in 5 classes:
+For our purposes all operations fall in 5 classes:
1) read access. Locking rules: caller locks directory we are accessing.
The lock is taken shared.
@@ -27,25 +32,29 @@ NB: we might get away with locking the the source (and target in exchange
case) shared.
5) link creation. Locking rules:
+
* lock parent
* check that source is not a directory
* lock source
* call the method.
+
All locks are exclusive.
6) cross-directory rename. The trickiest in the whole bunch. Locking
rules:
+
* lock the filesystem
* lock parents in "ancestors first" order.
* find source and target.
* if old parent is equal to or is a descendent of target
- fail with -ENOTEMPTY
+ fail with -ENOTEMPTY
* if new parent is equal to or is a descendent of source
- fail with -ELOOP
+ fail with -ELOOP
* If it's an exchange, lock both the source and the target.
* If the target exists, lock it. If the source is a non-directory,
lock it. If we need to lock both, do so in inode pointer order.
* call the method.
+
All ->i_rwsem are taken exclusive. Again, we might get away with locking
the the source (and target in exchange case) shared.
@@ -54,10 +63,11 @@ read, modified or removed by method will be locked by caller.
If no directory is its own ancestor, the scheme above is deadlock-free.
+
Proof:
First of all, at any moment we have a partial ordering of the
-objects - A < B iff A is an ancestor of B.
+ objects - A < B iff A is an ancestor of B.
That ordering can change. However, the following is true:
@@ -77,32 +87,32 @@ objects - A < B iff A is an ancestor of B.
non-directory object, except renames, which take locks on source and
target in inode pointer order in the case they are not directories.)
- Now consider the minimal deadlock. Each process is blocked on
+Now consider the minimal deadlock. Each process is blocked on
attempt to acquire some lock and already holds at least one lock. Let's
consider the set of contended locks. First of all, filesystem lock is
not contended, since any process blocked on it is not holding any locks.
Thus all processes are blocked on ->i_rwsem.
- By (3), any process holding a non-directory lock can only be
+By (3), any process holding a non-directory lock can only be
waiting on another non-directory lock with a larger address. Therefore
the process holding the "largest" such lock can always make progress, and
non-directory objects are not included in the set of contended locks.
- Thus link creation can't be a part of deadlock - it can't be
+Thus link creation can't be a part of deadlock - it can't be
blocked on source and it means that it doesn't hold any locks.
- Any contended object is either held by cross-directory rename or
+Any contended object is either held by cross-directory rename or
has a child that is also contended. Indeed, suppose that it is held by
operation other than cross-directory rename. Then the lock this operation
is blocked on belongs to child of that object due to (1).
- It means that one of the operations is cross-directory rename.
+It means that one of the operations is cross-directory rename.
Otherwise the set of contended objects would be infinite - each of them
would have a contended child and we had assumed that no object is its
own descendent. Moreover, there is exactly one cross-directory rename
(see above).
- Consider the object blocking the cross-directory rename. One
+Consider the object blocking the cross-directory rename. One
of its descendents is locked by cross-directory rename (otherwise we
would again have an infinite set of contended objects). But that
means that cross-directory rename is taking locks out of order. Due
@@ -112,7 +122,7 @@ try to acquire lock on descendent before the lock on ancestor.
Contradiction. I.e. deadlock is impossible. Q.E.D.
- These operations are guaranteed to avoid loop creation. Indeed,
+These operations are guaranteed to avoid loop creation. Indeed,
the only operation that could introduce loops is cross-directory rename.
Since the only new (parent, child) pair added by rename() is (new parent,
source), such loop would have to contain these objects and the rest of it
@@ -123,13 +133,13 @@ new parent had been equal to or a descendent of source since the moment when
we had acquired filesystem lock and rename() would fail with -ELOOP in that
case.
- While this locking scheme works for arbitrary DAGs, it relies on
+While this locking scheme works for arbitrary DAGs, it relies on
ability to check that directory is a descendent of another object. Current
implementation assumes that directory graph is a tree. This assumption is
also preserved by all operations (cross-directory rename on a tree that would
not introduce a cycle will leave it a tree and link() fails for directories).
- Notice that "directory" in the above == "anything that might have
+Notice that "directory" in the above == "anything that might have
children", so if we are going to introduce hybrid objects we will need
either to make sure that link(2) doesn't work for them or to make changes
in is_subdir() that would make it work even in presence of such beasts.
diff --git a/Documentation/filesystems/erofs.txt b/Documentation/filesystems/erofs.txt
new file mode 100644
index 000000000000..db6d39c3ae71
--- /dev/null
+++ b/Documentation/filesystems/erofs.txt
@@ -0,0 +1,211 @@
+Overview
+========
+
+EROFS file-system stands for Enhanced Read-Only File System. Different
+from other read-only file systems, it aims to be designed for flexibility,
+scalability, but be kept simple and high performance.
+
+It is designed as a better filesystem solution for the following scenarios:
+ - read-only storage media or
+
+ - part of a fully trusted read-only solution, which means it needs to be
+ immutable and bit-for-bit identical to the official golden image for
+ their releases due to security and other considerations and
+
+ - hope to save some extra storage space with guaranteed end-to-end performance
+ by using reduced metadata and transparent file compression, especially
+ for those embedded devices with limited memory (ex, smartphone);
+
+Here is the main features of EROFS:
+ - Little endian on-disk design;
+
+ - Currently 4KB block size (nobh) and therefore maximum 16TB address space;
+
+ - Metadata & data could be mixed by design;
+
+ - 2 inode versions for different requirements:
+ compact (v1) extended (v2)
+ Inode metadata size: 32 bytes 64 bytes
+ Max file size: 4 GB 16 EB (also limited by max. vol size)
+ Max uids/gids: 65536 4294967296
+ File change time: no yes (64 + 32-bit timestamp)
+ Max hardlinks: 65536 4294967296
+ Metadata reserved: 4 bytes 14 bytes
+
+ - Support extended attributes (xattrs) as an option;
+
+ - Support xattr inline and tail-end data inline for all files;
+
+ - Support POSIX.1e ACLs by using xattrs;
+
+ - Support transparent file compression as an option:
+ LZ4 algorithm with 4 KB fixed-sized output compression for high performance.
+
+The following git tree provides the file system user-space tools under
+development (ex, formatting tool mkfs.erofs):
+>> git://git.kernel.org/pub/scm/linux/kernel/git/xiang/erofs-utils.git
+
+Bugs and patches are welcome, please kindly help us and send to the following
+linux-erofs mailing list:
+>> linux-erofs mailing list <linux-erofs@lists.ozlabs.org>
+
+Mount options
+=============
+
+(no)user_xattr Setup Extended User Attributes. Note: xattr is enabled
+ by default if CONFIG_EROFS_FS_XATTR is selected.
+(no)acl Setup POSIX Access Control List. Note: acl is enabled
+ by default if CONFIG_EROFS_FS_POSIX_ACL is selected.
+cache_strategy=%s Select a strategy for cached decompression from now on:
+ disabled: In-place I/O decompression only;
+ readahead: Cache the last incomplete compressed physical
+ cluster for further reading. It still does
+ in-place I/O decompression for the rest
+ compressed physical clusters;
+ readaround: Cache the both ends of incomplete compressed
+ physical clusters for further reading.
+ It still does in-place I/O decompression
+ for the rest compressed physical clusters.
+
+On-disk details
+===============
+
+Summary
+-------
+Different from other read-only file systems, an EROFS volume is designed
+to be as simple as possible:
+
+ |-> aligned with the block size
+ ____________________________________________________________
+ | |SB| | ... | Metadata | ... | Data | Metadata | ... | Data |
+ |_|__|_|_____|__________|_____|______|__________|_____|______|
+ 0 +1K
+
+All data areas should be aligned with the block size, but metadata areas
+may not. All metadatas can be now observed in two different spaces (views):
+ 1. Inode metadata space
+ Each valid inode should be aligned with an inode slot, which is a fixed
+ value (32 bytes) and designed to be kept in line with compact inode size.
+
+ Each inode can be directly found with the following formula:
+ inode offset = meta_blkaddr * block_size + 32 * nid
+
+ |-> aligned with 8B
+ |-> followed closely
+ + meta_blkaddr blocks |-> another slot
+ _____________________________________________________________________
+ | ... | inode | xattrs | extents | data inline | ... | inode ...
+ |________|_______|(optional)|(optional)|__(optional)_|_____|__________
+ |-> aligned with the inode slot size
+ . .
+ . .
+ . .
+ . .
+ . .
+ . .
+ .____________________________________________________|-> aligned with 4B
+ | xattr_ibody_header | shared xattrs | inline xattrs |
+ |____________________|_______________|_______________|
+ |-> 12 bytes <-|->x * 4 bytes<-| .
+ . . .
+ . . .
+ . . .
+ ._______________________________.______________________.
+ | id | id | id | id | ... | id | ent | ... | ent| ... |
+ |____|____|____|____|______|____|_____|_____|____|_____|
+ |-> aligned with 4B
+ |-> aligned with 4B
+
+ Inode could be 32 or 64 bytes, which can be distinguished from a common
+ field which all inode versions have -- i_format:
+
+ __________________ __________________
+ | i_format | | i_format |
+ |__________________| |__________________|
+ | ... | | ... |
+ | | | |
+ |__________________| 32 bytes | |
+ | |
+ |__________________| 64 bytes
+
+ Xattrs, extents, data inline are followed by the corresponding inode with
+ proper alignment, and they could be optional for different data mappings.
+ _currently_ total 4 valid data mappings are supported:
+
+ 0 flat file data without data inline (no extent);
+ 1 fixed-sized output data compression (with non-compacted indexes);
+ 2 flat file data with tail packing data inline (no extent);
+ 3 fixed-sized output data compression (with compacted indexes, v5.3+).
+
+ The size of the optional xattrs is indicated by i_xattr_count in inode
+ header. Large xattrs or xattrs shared by many different files can be
+ stored in shared xattrs metadata rather than inlined right after inode.
+
+ 2. Shared xattrs metadata space
+ Shared xattrs space is similar to the above inode space, started with
+ a specific block indicated by xattr_blkaddr, organized one by one with
+ proper align.
+
+ Each share xattr can also be directly found by the following formula:
+ xattr offset = xattr_blkaddr * block_size + 4 * xattr_id
+
+ |-> aligned by 4 bytes
+ + xattr_blkaddr blocks |-> aligned with 4 bytes
+ _________________________________________________________________________
+ | ... | xattr_entry | xattr data | ... | xattr_entry | xattr data ...
+ |________|_____________|_____________|_____|______________|_______________
+
+Directories
+-----------
+All directories are now organized in a compact on-disk format. Note that
+each directory block is divided into index and name areas in order to support
+random file lookup, and all directory entries are _strictly_ recorded in
+alphabetical order in order to support improved prefix binary search
+algorithm (could refer to the related source code).
+
+ ___________________________
+ / |
+ / ______________|________________
+ / / | nameoff1 | nameoffN-1
+ ____________.______________._______________v________________v__________
+| dirent | dirent | ... | dirent | filename | filename | ... | filename |
+|___.0___|____1___|_____|___N-1__|____0_____|____1_____|_____|___N-1____|
+ \ ^
+ \ | * could have
+ \ | trailing '\0'
+ \________________________| nameoff0
+
+ Directory block
+
+Note that apart from the offset of the first filename, nameoff0 also indicates
+the total number of directory entries in this block since it is no need to
+introduce another on-disk field at all.
+
+Compression
+-----------
+Currently, EROFS supports 4KB fixed-sized output transparent file compression,
+as illustrated below:
+
+ |---- Variant-Length Extent ----|-------- VLE --------|----- VLE -----
+ clusterofs clusterofs clusterofs
+ | | | logical data
+_________v_______________________________v_____________________v_______________
+... | . | | . | | . | ...
+____|____.________|_____________|________.____|_____________|__.__________|____
+ |-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|-> cluster <-|
+ size size size size size
+ . . . .
+ . . . .
+ . . . .
+ _______._____________._____________._____________._____________________
+ ... | | | | ... physical data
+ _______|_____________|_____________|_____________|_____________________
+ |-> cluster <-|-> cluster <-|-> cluster <-|
+ size size size
+
+Currently each on-disk physical cluster can contain 4KB (un)compressed data
+at most. For each logical cluster, there is a corresponding on-disk index to
+describe its cluster type, physical cluster address, etc.
+
+See "struct z_erofs_vle_decompressed_index" in erofs_fs.h for more details.
+
diff --git a/Documentation/filesystems/ext4/bigalloc.rst b/Documentation/filesystems/ext4/bigalloc.rst
index c6d88557553c..72075aa608e4 100644
--- a/Documentation/filesystems/ext4/bigalloc.rst
+++ b/Documentation/filesystems/ext4/bigalloc.rst
@@ -9,14 +9,26 @@ ext4 code is not prepared to handle the case where the block size
exceeds the page size. However, for a filesystem of mostly huge files,
it is desirable to be able to allocate disk blocks in units of multiple
blocks to reduce both fragmentation and metadata overhead. The
-`bigalloc <Bigalloc>`__ feature provides exactly this ability. The
-administrator can set a block cluster size at mkfs time (which is stored
-in the s\_log\_cluster\_size field in the superblock); from then on, the
-block bitmaps track clusters, not individual blocks. This means that
-block groups can be several gigabytes in size (instead of just 128MiB);
-however, the minimum allocation unit becomes a cluster, not a block,
-even for directories. TaoBao had a patchset to extend the “use units of
-clusters instead of blocks” to the extent tree, though it is not clear
-where those patches went-- they eventually morphed into “extent tree v2”
-but that code has not landed as of May 2015.
+bigalloc feature provides exactly this ability.
+
+The bigalloc feature (EXT4_FEATURE_RO_COMPAT_BIGALLOC) changes ext4 to
+use clustered allocation, so that each bit in the ext4 block allocation
+bitmap addresses a power of two number of blocks. For example, if the
+file system is mainly going to be storing large files in the 4-32
+megabyte range, it might make sense to set a cluster size of 1 megabyte.
+This means that each bit in the block allocation bitmap now addresses
+256 4k blocks. This shrinks the total size of the block allocation
+bitmaps for a 2T file system from 64 megabytes to 256 kilobytes. It also
+means that a block group addresses 32 gigabytes instead of 128 megabytes,
+also shrinking the amount of file system overhead for metadata.
+
+The administrator can set a block cluster size at mkfs time (which is
+stored in the s\_log\_cluster\_size field in the superblock); from then
+on, the block bitmaps track clusters, not individual blocks. This means
+that block groups can be several gigabytes in size (instead of just
+128MiB); however, the minimum allocation unit becomes a cluster, not a
+block, even for directories. TaoBao had a patchset to extend the “use
+units of clusters instead of blocks” to the extent tree, though it is
+not clear where those patches went-- they eventually morphed into
+“extent tree v2” but that code has not landed as of May 2015.
diff --git a/Documentation/filesystems/ext4/blockgroup.rst b/Documentation/filesystems/ext4/blockgroup.rst
index baf888e4c06a..3da156633339 100644
--- a/Documentation/filesystems/ext4/blockgroup.rst
+++ b/Documentation/filesystems/ext4/blockgroup.rst
@@ -71,11 +71,11 @@ if the flex\_bg size is 4, then group 0 will contain (in order) the
superblock, group descriptors, data block bitmaps for groups 0-3, inode
bitmaps for groups 0-3, inode tables for groups 0-3, and the remaining
space in group 0 is for file data. The effect of this is to group the
-block metadata close together for faster loading, and to enable large
-files to be continuous on disk. Backup copies of the superblock and
-group descriptors are always at the beginning of block groups, even if
-flex\_bg is enabled. The number of block groups that make up a flex\_bg
-is given by 2 ^ ``sb.s_log_groups_per_flex``.
+block group metadata close together for faster loading, and to enable
+large files to be continuous on disk. Backup copies of the superblock
+and group descriptors are always at the beginning of block groups, even
+if flex\_bg is enabled. The number of block groups that make up a
+flex\_bg is given by 2 ^ ``sb.s_log_groups_per_flex``.
Meta Block Groups
-----------------
diff --git a/Documentation/filesystems/ext4/blocks.rst b/Documentation/filesystems/ext4/blocks.rst
index 73d4dc0f7bda..bd722ecd92d6 100644
--- a/Documentation/filesystems/ext4/blocks.rst
+++ b/Documentation/filesystems/ext4/blocks.rst
@@ -10,7 +10,9 @@ block groups. Block size is specified at mkfs time and typically is
4KiB. You may experience mounting problems if block size is greater than
page size (i.e. 64KiB blocks on a i386 which only has 4KiB memory
pages). By default a filesystem can contain 2^32 blocks; if the '64bit'
-feature is enabled, then a filesystem can have 2^64 blocks.
+feature is enabled, then a filesystem can have 2^64 blocks. The location
+of structures is stored in terms of the block number the structure lives
+in and not the absolute offset on disk.
For 32-bit filesystems, limits are as follows:
diff --git a/Documentation/filesystems/ext4/directory.rst b/Documentation/filesystems/ext4/directory.rst
index 614034e24669..073940cc64ed 100644
--- a/Documentation/filesystems/ext4/directory.rst
+++ b/Documentation/filesystems/ext4/directory.rst
@@ -59,7 +59,7 @@ is at most 263 bytes long, though on disk you'll need to reference
- File name.
Since file names cannot be longer than 255 bytes, the new directory
-entry format shortens the rec\_len field and uses the space for a file
+entry format shortens the name\_len field and uses the space for a file
type flag, probably to avoid having to load every inode during directory
tree traversal. This format is ``ext4_dir_entry_2``, which is at most
263 bytes long, though on disk you'll need to reference
diff --git a/Documentation/filesystems/ext4/group_descr.rst b/Documentation/filesystems/ext4/group_descr.rst
index 0f783ed88592..7ba6114e7f5c 100644
--- a/Documentation/filesystems/ext4/group_descr.rst
+++ b/Documentation/filesystems/ext4/group_descr.rst
@@ -99,9 +99,12 @@ The block group descriptor is laid out in ``struct ext4_group_desc``.
* - 0x1E
- \_\_le16
- bg\_checksum
- - Group descriptor checksum; crc16(sb\_uuid+group+desc) if the
- RO\_COMPAT\_GDT\_CSUM feature is set, or crc32c(sb\_uuid+group\_desc) &
- 0xFFFF if the RO\_COMPAT\_METADATA\_CSUM feature is set.
+ - Group descriptor checksum; crc16(sb\_uuid+group\_num+bg\_desc) if the
+ RO\_COMPAT\_GDT\_CSUM feature is set, or
+ crc32c(sb\_uuid+group\_num+bg\_desc) & 0xFFFF if the
+ RO\_COMPAT\_METADATA\_CSUM feature is set. The bg\_checksum
+ field in bg\_desc is skipped when calculating crc16 checksum,
+ and set to zero if crc32c checksum is used.
* -
-
-
diff --git a/Documentation/filesystems/ext4/inodes.rst b/Documentation/filesystems/ext4/inodes.rst
index 6bd35e506b6f..a65baffb4ebf 100644
--- a/Documentation/filesystems/ext4/inodes.rst
+++ b/Documentation/filesystems/ext4/inodes.rst
@@ -277,6 +277,8 @@ The ``i_flags`` field is a combination of these values:
- This is a huge file (EXT4\_HUGE\_FILE\_FL).
* - 0x80000
- Inode uses extents (EXT4\_EXTENTS\_FL).
+ * - 0x100000
+ - Verity protected file (EXT4\_VERITY\_FL).
* - 0x200000
- Inode stores a large extended attribute value in its data blocks
(EXT4\_EA\_INODE\_FL).
@@ -299,9 +301,9 @@ The ``i_flags`` field is a combination of these values:
- Reserved for ext4 library (EXT4\_RESERVED\_FL).
* -
- Aggregate flags:
- * - 0x4BDFFF
+ * - 0x705BDFFF
- User-visible flags.
- * - 0x4B80FF
+ * - 0x604BC0FF
- User-modifiable flags. Note that while EXT4\_JOURNAL\_DATA\_FL and
EXT4\_EXTENTS\_FL can be set with setattr, they are not in the kernel's
EXT4\_FL\_USER\_MODIFIABLE mask, since it needs to handle the setting of
@@ -470,8 +472,8 @@ inode, which allows struct ext4\_inode to grow for a new kernel without
having to upgrade all of the on-disk inodes. Access to fields beyond
EXT2\_GOOD\_OLD\_INODE\_SIZE should be verified to be within
``i_extra_isize``. By default, ext4 inode records are 256 bytes, and (as
-of October 2013) the inode structure is 156 bytes
-(``i_extra_isize = 28``). The extra space between the end of the inode
+of August 2019) the inode structure is 160 bytes
+(``i_extra_isize = 32``). The extra space between the end of the inode
structure and the end of the inode record can be used to store extended
attributes. Each inode record can be as large as the filesystem block
size, though this is not terribly efficient.
diff --git a/Documentation/filesystems/ext4/overview.rst b/Documentation/filesystems/ext4/overview.rst
index cbab18baba12..123ebfde47ee 100644
--- a/Documentation/filesystems/ext4/overview.rst
+++ b/Documentation/filesystems/ext4/overview.rst
@@ -24,3 +24,4 @@ order.
.. include:: bigalloc.rst
.. include:: inlinedata.rst
.. include:: eainode.rst
+.. include:: verity.rst
diff --git a/Documentation/filesystems/ext4/super.rst b/Documentation/filesystems/ext4/super.rst
index 04ff079a2acf..93e55d7c1d40 100644
--- a/Documentation/filesystems/ext4/super.rst
+++ b/Documentation/filesystems/ext4/super.rst
@@ -58,7 +58,7 @@ The ext4 superblock is laid out as follows in
* - 0x1C
- \_\_le32
- s\_log\_cluster\_size
- - Cluster size is (2 ^ s\_log\_cluster\_size) blocks if bigalloc is
+ - Cluster size is 2 ^ (10 + s\_log\_cluster\_size) blocks if bigalloc is
enabled. Otherwise s\_log\_cluster\_size must equal s\_log\_block\_size.
* - 0x20
- \_\_le32
@@ -447,7 +447,7 @@ The ext4 superblock is laid out as follows in
- Upper 8 bits of the s_wtime field.
* - 0x275
- \_\_u8
- - s\_wtime_hi
+ - s\_mtime_hi
- Upper 8 bits of the s_mtime field.
* - 0x276
- \_\_u8
@@ -466,12 +466,20 @@ The ext4 superblock is laid out as follows in
- s\_last_error_time_hi
- Upper 8 bits of the s_last_error_time_hi field.
* - 0x27A
- - \_\_u8[2]
- - s\_pad
+ - \_\_u8
+ - s\_pad[2]
- Zero padding.
* - 0x27C
+ - \_\_le16
+ - s\_encoding
+ - Filename charset encoding.
+ * - 0x27E
+ - \_\_le16
+ - s\_encoding_flags
+ - Filename charset encoding flags.
+ * - 0x280
- \_\_le32
- - s\_reserved[96]
+ - s\_reserved[95]
- Padding to the end of the block.
* - 0x3FC
- \_\_le32
@@ -617,7 +625,7 @@ following:
* - 0x80
- Enable a filesystem size of 2^64 blocks (INCOMPAT\_64BIT).
* - 0x100
- - Multiple mount protection. Not implemented (INCOMPAT\_MMP).
+ - Multiple mount protection (INCOMPAT\_MMP).
* - 0x200
- Flexible block groups. See the earlier discussion of this feature
(INCOMPAT\_FLEX\_BG).
@@ -696,6 +704,8 @@ the following:
(RO\_COMPAT\_READONLY)
* - 0x2000
- Filesystem tracks project quotas. (RO\_COMPAT\_PROJECT)
+ * - 0x8000
+ - Verity inodes may be present on the filesystem. (RO\_COMPAT\_VERITY)
.. _super_def_hash:
diff --git a/Documentation/filesystems/ext4/verity.rst b/Documentation/filesystems/ext4/verity.rst
new file mode 100644
index 000000000000..3e4c0ee0e068
--- /dev/null
+++ b/Documentation/filesystems/ext4/verity.rst
@@ -0,0 +1,41 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+Verity files
+------------
+
+ext4 supports fs-verity, which is a filesystem feature that provides
+Merkle tree based hashing for individual readonly files. Most of
+fs-verity is common to all filesystems that support it; see
+:ref:`Documentation/filesystems/fsverity.rst <fsverity>` for the
+fs-verity documentation. However, the on-disk layout of the verity
+metadata is filesystem-specific. On ext4, the verity metadata is
+stored after the end of the file data itself, in the following format:
+
+- Zero-padding to the next 65536-byte boundary. This padding need not
+ actually be allocated on-disk, i.e. it may be a hole.
+
+- The Merkle tree, as documented in
+ :ref:`Documentation/filesystems/fsverity.rst
+ <fsverity_merkle_tree>`, with the tree levels stored in order from
+ root to leaf, and the tree blocks within each level stored in their
+ natural order.
+
+- Zero-padding to the next filesystem block boundary.
+
+- The verity descriptor, as documented in
+ :ref:`Documentation/filesystems/fsverity.rst <fsverity_descriptor>`,
+ with optionally appended signature blob.
+
+- Zero-padding to the next offset that is 4 bytes before a filesystem
+ block boundary.
+
+- The size of the verity descriptor in bytes, as a 4-byte little
+ endian integer.
+
+Verity inodes have EXT4_VERITY_FL set, and they must use extents, i.e.
+EXT4_EXTENTS_FL must be set and EXT4_INLINE_DATA_FL must be clear.
+They can have EXT4_ENCRYPT_FL set, in which case the verity metadata
+is encrypted as well as the data itself.
+
+Verity files cannot have blocks allocated past the end of the verity
+metadata.
diff --git a/Documentation/filesystems/f2fs.txt b/Documentation/filesystems/f2fs.txt
index 496fa28b2492..4eb3e2ddd00e 100644
--- a/Documentation/filesystems/f2fs.txt
+++ b/Documentation/filesystems/f2fs.txt
@@ -157,6 +157,11 @@ noinline_data Disable the inline data feature, inline data feature is
enabled by default.
data_flush Enable data flushing before checkpoint in order to
persist data of regular and symlink.
+reserve_root=%d Support configuring reserved space which is used for
+ allocation from a privileged user with specified uid or
+ gid, unit: 4KB, the default limit is 0.2% of user blocks.
+resuid=%d The user ID which may use the reserved blocks.
+resgid=%d The group ID which may use the reserved blocks.
fault_injection=%d Enable fault injection in all supported types with
specified injection rate.
fault_type=%d Support configuring fault injection type, should be
@@ -230,6 +235,17 @@ checkpoint=%s[:%u[%]] Set to "disable" to turn off checkpointing. Set to "en
hide up to all remaining free space. The actual space that
would be unusable can be viewed at /sys/fs/f2fs/<disk>/unusable
This space is reclaimed once checkpoint=enable.
+compress_algorithm=%s Control compress algorithm, currently f2fs supports "lzo"
+ and "lz4" algorithm.
+compress_log_size=%u Support configuring compress cluster size, the size will
+ be 4KB * (1 << %u), 16KB is minimum size, also it's
+ default size.
+compress_extension=%s Support adding specified extension, so that f2fs can enable
+ compression on those corresponding files, e.g. if all files
+ with '.ext' has high compression rate, we can set the '.ext'
+ on compression extension list and enable compression on
+ these file by default rather than to enable it via ioctl.
+ For other files, we can still enable compression via ioctl.
================================================================================
DEBUGFS ENTRIES
@@ -254,164 +270,6 @@ The files in each per-device directory are shown in table below.
Files in /sys/fs/f2fs/<devname>
(see also Documentation/ABI/testing/sysfs-fs-f2fs)
-..............................................................................
- File Content
-
- gc_urgent_sleep_time This parameter controls sleep time for gc_urgent.
- 500 ms is set by default. See above gc_urgent.
-
- gc_min_sleep_time This tuning parameter controls the minimum sleep
- time for the garbage collection thread. Time is
- in milliseconds.
-
- gc_max_sleep_time This tuning parameter controls the maximum sleep
- time for the garbage collection thread. Time is
- in milliseconds.
-
- gc_no_gc_sleep_time This tuning parameter controls the default sleep
- time for the garbage collection thread. Time is
- in milliseconds.
-
- gc_idle This parameter controls the selection of victim
- policy for garbage collection. Setting gc_idle = 0
- (default) will disable this option. Setting
- gc_idle = 1 will select the Cost Benefit approach
- & setting gc_idle = 2 will select the greedy approach.
-
- gc_urgent This parameter controls triggering background GCs
- urgently or not. Setting gc_urgent = 0 [default]
- makes back to default behavior, while if it is set
- to 1, background thread starts to do GC by given
- gc_urgent_sleep_time interval.
-
- reclaim_segments This parameter controls the number of prefree
- segments to be reclaimed. If the number of prefree
- segments is larger than the number of segments
- in the proportion to the percentage over total
- volume size, f2fs tries to conduct checkpoint to
- reclaim the prefree segments to free segments.
- By default, 5% over total # of segments.
-
- max_small_discards This parameter controls the number of discard
- commands that consist small blocks less than 2MB.
- The candidates to be discarded are cached until
- checkpoint is triggered, and issued during the
- checkpoint. By default, it is disabled with 0.
-
- discard_granularity This parameter controls the granularity of discard
- command size. It will issue discard commands iif
- the size is larger than given granularity. Its
- unit size is 4KB, and 4 (=16KB) is set by default.
- The maximum value is 128 (=512KB).
-
- reserved_blocks This parameter indicates the number of blocks that
- f2fs reserves internally for root.
-
- batched_trim_sections This parameter controls the number of sections
- to be trimmed out in batch mode when FITRIM
- conducts. 32 sections is set by default.
-
- ipu_policy This parameter controls the policy of in-place
- updates in f2fs. There are five policies:
- 0x01: F2FS_IPU_FORCE, 0x02: F2FS_IPU_SSR,
- 0x04: F2FS_IPU_UTIL, 0x08: F2FS_IPU_SSR_UTIL,
- 0x10: F2FS_IPU_FSYNC.
-
- min_ipu_util This parameter controls the threshold to trigger
- in-place-updates. The number indicates percentage
- of the filesystem utilization, and used by
- F2FS_IPU_UTIL and F2FS_IPU_SSR_UTIL policies.
-
- min_fsync_blocks This parameter controls the threshold to trigger
- in-place-updates when F2FS_IPU_FSYNC mode is set.
- The number indicates the number of dirty pages
- when fsync needs to flush on its call path. If
- the number is less than this value, it triggers
- in-place-updates.
-
- min_seq_blocks This parameter controls the threshold to serialize
- write IOs issued by multiple threads in parallel.
-
- min_hot_blocks This parameter controls the threshold to allocate
- a hot data log for pending data blocks to write.
-
- min_ssr_sections This parameter adds the threshold when deciding
- SSR block allocation. If this is large, SSR mode
- will be enabled early.
-
- ram_thresh This parameter controls the memory footprint used
- by free nids and cached nat entries. By default,
- 10 is set, which indicates 10 MB / 1 GB RAM.
-
- ra_nid_pages When building free nids, F2FS reads NAT blocks
- ahead for speed up. Default is 0.
-
- dirty_nats_ratio Given dirty ratio of cached nat entries, F2FS
- determines flushing them in background.
-
- max_victim_search This parameter controls the number of trials to
- find a victim segment when conducting SSR and
- cleaning operations. The default value is 4096
- which covers 8GB block address range.
-
- migration_granularity For large-sized sections, F2FS can stop GC given
- this granularity instead of reclaiming entire
- section.
-
- dir_level This parameter controls the directory level to
- support large directory. If a directory has a
- number of files, it can reduce the file lookup
- latency by increasing this dir_level value.
- Otherwise, it needs to decrease this value to
- reduce the space overhead. The default value is 0.
-
- cp_interval F2FS tries to do checkpoint periodically, 60 secs
- by default.
-
- idle_interval F2FS detects system is idle, if there's no F2FS
- operations during given interval, 5 secs by
- default.
-
- discard_idle_interval F2FS detects the discard thread is idle, given
- time interval. Default is 5 secs.
-
- gc_idle_interval F2FS detects the GC thread is idle, given time
- interval. Default is 5 secs.
-
- umount_discard_timeout When unmounting the disk, F2FS waits for finishing
- queued discard commands which can take huge time.
- This gives time out for it, 5 secs by default.
-
- iostat_enable This controls to enable/disable iostat in F2FS.
-
- readdir_ra This enables/disabled readahead of inode blocks
- in readdir, and default is enabled.
-
- gc_pin_file_thresh This indicates how many GC can be failed for the
- pinned file. If it exceeds this, F2FS doesn't
- guarantee its pinning state. 2048 trials is set
- by default.
-
- extension_list This enables to change extension_list for hot/cold
- files in runtime.
-
- inject_rate This controls injection rate of arbitrary faults.
-
- inject_type This controls injection type of arbitrary faults.
-
- dirty_segments This shows # of dirty segments.
-
- lifetime_write_kbytes This shows # of data written to the disk.
-
- features This shows current features enabled on F2FS.
-
- current_reserved_blocks This shows # of blocks currently reserved.
-
- unusable If checkpoint=disable, this shows the number of
- blocks that are unusable.
- If checkpoint=enable it shows the number of blocks
- that would be unusable if checkpoint=disable were
- to be set.
================================================================================
USAGE
@@ -829,3 +687,44 @@ zero or random data, which is useful to the below scenario where:
4. address = fibmap(fd, offset)
5. open(blkdev)
6. write(blkdev, address)
+
+Compression implementation
+--------------------------
+
+- New term named cluster is defined as basic unit of compression, file can
+be divided into multiple clusters logically. One cluster includes 4 << n
+(n >= 0) logical pages, compression size is also cluster size, each of
+cluster can be compressed or not.
+
+- In cluster metadata layout, one special block address is used to indicate
+cluster is compressed one or normal one, for compressed cluster, following
+metadata maps cluster to [1, 4 << n - 1] physical blocks, in where f2fs
+stores data including compress header and compressed data.
+
+- In order to eliminate write amplification during overwrite, F2FS only
+support compression on write-once file, data can be compressed only when
+all logical blocks in file are valid and cluster compress ratio is lower
+than specified threshold.
+
+- To enable compression on regular inode, there are three ways:
+* chattr +c file
+* chattr +c dir; touch dir/file
+* mount w/ -o compress_extension=ext; touch file.ext
+
+Compress metadata layout:
+ [Dnode Structure]
+ +-----------------------------------------------+
+ | cluster 1 | cluster 2 | ......... | cluster N |
+ +-----------------------------------------------+
+ . . . .
+ . . . .
+ . Compressed Cluster . . Normal Cluster .
++----------+---------+---------+---------+ +---------+---------+---------+---------+
+|compr flag| block 1 | block 2 | block 3 | | block 1 | block 2 | block 3 | block 4 |
++----------+---------+---------+---------+ +---------+---------+---------+---------+
+ . .
+ . .
+ . .
+ +-------------+-------------+----------+----------------------------+
+ | data length | data chksum | reserved | compressed data |
+ +-------------+-------------+----------+----------------------------+
diff --git a/Documentation/filesystems/fscrypt.rst b/Documentation/filesystems/fscrypt.rst
index 82efa41b0e6c..bd9932344804 100644
--- a/Documentation/filesystems/fscrypt.rst
+++ b/Documentation/filesystems/fscrypt.rst
@@ -72,6 +72,9 @@ Online attacks
fscrypt (and storage encryption in general) can only provide limited
protection, if any at all, against online attacks. In detail:
+Side-channel attacks
+~~~~~~~~~~~~~~~~~~~~
+
fscrypt is only resistant to side-channel attacks, such as timing or
electromagnetic attacks, to the extent that the underlying Linux
Cryptographic API algorithms are. If a vulnerable algorithm is used,
@@ -80,29 +83,90 @@ attacker to mount a side channel attack against the online system.
Side channel attacks may also be mounted against applications
consuming decrypted data.
-After an encryption key has been provided, fscrypt is not designed to
-hide the plaintext file contents or filenames from other users on the
-same system, regardless of the visibility of the keyring key.
-Instead, existing access control mechanisms such as file mode bits,
-POSIX ACLs, LSMs, or mount namespaces should be used for this purpose.
-Also note that as long as the encryption keys are *anywhere* in
-memory, an online attacker can necessarily compromise them by mounting
-a physical attack or by exploiting any kernel security vulnerability
-which provides an arbitrary memory read primitive.
-
-While it is ostensibly possible to "evict" keys from the system,
-recently accessed encrypted files will remain accessible at least
-until the filesystem is unmounted or the VFS caches are dropped, e.g.
-using ``echo 2 > /proc/sys/vm/drop_caches``. Even after that, if the
-RAM is compromised before being powered off, it will likely still be
-possible to recover portions of the plaintext file contents, if not
-some of the encryption keys as well. (Since Linux v4.12, all
-in-kernel keys related to fscrypt are sanitized before being freed.
-However, userspace would need to do its part as well.)
-
-Currently, fscrypt does not prevent a user from maliciously providing
-an incorrect key for another user's existing encrypted files. A
-protection against this is planned.
+Unauthorized file access
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+After an encryption key has been added, fscrypt does not hide the
+plaintext file contents or filenames from other users on the same
+system. Instead, existing access control mechanisms such as file mode
+bits, POSIX ACLs, LSMs, or namespaces should be used for this purpose.
+
+(For the reasoning behind this, understand that while the key is
+added, the confidentiality of the data, from the perspective of the
+system itself, is *not* protected by the mathematical properties of
+encryption but rather only by the correctness of the kernel.
+Therefore, any encryption-specific access control checks would merely
+be enforced by kernel *code* and therefore would be largely redundant
+with the wide variety of access control mechanisms already available.)
+
+Kernel memory compromise
+~~~~~~~~~~~~~~~~~~~~~~~~
+
+An attacker who compromises the system enough to read from arbitrary
+memory, e.g. by mounting a physical attack or by exploiting a kernel
+security vulnerability, can compromise all encryption keys that are
+currently in use.
+
+However, fscrypt allows encryption keys to be removed from the kernel,
+which may protect them from later compromise.
+
+In more detail, the FS_IOC_REMOVE_ENCRYPTION_KEY ioctl (or the
+FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS ioctl) can wipe a master
+encryption key from kernel memory. If it does so, it will also try to
+evict all cached inodes which had been "unlocked" using the key,
+thereby wiping their per-file keys and making them once again appear
+"locked", i.e. in ciphertext or encrypted form.
+
+However, these ioctls have some limitations:
+
+- Per-file keys for in-use files will *not* be removed or wiped.
+ Therefore, for maximum effect, userspace should close the relevant
+ encrypted files and directories before removing a master key, as
+ well as kill any processes whose working directory is in an affected
+ encrypted directory.
+
+- The kernel cannot magically wipe copies of the master key(s) that
+ userspace might have as well. Therefore, userspace must wipe all
+ copies of the master key(s) it makes as well; normally this should
+ be done immediately after FS_IOC_ADD_ENCRYPTION_KEY, without waiting
+ for FS_IOC_REMOVE_ENCRYPTION_KEY. Naturally, the same also applies
+ to all higher levels in the key hierarchy. Userspace should also
+ follow other security precautions such as mlock()ing memory
+ containing keys to prevent it from being swapped out.
+
+- In general, decrypted contents and filenames in the kernel VFS
+ caches are freed but not wiped. Therefore, portions thereof may be
+ recoverable from freed memory, even after the corresponding key(s)
+ were wiped. To partially solve this, you can set
+ CONFIG_PAGE_POISONING=y in your kernel config and add page_poison=1
+ to your kernel command line. However, this has a performance cost.
+
+- Secret keys might still exist in CPU registers, in crypto
+ accelerator hardware (if used by the crypto API to implement any of
+ the algorithms), or in other places not explicitly considered here.
+
+Limitations of v1 policies
+~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+v1 encryption policies have some weaknesses with respect to online
+attacks:
+
+- There is no verification that the provided master key is correct.
+ Therefore, a malicious user can temporarily associate the wrong key
+ with another user's encrypted files to which they have read-only
+ access. Because of filesystem caching, the wrong key will then be
+ used by the other user's accesses to those files, even if the other
+ user has the correct key in their own keyring. This violates the
+ meaning of "read-only access".
+
+- A compromise of a per-file key also compromises the master key from
+ which it was derived.
+
+- Non-root users cannot securely remove encryption keys.
+
+All the above problems are fixed with v2 encryption policies. For
+this reason among others, it is recommended to use v2 encryption
+policies on all new encrypted directories.
Key hierarchy
=============
@@ -123,14 +187,55 @@ appropriate master key. There can be any number of master keys, each
of which protects any number of directory trees on any number of
filesystems.
-Userspace should generate master keys either using a cryptographically
-secure random number generator, or by using a KDF (Key Derivation
-Function). Note that whenever a KDF is used to "stretch" a
-lower-entropy secret such as a passphrase, it is critical that a KDF
-designed for this purpose be used, such as scrypt, PBKDF2, or Argon2.
-
-Per-file keys
--------------
+Master keys must be real cryptographic keys, i.e. indistinguishable
+from random bytestrings of the same length. This implies that users
+**must not** directly use a password as a master key, zero-pad a
+shorter key, or repeat a shorter key. Security cannot be guaranteed
+if userspace makes any such error, as the cryptographic proofs and
+analysis would no longer apply.
+
+Instead, users should generate master keys either using a
+cryptographically secure random number generator, or by using a KDF
+(Key Derivation Function). The kernel does not do any key stretching;
+therefore, if userspace derives the key from a low-entropy secret such
+as a passphrase, it is critical that a KDF designed for this purpose
+be used, such as scrypt, PBKDF2, or Argon2.
+
+Key derivation function
+-----------------------
+
+With one exception, fscrypt never uses the master key(s) for
+encryption directly. Instead, they are only used as input to a KDF
+(Key Derivation Function) to derive the actual keys.
+
+The KDF used for a particular master key differs depending on whether
+the key is used for v1 encryption policies or for v2 encryption
+policies. Users **must not** use the same key for both v1 and v2
+encryption policies. (No real-world attack is currently known on this
+specific case of key reuse, but its security cannot be guaranteed
+since the cryptographic proofs and analysis would no longer apply.)
+
+For v1 encryption policies, the KDF only supports deriving per-file
+encryption keys. It works by encrypting the master key with
+AES-128-ECB, using the file's 16-byte nonce as the AES key. The
+resulting ciphertext is used as the derived key. If the ciphertext is
+longer than needed, then it is truncated to the needed length.
+
+For v2 encryption policies, the KDF is HKDF-SHA512. The master key is
+passed as the "input keying material", no salt is used, and a distinct
+"application-specific information string" is used for each distinct
+key to be derived. For example, when a per-file encryption key is
+derived, the application-specific information string is the file's
+nonce prefixed with "fscrypt\\0" and a context byte. Different
+context bytes are used for other types of derived keys.
+
+HKDF-SHA512 is preferred to the original AES-128-ECB based KDF because
+HKDF is more flexible, is nonreversible, and evenly distributes
+entropy from the master key. HKDF is also standardized and widely
+used by other software, whereas the AES-128-ECB based KDF is ad-hoc.
+
+Per-file encryption keys
+------------------------
Since each master key can protect many files, it is necessary to
"tweak" the encryption of each file so that the same plaintext in two
@@ -138,29 +243,9 @@ files doesn't map to the same ciphertext, or vice versa. In most
cases, fscrypt does this by deriving per-file keys. When a new
encrypted inode (regular file, directory, or symlink) is created,
fscrypt randomly generates a 16-byte nonce and stores it in the
-inode's encryption xattr. Then, it uses a KDF (Key Derivation
-Function) to derive the file's key from the master key and nonce.
-
-The Adiantum encryption mode (see `Encryption modes and usage`_) is
-special, since it accepts longer IVs and is suitable for both contents
-and filenames encryption. For it, a "direct key" option is offered
-where the file's nonce is included in the IVs and the master key is
-used for encryption directly. This improves performance; however,
-users must not use the same master key for any other encryption mode.
-
-Below, the KDF and design considerations are described in more detail.
-
-The current KDF works by encrypting the master key with AES-128-ECB,
-using the file's nonce as the AES key. The output is used as the
-derived key. If the output is longer than needed, then it is
-truncated to the needed length.
-
-Note: this KDF meets the primary security requirement, which is to
-produce unique derived keys that preserve the entropy of the master
-key, assuming that the master key is already a good pseudorandom key.
-However, it is nonstandard and has some problems such as being
-reversible, so it is generally considered to be a mistake! It may be
-replaced with HKDF or another more standard KDF in the future.
+inode's encryption xattr. Then, it uses a KDF (as described in `Key
+derivation function`_) to derive the file's key from the master key
+and nonce.
Key derivation was chosen over key wrapping because wrapped keys would
require larger xattrs which would be less likely to fit in-line in the
@@ -171,10 +256,61 @@ alternative master keys or to support rotating master keys. Instead,
the master keys may be wrapped in userspace, e.g. as is done by the
`fscrypt <https://github.com/google/fscrypt>`_ tool.
-Including the inode number in the IVs was considered. However, it was
-rejected as it would have prevented ext4 filesystems from being
-resized, and by itself still wouldn't have been sufficient to prevent
-the same key from being directly reused for both XTS and CTS-CBC.
+DIRECT_KEY policies
+-------------------
+
+The Adiantum encryption mode (see `Encryption modes and usage`_) is
+suitable for both contents and filenames encryption, and it accepts
+long IVs --- long enough to hold both an 8-byte logical block number
+and a 16-byte per-file nonce. Also, the overhead of each Adiantum key
+is greater than that of an AES-256-XTS key.
+
+Therefore, to improve performance and save memory, for Adiantum a
+"direct key" configuration is supported. When the user has enabled
+this by setting FSCRYPT_POLICY_FLAG_DIRECT_KEY in the fscrypt policy,
+per-file encryption keys are not used. Instead, whenever any data
+(contents or filenames) is encrypted, the file's 16-byte nonce is
+included in the IV. Moreover:
+
+- For v1 encryption policies, the encryption is done directly with the
+ master key. Because of this, users **must not** use the same master
+ key for any other purpose, even for other v1 policies.
+
+- For v2 encryption policies, the encryption is done with a per-mode
+ key derived using the KDF. Users may use the same master key for
+ other v2 encryption policies.
+
+IV_INO_LBLK_64 policies
+-----------------------
+
+When FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64 is set in the fscrypt policy,
+the encryption keys are derived from the master key, encryption mode
+number, and filesystem UUID. This normally results in all files
+protected by the same master key sharing a single contents encryption
+key and a single filenames encryption key. To still encrypt different
+files' data differently, inode numbers are included in the IVs.
+Consequently, shrinking the filesystem may not be allowed.
+
+This format is optimized for use with inline encryption hardware
+compliant with the UFS or eMMC standards, which support only 64 IV
+bits per I/O request and may have only a small number of keyslots.
+
+Key identifiers
+---------------
+
+For master keys used for v2 encryption policies, a unique 16-byte "key
+identifier" is also derived using the KDF. This value is stored in
+the clear, since it is needed to reliably identify the key itself.
+
+Dirhash keys
+------------
+
+For directories that are indexed using a secret-keyed dirhash over the
+plaintext filenames, the KDF is also used to derive a 128-bit
+SipHash-2-4 key per directory in order to hash filenames. This works
+just like deriving a per-file encryption key, except that a different
+KDF context is used. Currently, only casefolded ("case-insensitive")
+encrypted directories use this style of hashing.
Encryption modes and usage
==========================
@@ -192,17 +328,18 @@ If unsure, you should use the (AES-256-XTS, AES-256-CTS-CBC) pair.
AES-128-CBC was added only for low-powered embedded devices with
crypto accelerators such as CAAM or CESA that do not support XTS. To
-use AES-128-CBC, CONFIG_CRYPTO_SHA256 (or another SHA-256
-implementation) must be enabled so that ESSIV can be used.
+use AES-128-CBC, CONFIG_CRYPTO_ESSIV and CONFIG_CRYPTO_SHA256 (or
+another SHA-256 implementation) must be enabled so that ESSIV can be
+used.
Adiantum is a (primarily) stream cipher-based mode that is fast even
on CPUs without dedicated crypto instructions. It's also a true
wide-block mode, unlike XTS. It can also eliminate the need to derive
-per-file keys. However, it depends on the security of two primitives,
-XChaCha12 and AES-256, rather than just one. See the paper
-"Adiantum: length-preserving encryption for entry-level processors"
-(https://eprint.iacr.org/2018/720.pdf) for more details. To use
-Adiantum, CONFIG_CRYPTO_ADIANTUM must be enabled. Also, fast
+per-file encryption keys. However, it depends on the security of two
+primitives, XChaCha12 and AES-256, rather than just one. See the
+paper "Adiantum: length-preserving encryption for entry-level
+processors" (https://eprint.iacr.org/2018/720.pdf) for more details.
+To use Adiantum, CONFIG_CRYPTO_ADIANTUM must be enabled. Also, fast
implementations of ChaCha and NHPoly1305 should be enabled, e.g.
CONFIG_CRYPTO_CHACHA20_NEON and CONFIG_CRYPTO_NHPOLY1305_NEON for ARM.
@@ -215,8 +352,8 @@ Contents encryption
-------------------
For file contents, each filesystem block is encrypted independently.
-Currently, only the case where the filesystem block size is equal to
-the system's page size (usually 4096 bytes) is supported.
+Starting from Linux kernel 5.5, encryption of filesystems with block
+size less than system's page size is supported.
Each block's IV is set to the logical block number within the file as
a little endian number, except that:
@@ -225,10 +362,17 @@ a little endian number, except that:
is encrypted with AES-256 where the AES-256 key is the SHA-256 hash
of the file's data encryption key.
-- In the "direct key" configuration (FS_POLICY_FLAG_DIRECT_KEY set in
- the fscrypt_policy), the file's nonce is also appended to the IV.
+- With `DIRECT_KEY policies`_, the file's nonce is appended to the IV.
Currently this is only allowed with the Adiantum encryption mode.
+- With `IV_INO_LBLK_64 policies`_, the logical block number is limited
+ to 32 bits and is placed in bits 0-31 of the IV. The inode number
+ (which is also limited to 32 bits) is placed in bits 32-63.
+
+Note that because file logical block numbers are included in the IVs,
+filesystems must enforce that blocks are never shifted around within
+encrypted files, e.g. via "collapse range" or "insert range".
+
Filenames encryption
--------------------
@@ -237,10 +381,10 @@ the requirements to retain support for efficient directory lookups and
filenames of up to 255 bytes, the same IV is used for every filename
in a directory.
-However, each encrypted directory still uses a unique key; or
-alternatively (for the "direct key" configuration) has the file's
-nonce included in the IVs. Thus, IV reuse is limited to within a
-single directory.
+However, each encrypted directory still uses a unique key, or
+alternatively has the file's nonce (for `DIRECT_KEY policies`_) or
+inode number (for `IV_INO_LBLK_64 policies`_) included in the IVs.
+Thus, IV reuse is limited to within a single directory.
With CTS-CBC, the IV reuse means that when the plaintext filenames
share a common prefix at least as long as the cipher block size (16
@@ -269,49 +413,80 @@ User API
Setting an encryption policy
----------------------------
+FS_IOC_SET_ENCRYPTION_POLICY
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
The FS_IOC_SET_ENCRYPTION_POLICY ioctl sets an encryption policy on an
empty directory or verifies that a directory or regular file already
has the specified encryption policy. It takes in a pointer to a
-:c:type:`struct fscrypt_policy`, defined as follows::
+:c:type:`struct fscrypt_policy_v1` or a :c:type:`struct
+fscrypt_policy_v2`, defined as follows::
- #define FS_KEY_DESCRIPTOR_SIZE 8
+ #define FSCRYPT_POLICY_V1 0
+ #define FSCRYPT_KEY_DESCRIPTOR_SIZE 8
+ struct fscrypt_policy_v1 {
+ __u8 version;
+ __u8 contents_encryption_mode;
+ __u8 filenames_encryption_mode;
+ __u8 flags;
+ __u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+ };
+ #define fscrypt_policy fscrypt_policy_v1
- struct fscrypt_policy {
+ #define FSCRYPT_POLICY_V2 2
+ #define FSCRYPT_KEY_IDENTIFIER_SIZE 16
+ struct fscrypt_policy_v2 {
__u8 version;
__u8 contents_encryption_mode;
__u8 filenames_encryption_mode;
__u8 flags;
- __u8 master_key_descriptor[FS_KEY_DESCRIPTOR_SIZE];
+ __u8 __reserved[4];
+ __u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
};
This structure must be initialized as follows:
-- ``version`` must be 0.
+- ``version`` must be FSCRYPT_POLICY_V1 (0) if the struct is
+ :c:type:`fscrypt_policy_v1` or FSCRYPT_POLICY_V2 (2) if the struct
+ is :c:type:`fscrypt_policy_v2`. (Note: we refer to the original
+ policy version as "v1", though its version code is really 0.) For
+ new encrypted directories, use v2 policies.
- ``contents_encryption_mode`` and ``filenames_encryption_mode`` must
- be set to constants from ``<linux/fs.h>`` which identify the
- encryption modes to use. If unsure, use
- FS_ENCRYPTION_MODE_AES_256_XTS (1) for ``contents_encryption_mode``
- and FS_ENCRYPTION_MODE_AES_256_CTS (4) for
- ``filenames_encryption_mode``.
-
-- ``flags`` must contain a value from ``<linux/fs.h>`` which
- identifies the amount of NUL-padding to use when encrypting
- filenames. If unsure, use FS_POLICY_FLAGS_PAD_32 (0x3).
- In addition, if the chosen encryption modes are both
- FS_ENCRYPTION_MODE_ADIANTUM, this can contain
- FS_POLICY_FLAG_DIRECT_KEY to specify that the master key should be
- used directly, without key derivation.
-
-- ``master_key_descriptor`` specifies how to find the master key in
- the keyring; see `Adding keys`_. It is up to userspace to choose a
- unique ``master_key_descriptor`` for each master key. The e4crypt
- and fscrypt tools use the first 8 bytes of
+ be set to constants from ``<linux/fscrypt.h>`` which identify the
+ encryption modes to use. If unsure, use FSCRYPT_MODE_AES_256_XTS
+ (1) for ``contents_encryption_mode`` and FSCRYPT_MODE_AES_256_CTS
+ (4) for ``filenames_encryption_mode``.
+
+- ``flags`` contains optional flags from ``<linux/fscrypt.h>``:
+
+ - FSCRYPT_POLICY_FLAGS_PAD_*: The amount of NUL padding to use when
+ encrypting filenames. If unsure, use FSCRYPT_POLICY_FLAGS_PAD_32
+ (0x3).
+ - FSCRYPT_POLICY_FLAG_DIRECT_KEY: See `DIRECT_KEY policies`_.
+ - FSCRYPT_POLICY_FLAG_IV_INO_LBLK_64: See `IV_INO_LBLK_64
+ policies`_. This is mutually exclusive with DIRECT_KEY and is not
+ supported on v1 policies.
+
+- For v2 encryption policies, ``__reserved`` must be zeroed.
+
+- For v1 encryption policies, ``master_key_descriptor`` specifies how
+ to find the master key in a keyring; see `Adding keys`_. It is up
+ to userspace to choose a unique ``master_key_descriptor`` for each
+ master key. The e4crypt and fscrypt tools use the first 8 bytes of
``SHA-512(SHA-512(master_key))``, but this particular scheme is not
required. Also, the master key need not be in the keyring yet when
FS_IOC_SET_ENCRYPTION_POLICY is executed. However, it must be added
before any files can be created in the encrypted directory.
+ For v2 encryption policies, ``master_key_descriptor`` has been
+ replaced with ``master_key_identifier``, which is longer and cannot
+ be arbitrarily chosen. Instead, the key must first be added using
+ `FS_IOC_ADD_ENCRYPTION_KEY`_. Then, the ``key_spec.u.identifier``
+ the kernel returned in the :c:type:`struct fscrypt_add_key_arg` must
+ be used as the ``master_key_identifier`` in the :c:type:`struct
+ fscrypt_policy_v2`.
+
If the file is not yet encrypted, then FS_IOC_SET_ENCRYPTION_POLICY
verifies that the file is an empty directory. If so, the specified
encryption policy is assigned to the directory, turning it into an
@@ -327,6 +502,15 @@ policy exactly matches the actual one. If they match, then the ioctl
returns 0. Otherwise, it fails with EEXIST. This works on both
regular files and directories, including nonempty directories.
+When a v2 encryption policy is assigned to a directory, it is also
+required that either the specified key has been added by the current
+user or that the caller has CAP_FOWNER in the initial user namespace.
+(This is needed to prevent a user from encrypting their data with
+another user's key.) The key must remain added while
+FS_IOC_SET_ENCRYPTION_POLICY is executing. However, if the new
+encrypted directory does not need to be accessed immediately, then the
+key can be removed right away afterwards.
+
Note that the ext4 filesystem does not allow the root directory to be
encrypted, even if it is empty. Users who want to encrypt an entire
filesystem with one key should consider using dm-crypt instead.
@@ -339,7 +523,13 @@ FS_IOC_SET_ENCRYPTION_POLICY can fail with the following errors:
- ``EEXIST``: the file is already encrypted with an encryption policy
different from the one specified
- ``EINVAL``: an invalid encryption policy was specified (invalid
- version, mode(s), or flags)
+ version, mode(s), or flags; or reserved bits were set); or a v1
+ encryption policy was specified but the directory has the casefold
+ flag enabled (casefolding is incompatible with v1 policies).
+- ``ENOKEY``: a v2 encryption policy was specified, but the key with
+ the specified ``master_key_identifier`` has not been added, nor does
+ the process have the CAP_FOWNER capability in the initial user
+ namespace
- ``ENOTDIR``: the file is unencrypted and is a regular file, not a
directory
- ``ENOTEMPTY``: the file is unencrypted and is a nonempty directory
@@ -358,25 +548,79 @@ FS_IOC_SET_ENCRYPTION_POLICY can fail with the following errors:
Getting an encryption policy
----------------------------
-The FS_IOC_GET_ENCRYPTION_POLICY ioctl retrieves the :c:type:`struct
-fscrypt_policy`, if any, for a directory or regular file. See above
-for the struct definition. No additional permissions are required
-beyond the ability to open the file.
+Two ioctls are available to get a file's encryption policy:
+
+- `FS_IOC_GET_ENCRYPTION_POLICY_EX`_
+- `FS_IOC_GET_ENCRYPTION_POLICY`_
+
+The extended (_EX) version of the ioctl is more general and is
+recommended to use when possible. However, on older kernels only the
+original ioctl is available. Applications should try the extended
+version, and if it fails with ENOTTY fall back to the original
+version.
+
+FS_IOC_GET_ENCRYPTION_POLICY_EX
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_GET_ENCRYPTION_POLICY_EX ioctl retrieves the encryption
+policy, if any, for a directory or regular file. No additional
+permissions are required beyond the ability to open the file. It
+takes in a pointer to a :c:type:`struct fscrypt_get_policy_ex_arg`,
+defined as follows::
+
+ struct fscrypt_get_policy_ex_arg {
+ __u64 policy_size; /* input/output */
+ union {
+ __u8 version;
+ struct fscrypt_policy_v1 v1;
+ struct fscrypt_policy_v2 v2;
+ } policy; /* output */
+ };
+
+The caller must initialize ``policy_size`` to the size available for
+the policy struct, i.e. ``sizeof(arg.policy)``.
-FS_IOC_GET_ENCRYPTION_POLICY can fail with the following errors:
+On success, the policy struct is returned in ``policy``, and its
+actual size is returned in ``policy_size``. ``policy.version`` should
+be checked to determine the version of policy returned. Note that the
+version code for the "v1" policy is actually 0 (FSCRYPT_POLICY_V1).
+
+FS_IOC_GET_ENCRYPTION_POLICY_EX can fail with the following errors:
- ``EINVAL``: the file is encrypted, but it uses an unrecognized
- encryption context format
+ encryption policy version
- ``ENODATA``: the file is not encrypted
-- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``ENOTTY``: this type of filesystem does not implement encryption,
+ or this kernel is too old to support FS_IOC_GET_ENCRYPTION_POLICY_EX
+ (try FS_IOC_GET_ENCRYPTION_POLICY instead)
- ``EOPNOTSUPP``: the kernel was not configured with encryption
- support for this filesystem
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+- ``EOVERFLOW``: the file is encrypted and uses a recognized
+ encryption policy version, but the policy struct does not fit into
+ the provided buffer
Note: if you only need to know whether a file is encrypted or not, on
most filesystems it is also possible to use the FS_IOC_GETFLAGS ioctl
and check for FS_ENCRYPT_FL, or to use the statx() system call and
check for STATX_ATTR_ENCRYPTED in stx_attributes.
+FS_IOC_GET_ENCRYPTION_POLICY
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_GET_ENCRYPTION_POLICY ioctl can also retrieve the
+encryption policy, if any, for a directory or regular file. However,
+unlike `FS_IOC_GET_ENCRYPTION_POLICY_EX`_,
+FS_IOC_GET_ENCRYPTION_POLICY only supports the original policy
+version. It takes in a pointer directly to a :c:type:`struct
+fscrypt_policy_v1` rather than a :c:type:`struct
+fscrypt_get_policy_ex_arg`.
+
+The error codes for FS_IOC_GET_ENCRYPTION_POLICY are the same as those
+for FS_IOC_GET_ENCRYPTION_POLICY_EX, except that
+FS_IOC_GET_ENCRYPTION_POLICY also returns ``EINVAL`` if the file is
+encrypted using a newer encryption policy version.
+
Getting the per-filesystem salt
-------------------------------
@@ -392,8 +636,144 @@ generate and manage any needed salt(s) in userspace.
Adding keys
-----------
-To provide a master key, userspace must add it to an appropriate
-keyring using the add_key() system call (see:
+FS_IOC_ADD_ENCRYPTION_KEY
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_ADD_ENCRYPTION_KEY ioctl adds a master encryption key to
+the filesystem, making all files on the filesystem which were
+encrypted using that key appear "unlocked", i.e. in plaintext form.
+It can be executed on any file or directory on the target filesystem,
+but using the filesystem's root directory is recommended. It takes in
+a pointer to a :c:type:`struct fscrypt_add_key_arg`, defined as
+follows::
+
+ struct fscrypt_add_key_arg {
+ struct fscrypt_key_specifier key_spec;
+ __u32 raw_size;
+ __u32 key_id;
+ __u32 __reserved[8];
+ __u8 raw[];
+ };
+
+ #define FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR 1
+ #define FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER 2
+
+ struct fscrypt_key_specifier {
+ __u32 type; /* one of FSCRYPT_KEY_SPEC_TYPE_* */
+ __u32 __reserved;
+ union {
+ __u8 __reserved[32]; /* reserve some extra space */
+ __u8 descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+ __u8 identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
+ } u;
+ };
+
+ struct fscrypt_provisioning_key_payload {
+ __u32 type;
+ __u32 __reserved;
+ __u8 raw[];
+ };
+
+:c:type:`struct fscrypt_add_key_arg` must be zeroed, then initialized
+as follows:
+
+- If the key is being added for use by v1 encryption policies, then
+ ``key_spec.type`` must contain FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR, and
+ ``key_spec.u.descriptor`` must contain the descriptor of the key
+ being added, corresponding to the value in the
+ ``master_key_descriptor`` field of :c:type:`struct
+ fscrypt_policy_v1`. To add this type of key, the calling process
+ must have the CAP_SYS_ADMIN capability in the initial user
+ namespace.
+
+ Alternatively, if the key is being added for use by v2 encryption
+ policies, then ``key_spec.type`` must contain
+ FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER, and ``key_spec.u.identifier`` is
+ an *output* field which the kernel fills in with a cryptographic
+ hash of the key. To add this type of key, the calling process does
+ not need any privileges. However, the number of keys that can be
+ added is limited by the user's quota for the keyrings service (see
+ ``Documentation/security/keys/core.rst``).
+
+- ``raw_size`` must be the size of the ``raw`` key provided, in bytes.
+ Alternatively, if ``key_id`` is nonzero, this field must be 0, since
+ in that case the size is implied by the specified Linux keyring key.
+
+- ``key_id`` is 0 if the raw key is given directly in the ``raw``
+ field. Otherwise ``key_id`` is the ID of a Linux keyring key of
+ type "fscrypt-provisioning" whose payload is a :c:type:`struct
+ fscrypt_provisioning_key_payload` whose ``raw`` field contains the
+ raw key and whose ``type`` field matches ``key_spec.type``. Since
+ ``raw`` is variable-length, the total size of this key's payload
+ must be ``sizeof(struct fscrypt_provisioning_key_payload)`` plus the
+ raw key size. The process must have Search permission on this key.
+
+ Most users should leave this 0 and specify the raw key directly.
+ The support for specifying a Linux keyring key is intended mainly to
+ allow re-adding keys after a filesystem is unmounted and re-mounted,
+ without having to store the raw keys in userspace memory.
+
+- ``raw`` is a variable-length field which must contain the actual
+ key, ``raw_size`` bytes long. Alternatively, if ``key_id`` is
+ nonzero, then this field is unused.
+
+For v2 policy keys, the kernel keeps track of which user (identified
+by effective user ID) added the key, and only allows the key to be
+removed by that user --- or by "root", if they use
+`FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS`_.
+
+However, if another user has added the key, it may be desirable to
+prevent that other user from unexpectedly removing it. Therefore,
+FS_IOC_ADD_ENCRYPTION_KEY may also be used to add a v2 policy key
+*again*, even if it's already added by other user(s). In this case,
+FS_IOC_ADD_ENCRYPTION_KEY will just install a claim to the key for the
+current user, rather than actually add the key again (but the raw key
+must still be provided, as a proof of knowledge).
+
+FS_IOC_ADD_ENCRYPTION_KEY returns 0 if either the key or a claim to
+the key was either added or already exists.
+
+FS_IOC_ADD_ENCRYPTION_KEY can fail with the following errors:
+
+- ``EACCES``: FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR was specified, but the
+ caller does not have the CAP_SYS_ADMIN capability in the initial
+ user namespace; or the raw key was specified by Linux key ID but the
+ process lacks Search permission on the key.
+- ``EDQUOT``: the key quota for this user would be exceeded by adding
+ the key
+- ``EINVAL``: invalid key size or key specifier type, or reserved bits
+ were set
+- ``EKEYREJECTED``: the raw key was specified by Linux key ID, but the
+ key has the wrong type
+- ``ENOKEY``: the raw key was specified by Linux key ID, but no key
+ exists with that ID
+- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``EOPNOTSUPP``: the kernel was not configured with encryption
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+
+Legacy method
+~~~~~~~~~~~~~
+
+For v1 encryption policies, a master encryption key can also be
+provided by adding it to a process-subscribed keyring, e.g. to a
+session keyring, or to a user keyring if the user keyring is linked
+into the session keyring.
+
+This method is deprecated (and not supported for v2 encryption
+policies) for several reasons. First, it cannot be used in
+combination with FS_IOC_REMOVE_ENCRYPTION_KEY (see `Removing keys`_),
+so for removing a key a workaround such as keyctl_unlink() in
+combination with ``sync; echo 2 > /proc/sys/vm/drop_caches`` would
+have to be used. Second, it doesn't match the fact that the
+locked/unlocked status of encrypted files (i.e. whether they appear to
+be in plaintext form or in ciphertext form) is global. This mismatch
+has caused much confusion as well as real problems when processes
+running under different UIDs, such as a ``sudo`` command, need to
+access encrypted files.
+
+Nevertheless, to add a key to one of the process-subscribed keyrings,
+the add_key() system call can be used (see:
``Documentation/security/keys/core.rst``). The key type must be
"logon"; keys of this type are kept in kernel memory and cannot be
read back by userspace. The key description must be "fscrypt:"
@@ -401,12 +781,12 @@ followed by the 16-character lower case hex representation of the
``master_key_descriptor`` that was set in the encryption policy. The
key payload must conform to the following structure::
- #define FS_MAX_KEY_SIZE 64
+ #define FSCRYPT_MAX_KEY_SIZE 64
struct fscrypt_key {
- u32 mode;
- u8 raw[FS_MAX_KEY_SIZE];
- u32 size;
+ __u32 mode;
+ __u8 raw[FSCRYPT_MAX_KEY_SIZE];
+ __u32 size;
};
``mode`` is ignored; just set it to 0. The actual key is provided in
@@ -418,26 +798,194 @@ with a filesystem-specific prefix such as "ext4:". However, the
filesystem-specific prefixes are deprecated and should not be used in
new programs.
-There are several different types of keyrings in which encryption keys
-may be placed, such as a session keyring, a user session keyring, or a
-user keyring. Each key must be placed in a keyring that is "attached"
-to all processes that might need to access files encrypted with it, in
-the sense that request_key() will find the key. Generally, if only
-processes belonging to a specific user need to access a given
-encrypted directory and no session keyring has been installed, then
-that directory's key should be placed in that user's user session
-keyring or user keyring. Otherwise, a session keyring should be
-installed if needed, and the key should be linked into that session
-keyring, or in a keyring linked into that session keyring.
-
-Note: introducing the complex visibility semantics of keyrings here
-was arguably a mistake --- especially given that by design, after any
-process successfully opens an encrypted file (thereby setting up the
-per-file key), possessing the keyring key is not actually required for
-any process to read/write the file until its in-memory inode is
-evicted. In the future there probably should be a way to provide keys
-directly to the filesystem instead, which would make the intended
-semantics clearer.
+Removing keys
+-------------
+
+Two ioctls are available for removing a key that was added by
+`FS_IOC_ADD_ENCRYPTION_KEY`_:
+
+- `FS_IOC_REMOVE_ENCRYPTION_KEY`_
+- `FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS`_
+
+These two ioctls differ only in cases where v2 policy keys are added
+or removed by non-root users.
+
+These ioctls don't work on keys that were added via the legacy
+process-subscribed keyrings mechanism.
+
+Before using these ioctls, read the `Kernel memory compromise`_
+section for a discussion of the security goals and limitations of
+these ioctls.
+
+FS_IOC_REMOVE_ENCRYPTION_KEY
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_REMOVE_ENCRYPTION_KEY ioctl removes a claim to a master
+encryption key from the filesystem, and possibly removes the key
+itself. It can be executed on any file or directory on the target
+filesystem, but using the filesystem's root directory is recommended.
+It takes in a pointer to a :c:type:`struct fscrypt_remove_key_arg`,
+defined as follows::
+
+ struct fscrypt_remove_key_arg {
+ struct fscrypt_key_specifier key_spec;
+ #define FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY 0x00000001
+ #define FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS 0x00000002
+ __u32 removal_status_flags; /* output */
+ __u32 __reserved[5];
+ };
+
+This structure must be zeroed, then initialized as follows:
+
+- The key to remove is specified by ``key_spec``:
+
+ - To remove a key used by v1 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR and fill
+ in ``key_spec.u.descriptor``. To remove this type of key, the
+ calling process must have the CAP_SYS_ADMIN capability in the
+ initial user namespace.
+
+ - To remove a key used by v2 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER and fill
+ in ``key_spec.u.identifier``.
+
+For v2 policy keys, this ioctl is usable by non-root users. However,
+to make this possible, it actually just removes the current user's
+claim to the key, undoing a single call to FS_IOC_ADD_ENCRYPTION_KEY.
+Only after all claims are removed is the key really removed.
+
+For example, if FS_IOC_ADD_ENCRYPTION_KEY was called with uid 1000,
+then the key will be "claimed" by uid 1000, and
+FS_IOC_REMOVE_ENCRYPTION_KEY will only succeed as uid 1000. Or, if
+both uids 1000 and 2000 added the key, then for each uid
+FS_IOC_REMOVE_ENCRYPTION_KEY will only remove their own claim. Only
+once *both* are removed is the key really removed. (Think of it like
+unlinking a file that may have hard links.)
+
+If FS_IOC_REMOVE_ENCRYPTION_KEY really removes the key, it will also
+try to "lock" all files that had been unlocked with the key. It won't
+lock files that are still in-use, so this ioctl is expected to be used
+in cooperation with userspace ensuring that none of the files are
+still open. However, if necessary, this ioctl can be executed again
+later to retry locking any remaining files.
+
+FS_IOC_REMOVE_ENCRYPTION_KEY returns 0 if either the key was removed
+(but may still have files remaining to be locked), the user's claim to
+the key was removed, or the key was already removed but had files
+remaining to be the locked so the ioctl retried locking them. In any
+of these cases, ``removal_status_flags`` is filled in with the
+following informational status flags:
+
+- ``FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY``: set if some file(s)
+ are still in-use. Not guaranteed to be set in the case where only
+ the user's claim to the key was removed.
+- ``FSCRYPT_KEY_REMOVAL_STATUS_FLAG_OTHER_USERS``: set if only the
+ user's claim to the key was removed, not the key itself
+
+FS_IOC_REMOVE_ENCRYPTION_KEY can fail with the following errors:
+
+- ``EACCES``: The FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR key specifier type
+ was specified, but the caller does not have the CAP_SYS_ADMIN
+ capability in the initial user namespace
+- ``EINVAL``: invalid key specifier type, or reserved bits were set
+- ``ENOKEY``: the key object was not found at all, i.e. it was never
+ added in the first place or was already fully removed including all
+ files locked; or, the user does not have a claim to the key (but
+ someone else does).
+- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``EOPNOTSUPP``: the kernel was not configured with encryption
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+
+FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS is exactly the same as
+`FS_IOC_REMOVE_ENCRYPTION_KEY`_, except that for v2 policy keys, the
+ALL_USERS version of the ioctl will remove all users' claims to the
+key, not just the current user's. I.e., the key itself will always be
+removed, no matter how many users have added it. This difference is
+only meaningful if non-root users are adding and removing keys.
+
+Because of this, FS_IOC_REMOVE_ENCRYPTION_KEY_ALL_USERS also requires
+"root", namely the CAP_SYS_ADMIN capability in the initial user
+namespace. Otherwise it will fail with EACCES.
+
+Getting key status
+------------------
+
+FS_IOC_GET_ENCRYPTION_KEY_STATUS
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The FS_IOC_GET_ENCRYPTION_KEY_STATUS ioctl retrieves the status of a
+master encryption key. It can be executed on any file or directory on
+the target filesystem, but using the filesystem's root directory is
+recommended. It takes in a pointer to a :c:type:`struct
+fscrypt_get_key_status_arg`, defined as follows::
+
+ struct fscrypt_get_key_status_arg {
+ /* input */
+ struct fscrypt_key_specifier key_spec;
+ __u32 __reserved[6];
+
+ /* output */
+ #define FSCRYPT_KEY_STATUS_ABSENT 1
+ #define FSCRYPT_KEY_STATUS_PRESENT 2
+ #define FSCRYPT_KEY_STATUS_INCOMPLETELY_REMOVED 3
+ __u32 status;
+ #define FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF 0x00000001
+ __u32 status_flags;
+ __u32 user_count;
+ __u32 __out_reserved[13];
+ };
+
+The caller must zero all input fields, then fill in ``key_spec``:
+
+ - To get the status of a key for v1 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_DESCRIPTOR and fill
+ in ``key_spec.u.descriptor``.
+
+ - To get the status of a key for v2 encryption policies, set
+ ``key_spec.type`` to FSCRYPT_KEY_SPEC_TYPE_IDENTIFIER and fill
+ in ``key_spec.u.identifier``.
+
+On success, 0 is returned and the kernel fills in the output fields:
+
+- ``status`` indicates whether the key is absent, present, or
+ incompletely removed. Incompletely removed means that the master
+ secret has been removed, but some files are still in use; i.e.,
+ `FS_IOC_REMOVE_ENCRYPTION_KEY`_ returned 0 but set the informational
+ status flag FSCRYPT_KEY_REMOVAL_STATUS_FLAG_FILES_BUSY.
+
+- ``status_flags`` can contain the following flags:
+
+ - ``FSCRYPT_KEY_STATUS_FLAG_ADDED_BY_SELF`` indicates that the key
+ has added by the current user. This is only set for keys
+ identified by ``identifier`` rather than by ``descriptor``.
+
+- ``user_count`` specifies the number of users who have added the key.
+ This is only set for keys identified by ``identifier`` rather than
+ by ``descriptor``.
+
+FS_IOC_GET_ENCRYPTION_KEY_STATUS can fail with the following errors:
+
+- ``EINVAL``: invalid key specifier type, or reserved bits were set
+- ``ENOTTY``: this type of filesystem does not implement encryption
+- ``EOPNOTSUPP``: the kernel was not configured with encryption
+ support for this filesystem, or the filesystem superblock has not
+ had encryption enabled on it
+
+Among other use cases, FS_IOC_GET_ENCRYPTION_KEY_STATUS can be useful
+for determining whether the key for a given encrypted directory needs
+to be added before prompting the user for the passphrase needed to
+derive the key.
+
+FS_IOC_GET_ENCRYPTION_KEY_STATUS can only get the status of keys in
+the filesystem-level keyring, i.e. the keyring managed by
+`FS_IOC_ADD_ENCRYPTION_KEY`_ and `FS_IOC_REMOVE_ENCRYPTION_KEY`_. It
+cannot get the status of a key that has only been added for use by v1
+encryption policies using the legacy mechanism involving
+process-subscribed keyrings.
Access semantics
================
@@ -468,9 +1016,9 @@ astute users may notice some differences in behavior:
- Direct I/O is not supported on encrypted files. Attempts to use
direct I/O on such files will fall back to buffered I/O.
-- The fallocate operations FALLOC_FL_COLLAPSE_RANGE,
- FALLOC_FL_INSERT_RANGE, and FALLOC_FL_ZERO_RANGE are not supported
- on encrypted files and will fail with EOPNOTSUPP.
+- The fallocate operations FALLOC_FL_COLLAPSE_RANGE and
+ FALLOC_FL_INSERT_RANGE are not supported on encrypted files and will
+ fail with EOPNOTSUPP.
- Online defragmentation of encrypted files is not supported. The
EXT4_IOC_MOVE_EXT and F2FS_IOC_MOVE_RANGE ioctls will fail with
@@ -500,7 +1048,7 @@ Without the key
Some filesystem operations may be performed on encrypted regular
files, directories, and symlinks even before their encryption key has
-been provided:
+been added, or after their encryption key has been removed:
- File metadata may be read, e.g. using stat().
@@ -565,33 +1113,44 @@ Encryption context
------------------
An encryption policy is represented on-disk by a :c:type:`struct
-fscrypt_context`. It is up to individual filesystems to decide where
-to store it, but normally it would be stored in a hidden extended
-attribute. It should *not* be exposed by the xattr-related system
-calls such as getxattr() and setxattr() because of the special
-semantics of the encryption xattr. (In particular, there would be
-much confusion if an encryption policy were to be added to or removed
-from anything other than an empty directory.) The struct is defined
-as follows::
-
- #define FS_KEY_DESCRIPTOR_SIZE 8
+fscrypt_context_v1` or a :c:type:`struct fscrypt_context_v2`. It is
+up to individual filesystems to decide where to store it, but normally
+it would be stored in a hidden extended attribute. It should *not* be
+exposed by the xattr-related system calls such as getxattr() and
+setxattr() because of the special semantics of the encryption xattr.
+(In particular, there would be much confusion if an encryption policy
+were to be added to or removed from anything other than an empty
+directory.) These structs are defined as follows::
+
#define FS_KEY_DERIVATION_NONCE_SIZE 16
- struct fscrypt_context {
- u8 format;
+ #define FSCRYPT_KEY_DESCRIPTOR_SIZE 8
+ struct fscrypt_context_v1 {
+ u8 version;
+ u8 contents_encryption_mode;
+ u8 filenames_encryption_mode;
+ u8 flags;
+ u8 master_key_descriptor[FSCRYPT_KEY_DESCRIPTOR_SIZE];
+ u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
+ };
+
+ #define FSCRYPT_KEY_IDENTIFIER_SIZE 16
+ struct fscrypt_context_v2 {
+ u8 version;
u8 contents_encryption_mode;
u8 filenames_encryption_mode;
u8 flags;
- u8 master_key_descriptor[FS_KEY_DESCRIPTOR_SIZE];
+ u8 __reserved[4];
+ u8 master_key_identifier[FSCRYPT_KEY_IDENTIFIER_SIZE];
u8 nonce[FS_KEY_DERIVATION_NONCE_SIZE];
};
-Note that :c:type:`struct fscrypt_context` contains the same
-information as :c:type:`struct fscrypt_policy` (see `Setting an
-encryption policy`_), except that :c:type:`struct fscrypt_context`
-also contains a nonce. The nonce is randomly generated by the kernel
-and is used to derive the inode's encryption key as described in
-`Per-file keys`_.
+The context structs contain the same information as the corresponding
+policy structs (see `Setting an encryption policy`_), except that the
+context structs also contain a nonce. The nonce is randomly generated
+by the kernel and is used as KDF input or as a tweak to cause
+different files to be encrypted differently; see `Per-file encryption
+keys`_ and `DIRECT_KEY policies`_.
Data path changes
-----------------
@@ -643,7 +1202,7 @@ filesystem-specific hash(es) needed for directory lookups. This
allows the filesystem to still, with a high degree of confidence, map
the filename given in ->lookup() back to a particular directory entry
that was previously listed by readdir(). See :c:type:`struct
-fscrypt_digested_name` in the source for more details.
+fscrypt_nokey_name` in the source for more details.
Note that the precise way that filenames are presented to userspace
without the key is subject to change in the future. It is only meant
diff --git a/Documentation/filesystems/fsverity.rst b/Documentation/filesystems/fsverity.rst
new file mode 100644
index 000000000000..a95536b6443c
--- /dev/null
+++ b/Documentation/filesystems/fsverity.rst
@@ -0,0 +1,734 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+.. _fsverity:
+
+=======================================================
+fs-verity: read-only file-based authenticity protection
+=======================================================
+
+Introduction
+============
+
+fs-verity (``fs/verity/``) is a support layer that filesystems can
+hook into to support transparent integrity and authenticity protection
+of read-only files. Currently, it is supported by the ext4 and f2fs
+filesystems. Like fscrypt, not too much filesystem-specific code is
+needed to support fs-verity.
+
+fs-verity is similar to `dm-verity
+<https://www.kernel.org/doc/Documentation/device-mapper/verity.txt>`_
+but works on files rather than block devices. On regular files on
+filesystems supporting fs-verity, userspace can execute an ioctl that
+causes the filesystem to build a Merkle tree for the file and persist
+it to a filesystem-specific location associated with the file.
+
+After this, the file is made readonly, and all reads from the file are
+automatically verified against the file's Merkle tree. Reads of any
+corrupted data, including mmap reads, will fail.
+
+Userspace can use another ioctl to retrieve the root hash (actually
+the "file measurement", which is a hash that includes the root hash)
+that fs-verity is enforcing for the file. This ioctl executes in
+constant time, regardless of the file size.
+
+fs-verity is essentially a way to hash a file in constant time,
+subject to the caveat that reads which would violate the hash will
+fail at runtime.
+
+Use cases
+=========
+
+By itself, the base fs-verity feature only provides integrity
+protection, i.e. detection of accidental (non-malicious) corruption.
+
+However, because fs-verity makes retrieving the file hash extremely
+efficient, it's primarily meant to be used as a tool to support
+authentication (detection of malicious modifications) or auditing
+(logging file hashes before use).
+
+Trusted userspace code (e.g. operating system code running on a
+read-only partition that is itself authenticated by dm-verity) can
+authenticate the contents of an fs-verity file by using the
+`FS_IOC_MEASURE_VERITY`_ ioctl to retrieve its hash, then verifying a
+digital signature of it.
+
+A standard file hash could be used instead of fs-verity. However,
+this is inefficient if the file is large and only a small portion may
+be accessed. This is often the case for Android application package
+(APK) files, for example. These typically contain many translations,
+classes, and other resources that are infrequently or even never
+accessed on a particular device. It would be slow and wasteful to
+read and hash the entire file before starting the application.
+
+Unlike an ahead-of-time hash, fs-verity also re-verifies data each
+time it's paged in. This ensures that malicious disk firmware can't
+undetectably change the contents of the file at runtime.
+
+fs-verity does not replace or obsolete dm-verity. dm-verity should
+still be used on read-only filesystems. fs-verity is for files that
+must live on a read-write filesystem because they are independently
+updated and potentially user-installed, so dm-verity cannot be used.
+
+The base fs-verity feature is a hashing mechanism only; actually
+authenticating the files is up to userspace. However, to meet some
+users' needs, fs-verity optionally supports a simple signature
+verification mechanism where users can configure the kernel to require
+that all fs-verity files be signed by a key loaded into a keyring; see
+`Built-in signature verification`_. Support for fs-verity file hashes
+in IMA (Integrity Measurement Architecture) policies is also planned.
+
+User API
+========
+
+FS_IOC_ENABLE_VERITY
+--------------------
+
+The FS_IOC_ENABLE_VERITY ioctl enables fs-verity on a file. It takes
+in a pointer to a :c:type:`struct fsverity_enable_arg`, defined as
+follows::
+
+ struct fsverity_enable_arg {
+ __u32 version;
+ __u32 hash_algorithm;
+ __u32 block_size;
+ __u32 salt_size;
+ __u64 salt_ptr;
+ __u32 sig_size;
+ __u32 __reserved1;
+ __u64 sig_ptr;
+ __u64 __reserved2[11];
+ };
+
+This structure contains the parameters of the Merkle tree to build for
+the file, and optionally contains a signature. It must be initialized
+as follows:
+
+- ``version`` must be 1.
+- ``hash_algorithm`` must be the identifier for the hash algorithm to
+ use for the Merkle tree, such as FS_VERITY_HASH_ALG_SHA256. See
+ ``include/uapi/linux/fsverity.h`` for the list of possible values.
+- ``block_size`` must be the Merkle tree block size. Currently, this
+ must be equal to the system page size, which is usually 4096 bytes.
+ Other sizes may be supported in the future. This value is not
+ necessarily the same as the filesystem block size.
+- ``salt_size`` is the size of the salt in bytes, or 0 if no salt is
+ provided. The salt is a value that is prepended to every hashed
+ block; it can be used to personalize the hashing for a particular
+ file or device. Currently the maximum salt size is 32 bytes.
+- ``salt_ptr`` is the pointer to the salt, or NULL if no salt is
+ provided.
+- ``sig_size`` is the size of the signature in bytes, or 0 if no
+ signature is provided. Currently the signature is (somewhat
+ arbitrarily) limited to 16128 bytes. See `Built-in signature
+ verification`_ for more information.
+- ``sig_ptr`` is the pointer to the signature, or NULL if no
+ signature is provided.
+- All reserved fields must be zeroed.
+
+FS_IOC_ENABLE_VERITY causes the filesystem to build a Merkle tree for
+the file and persist it to a filesystem-specific location associated
+with the file, then mark the file as a verity file. This ioctl may
+take a long time to execute on large files, and it is interruptible by
+fatal signals.
+
+FS_IOC_ENABLE_VERITY checks for write access to the inode. However,
+it must be executed on an O_RDONLY file descriptor and no processes
+can have the file open for writing. Attempts to open the file for
+writing while this ioctl is executing will fail with ETXTBSY. (This
+is necessary to guarantee that no writable file descriptors will exist
+after verity is enabled, and to guarantee that the file's contents are
+stable while the Merkle tree is being built over it.)
+
+On success, FS_IOC_ENABLE_VERITY returns 0, and the file becomes a
+verity file. On failure (including the case of interruption by a
+fatal signal), no changes are made to the file.
+
+FS_IOC_ENABLE_VERITY can fail with the following errors:
+
+- ``EACCES``: the process does not have write access to the file
+- ``EBADMSG``: the signature is malformed
+- ``EBUSY``: this ioctl is already running on the file
+- ``EEXIST``: the file already has verity enabled
+- ``EFAULT``: the caller provided inaccessible memory
+- ``EINTR``: the operation was interrupted by a fatal signal
+- ``EINVAL``: unsupported version, hash algorithm, or block size; or
+ reserved bits are set; or the file descriptor refers to neither a
+ regular file nor a directory.
+- ``EISDIR``: the file descriptor refers to a directory
+- ``EKEYREJECTED``: the signature doesn't match the file
+- ``EMSGSIZE``: the salt or signature is too long
+- ``ENOKEY``: the fs-verity keyring doesn't contain the certificate
+ needed to verify the signature
+- ``ENOPKG``: fs-verity recognizes the hash algorithm, but it's not
+ available in the kernel's crypto API as currently configured (e.g.
+ for SHA-512, missing CONFIG_CRYPTO_SHA512).
+- ``ENOTTY``: this type of filesystem does not implement fs-verity
+- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
+ support; or the filesystem superblock has not had the 'verity'
+ feature enabled on it; or the filesystem does not support fs-verity
+ on this file. (See `Filesystem support`_.)
+- ``EPERM``: the file is append-only; or, a signature is required and
+ one was not provided.
+- ``EROFS``: the filesystem is read-only
+- ``ETXTBSY``: someone has the file open for writing. This can be the
+ caller's file descriptor, another open file descriptor, or the file
+ reference held by a writable memory map.
+
+FS_IOC_MEASURE_VERITY
+---------------------
+
+The FS_IOC_MEASURE_VERITY ioctl retrieves the measurement of a verity
+file. The file measurement is a digest that cryptographically
+identifies the file contents that are being enforced on reads.
+
+This ioctl takes in a pointer to a variable-length structure::
+
+ struct fsverity_digest {
+ __u16 digest_algorithm;
+ __u16 digest_size; /* input/output */
+ __u8 digest[];
+ };
+
+``digest_size`` is an input/output field. On input, it must be
+initialized to the number of bytes allocated for the variable-length
+``digest`` field.
+
+On success, 0 is returned and the kernel fills in the structure as
+follows:
+
+- ``digest_algorithm`` will be the hash algorithm used for the file
+ measurement. It will match ``fsverity_enable_arg::hash_algorithm``.
+- ``digest_size`` will be the size of the digest in bytes, e.g. 32
+ for SHA-256. (This can be redundant with ``digest_algorithm``.)
+- ``digest`` will be the actual bytes of the digest.
+
+FS_IOC_MEASURE_VERITY is guaranteed to execute in constant time,
+regardless of the size of the file.
+
+FS_IOC_MEASURE_VERITY can fail with the following errors:
+
+- ``EFAULT``: the caller provided inaccessible memory
+- ``ENODATA``: the file is not a verity file
+- ``ENOTTY``: this type of filesystem does not implement fs-verity
+- ``EOPNOTSUPP``: the kernel was not configured with fs-verity
+ support, or the filesystem superblock has not had the 'verity'
+ feature enabled on it. (See `Filesystem support`_.)
+- ``EOVERFLOW``: the digest is longer than the specified
+ ``digest_size`` bytes. Try providing a larger buffer.
+
+FS_IOC_GETFLAGS
+---------------
+
+The existing ioctl FS_IOC_GETFLAGS (which isn't specific to fs-verity)
+can also be used to check whether a file has fs-verity enabled or not.
+To do so, check for FS_VERITY_FL (0x00100000) in the returned flags.
+
+The verity flag is not settable via FS_IOC_SETFLAGS. You must use
+FS_IOC_ENABLE_VERITY instead, since parameters must be provided.
+
+statx
+-----
+
+Since Linux v5.5, the statx() system call sets STATX_ATTR_VERITY if
+the file has fs-verity enabled. This can perform better than
+FS_IOC_GETFLAGS and FS_IOC_MEASURE_VERITY because it doesn't require
+opening the file, and opening verity files can be expensive.
+
+Accessing verity files
+======================
+
+Applications can transparently access a verity file just like a
+non-verity one, with the following exceptions:
+
+- Verity files are readonly. They cannot be opened for writing or
+ truncate()d, even if the file mode bits allow it. Attempts to do
+ one of these things will fail with EPERM. However, changes to
+ metadata such as owner, mode, timestamps, and xattrs are still
+ allowed, since these are not measured by fs-verity. Verity files
+ can also still be renamed, deleted, and linked to.
+
+- Direct I/O is not supported on verity files. Attempts to use direct
+ I/O on such files will fall back to buffered I/O.
+
+- DAX (Direct Access) is not supported on verity files, because this
+ would circumvent the data verification.
+
+- Reads of data that doesn't match the verity Merkle tree will fail
+ with EIO (for read()) or SIGBUS (for mmap() reads).
+
+- If the sysctl "fs.verity.require_signatures" is set to 1 and the
+ file's verity measurement is not signed by a key in the fs-verity
+ keyring, then opening the file will fail. See `Built-in signature
+ verification`_.
+
+Direct access to the Merkle tree is not supported. Therefore, if a
+verity file is copied, or is backed up and restored, then it will lose
+its "verity"-ness. fs-verity is primarily meant for files like
+executables that are managed by a package manager.
+
+File measurement computation
+============================
+
+This section describes how fs-verity hashes the file contents using a
+Merkle tree to produce the "file measurement" which cryptographically
+identifies the file contents. This algorithm is the same for all
+filesystems that support fs-verity.
+
+Userspace only needs to be aware of this algorithm if it needs to
+compute the file measurement itself, e.g. in order to sign the file.
+
+.. _fsverity_merkle_tree:
+
+Merkle tree
+-----------
+
+The file contents is divided into blocks, where the block size is
+configurable but is usually 4096 bytes. The end of the last block is
+zero-padded if needed. Each block is then hashed, producing the first
+level of hashes. Then, the hashes in this first level are grouped
+into 'blocksize'-byte blocks (zero-padding the ends as needed) and
+these blocks are hashed, producing the second level of hashes. This
+proceeds up the tree until only a single block remains. The hash of
+this block is the "Merkle tree root hash".
+
+If the file fits in one block and is nonempty, then the "Merkle tree
+root hash" is simply the hash of the single data block. If the file
+is empty, then the "Merkle tree root hash" is all zeroes.
+
+The "blocks" here are not necessarily the same as "filesystem blocks".
+
+If a salt was specified, then it's zero-padded to the closest multiple
+of the input size of the hash algorithm's compression function, e.g.
+64 bytes for SHA-256 or 128 bytes for SHA-512. The padded salt is
+prepended to every data or Merkle tree block that is hashed.
+
+The purpose of the block padding is to cause every hash to be taken
+over the same amount of data, which simplifies the implementation and
+keeps open more possibilities for hardware acceleration. The purpose
+of the salt padding is to make the salting "free" when the salted hash
+state is precomputed, then imported for each hash.
+
+Example: in the recommended configuration of SHA-256 and 4K blocks,
+128 hash values fit in each block. Thus, each level of the Merkle
+tree is approximately 128 times smaller than the previous, and for
+large files the Merkle tree's size converges to approximately 1/127 of
+the original file size. However, for small files, the padding is
+significant, making the space overhead proportionally more.
+
+.. _fsverity_descriptor:
+
+fs-verity descriptor
+--------------------
+
+By itself, the Merkle tree root hash is ambiguous. For example, it
+can't a distinguish a large file from a small second file whose data
+is exactly the top-level hash block of the first file. Ambiguities
+also arise from the convention of padding to the next block boundary.
+
+To solve this problem, the verity file measurement is actually
+computed as a hash of the following structure, which contains the
+Merkle tree root hash as well as other fields such as the file size::
+
+ struct fsverity_descriptor {
+ __u8 version; /* must be 1 */
+ __u8 hash_algorithm; /* Merkle tree hash algorithm */
+ __u8 log_blocksize; /* log2 of size of data and tree blocks */
+ __u8 salt_size; /* size of salt in bytes; 0 if none */
+ __le32 sig_size; /* must be 0 */
+ __le64 data_size; /* size of file the Merkle tree is built over */
+ __u8 root_hash[64]; /* Merkle tree root hash */
+ __u8 salt[32]; /* salt prepended to each hashed block */
+ __u8 __reserved[144]; /* must be 0's */
+ };
+
+Note that the ``sig_size`` field must be set to 0 for the purpose of
+computing the file measurement, even if a signature was provided (or
+will be provided) to `FS_IOC_ENABLE_VERITY`_.
+
+Built-in signature verification
+===============================
+
+With CONFIG_FS_VERITY_BUILTIN_SIGNATURES=y, fs-verity supports putting
+a portion of an authentication policy (see `Use cases`_) in the
+kernel. Specifically, it adds support for:
+
+1. At fs-verity module initialization time, a keyring ".fs-verity" is
+ created. The root user can add trusted X.509 certificates to this
+ keyring using the add_key() system call, then (when done)
+ optionally use keyctl_restrict_keyring() to prevent additional
+ certificates from being added.
+
+2. `FS_IOC_ENABLE_VERITY`_ accepts a pointer to a PKCS#7 formatted
+ detached signature in DER format of the file measurement. On
+ success, this signature is persisted alongside the Merkle tree.
+ Then, any time the file is opened, the kernel will verify the
+ file's actual measurement against this signature, using the
+ certificates in the ".fs-verity" keyring.
+
+3. A new sysctl "fs.verity.require_signatures" is made available.
+ When set to 1, the kernel requires that all verity files have a
+ correctly signed file measurement as described in (2).
+
+File measurements must be signed in the following format, which is
+similar to the structure used by `FS_IOC_MEASURE_VERITY`_::
+
+ struct fsverity_signed_digest {
+ char magic[8]; /* must be "FSVerity" */
+ __le16 digest_algorithm;
+ __le16 digest_size;
+ __u8 digest[];
+ };
+
+fs-verity's built-in signature verification support is meant as a
+relatively simple mechanism that can be used to provide some level of
+authenticity protection for verity files, as an alternative to doing
+the signature verification in userspace or using IMA-appraisal.
+However, with this mechanism, userspace programs still need to check
+that the verity bit is set, and there is no protection against verity
+files being swapped around.
+
+Filesystem support
+==================
+
+fs-verity is currently supported by the ext4 and f2fs filesystems.
+The CONFIG_FS_VERITY kconfig option must be enabled to use fs-verity
+on either filesystem.
+
+``include/linux/fsverity.h`` declares the interface between the
+``fs/verity/`` support layer and filesystems. Briefly, filesystems
+must provide an ``fsverity_operations`` structure that provides
+methods to read and write the verity metadata to a filesystem-specific
+location, including the Merkle tree blocks and
+``fsverity_descriptor``. Filesystems must also call functions in
+``fs/verity/`` at certain times, such as when a file is opened or when
+pages have been read into the pagecache. (See `Verifying data`_.)
+
+ext4
+----
+
+ext4 supports fs-verity since Linux v5.4 and e2fsprogs v1.45.2.
+
+To create verity files on an ext4 filesystem, the filesystem must have
+been formatted with ``-O verity`` or had ``tune2fs -O verity`` run on
+it. "verity" is an RO_COMPAT filesystem feature, so once set, old
+kernels will only be able to mount the filesystem readonly, and old
+versions of e2fsck will be unable to check the filesystem. Moreover,
+currently ext4 only supports mounting a filesystem with the "verity"
+feature when its block size is equal to PAGE_SIZE (often 4096 bytes).
+
+ext4 sets the EXT4_VERITY_FL on-disk inode flag on verity files. It
+can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be cleared.
+
+ext4 also supports encryption, which can be used simultaneously with
+fs-verity. In this case, the plaintext data is verified rather than
+the ciphertext. This is necessary in order to make the file
+measurement meaningful, since every file is encrypted differently.
+
+ext4 stores the verity metadata (Merkle tree and fsverity_descriptor)
+past the end of the file, starting at the first 64K boundary beyond
+i_size. This approach works because (a) verity files are readonly,
+and (b) pages fully beyond i_size aren't visible to userspace but can
+be read/written internally by ext4 with only some relatively small
+changes to ext4. This approach avoids having to depend on the
+EA_INODE feature and on rearchitecturing ext4's xattr support to
+support paging multi-gigabyte xattrs into memory, and to support
+encrypting xattrs. Note that the verity metadata *must* be encrypted
+when the file is, since it contains hashes of the plaintext data.
+
+Currently, ext4 verity only supports the case where the Merkle tree
+block size, filesystem block size, and page size are all the same. It
+also only supports extent-based files.
+
+f2fs
+----
+
+f2fs supports fs-verity since Linux v5.4 and f2fs-tools v1.11.0.
+
+To create verity files on an f2fs filesystem, the filesystem must have
+been formatted with ``-O verity``.
+
+f2fs sets the FADVISE_VERITY_BIT on-disk inode flag on verity files.
+It can only be set by `FS_IOC_ENABLE_VERITY`_, and it cannot be
+cleared.
+
+Like ext4, f2fs stores the verity metadata (Merkle tree and
+fsverity_descriptor) past the end of the file, starting at the first
+64K boundary beyond i_size. See explanation for ext4 above.
+Moreover, f2fs supports at most 4096 bytes of xattr entries per inode
+which wouldn't be enough for even a single Merkle tree block.
+
+Currently, f2fs verity only supports a Merkle tree block size of 4096.
+Also, f2fs doesn't support enabling verity on files that currently
+have atomic or volatile writes pending.
+
+Implementation details
+======================
+
+Verifying data
+--------------
+
+fs-verity ensures that all reads of a verity file's data are verified,
+regardless of which syscall is used to do the read (e.g. mmap(),
+read(), pread()) and regardless of whether it's the first read or a
+later read (unless the later read can return cached data that was
+already verified). Below, we describe how filesystems implement this.
+
+Pagecache
+~~~~~~~~~
+
+For filesystems using Linux's pagecache, the ``->readpage()`` and
+``->readpages()`` methods must be modified to verify pages before they
+are marked Uptodate. Merely hooking ``->read_iter()`` would be
+insufficient, since ``->read_iter()`` is not used for memory maps.
+
+Therefore, fs/verity/ provides a function fsverity_verify_page() which
+verifies a page that has been read into the pagecache of a verity
+inode, but is still locked and not Uptodate, so it's not yet readable
+by userspace. As needed to do the verification,
+fsverity_verify_page() will call back into the filesystem to read
+Merkle tree pages via fsverity_operations::read_merkle_tree_page().
+
+fsverity_verify_page() returns false if verification failed; in this
+case, the filesystem must not set the page Uptodate. Following this,
+as per the usual Linux pagecache behavior, attempts by userspace to
+read() from the part of the file containing the page will fail with
+EIO, and accesses to the page within a memory map will raise SIGBUS.
+
+fsverity_verify_page() currently only supports the case where the
+Merkle tree block size is equal to PAGE_SIZE (often 4096 bytes).
+
+In principle, fsverity_verify_page() verifies the entire path in the
+Merkle tree from the data page to the root hash. However, for
+efficiency the filesystem may cache the hash pages. Therefore,
+fsverity_verify_page() only ascends the tree reading hash pages until
+an already-verified hash page is seen, as indicated by the PageChecked
+bit being set. It then verifies the path to that page.
+
+This optimization, which is also used by dm-verity, results in
+excellent sequential read performance. This is because usually (e.g.
+127 in 128 times for 4K blocks and SHA-256) the hash page from the
+bottom level of the tree will already be cached and checked from
+reading a previous data page. However, random reads perform worse.
+
+Block device based filesystems
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Block device based filesystems (e.g. ext4 and f2fs) in Linux also use
+the pagecache, so the above subsection applies too. However, they
+also usually read many pages from a file at once, grouped into a
+structure called a "bio". To make it easier for these types of
+filesystems to support fs-verity, fs/verity/ also provides a function
+fsverity_verify_bio() which verifies all pages in a bio.
+
+ext4 and f2fs also support encryption. If a verity file is also
+encrypted, the pages must be decrypted before being verified. To
+support this, these filesystems allocate a "post-read context" for
+each bio and store it in ``->bi_private``::
+
+ struct bio_post_read_ctx {
+ struct bio *bio;
+ struct work_struct work;
+ unsigned int cur_step;
+ unsigned int enabled_steps;
+ };
+
+``enabled_steps`` is a bitmask that specifies whether decryption,
+verity, or both is enabled. After the bio completes, for each needed
+postprocessing step the filesystem enqueues the bio_post_read_ctx on a
+workqueue, and then the workqueue work does the decryption or
+verification. Finally, pages where no decryption or verity error
+occurred are marked Uptodate, and the pages are unlocked.
+
+Files on ext4 and f2fs may contain holes. Normally, ``->readpages()``
+simply zeroes holes and sets the corresponding pages Uptodate; no bios
+are issued. To prevent this case from bypassing fs-verity, these
+filesystems use fsverity_verify_page() to verify hole pages.
+
+ext4 and f2fs disable direct I/O on verity files, since otherwise
+direct I/O would bypass fs-verity. (They also do the same for
+encrypted files.)
+
+Userspace utility
+=================
+
+This document focuses on the kernel, but a userspace utility for
+fs-verity can be found at:
+
+ https://git.kernel.org/pub/scm/linux/kernel/git/ebiggers/fsverity-utils.git
+
+See the README.md file in the fsverity-utils source tree for details,
+including examples of setting up fs-verity protected files.
+
+Tests
+=====
+
+To test fs-verity, use xfstests. For example, using `kvm-xfstests
+<https://github.com/tytso/xfstests-bld/blob/master/Documentation/kvm-quickstart.md>`_::
+
+ kvm-xfstests -c ext4,f2fs -g verity
+
+FAQ
+===
+
+This section answers frequently asked questions about fs-verity that
+weren't already directly answered in other parts of this document.
+
+:Q: Why isn't fs-verity part of IMA?
+:A: fs-verity and IMA (Integrity Measurement Architecture) have
+ different focuses. fs-verity is a filesystem-level mechanism for
+ hashing individual files using a Merkle tree. In contrast, IMA
+ specifies a system-wide policy that specifies which files are
+ hashed and what to do with those hashes, such as log them,
+ authenticate them, or add them to a measurement list.
+
+ IMA is planned to support the fs-verity hashing mechanism as an
+ alternative to doing full file hashes, for people who want the
+ performance and security benefits of the Merkle tree based hash.
+ But it doesn't make sense to force all uses of fs-verity to be
+ through IMA. As a standalone filesystem feature, fs-verity
+ already meets many users' needs, and it's testable like other
+ filesystem features e.g. with xfstests.
+
+:Q: Isn't fs-verity useless because the attacker can just modify the
+ hashes in the Merkle tree, which is stored on-disk?
+:A: To verify the authenticity of an fs-verity file you must verify
+ the authenticity of the "file measurement", which is basically the
+ root hash of the Merkle tree. See `Use cases`_.
+
+:Q: Isn't fs-verity useless because the attacker can just replace a
+ verity file with a non-verity one?
+:A: See `Use cases`_. In the initial use case, it's really trusted
+ userspace code that authenticates the files; fs-verity is just a
+ tool to do this job efficiently and securely. The trusted
+ userspace code will consider non-verity files to be inauthentic.
+
+:Q: Why does the Merkle tree need to be stored on-disk? Couldn't you
+ store just the root hash?
+:A: If the Merkle tree wasn't stored on-disk, then you'd have to
+ compute the entire tree when the file is first accessed, even if
+ just one byte is being read. This is a fundamental consequence of
+ how Merkle tree hashing works. To verify a leaf node, you need to
+ verify the whole path to the root hash, including the root node
+ (the thing which the root hash is a hash of). But if the root
+ node isn't stored on-disk, you have to compute it by hashing its
+ children, and so on until you've actually hashed the entire file.
+
+ That defeats most of the point of doing a Merkle tree-based hash,
+ since if you have to hash the whole file ahead of time anyway,
+ then you could simply do sha256(file) instead. That would be much
+ simpler, and a bit faster too.
+
+ It's true that an in-memory Merkle tree could still provide the
+ advantage of verification on every read rather than just on the
+ first read. However, it would be inefficient because every time a
+ hash page gets evicted (you can't pin the entire Merkle tree into
+ memory, since it may be very large), in order to restore it you
+ again need to hash everything below it in the tree. This again
+ defeats most of the point of doing a Merkle tree-based hash, since
+ a single block read could trigger re-hashing gigabytes of data.
+
+:Q: But couldn't you store just the leaf nodes and compute the rest?
+:A: See previous answer; this really just moves up one level, since
+ one could alternatively interpret the data blocks as being the
+ leaf nodes of the Merkle tree. It's true that the tree can be
+ computed much faster if the leaf level is stored rather than just
+ the data, but that's only because each level is less than 1% the
+ size of the level below (assuming the recommended settings of
+ SHA-256 and 4K blocks). For the exact same reason, by storing
+ "just the leaf nodes" you'd already be storing over 99% of the
+ tree, so you might as well simply store the whole tree.
+
+:Q: Can the Merkle tree be built ahead of time, e.g. distributed as
+ part of a package that is installed to many computers?
+:A: This isn't currently supported. It was part of the original
+ design, but was removed to simplify the kernel UAPI and because it
+ wasn't a critical use case. Files are usually installed once and
+ used many times, and cryptographic hashing is somewhat fast on
+ most modern processors.
+
+:Q: Why doesn't fs-verity support writes?
+:A: Write support would be very difficult and would require a
+ completely different design, so it's well outside the scope of
+ fs-verity. Write support would require:
+
+ - A way to maintain consistency between the data and hashes,
+ including all levels of hashes, since corruption after a crash
+ (especially of potentially the entire file!) is unacceptable.
+ The main options for solving this are data journalling,
+ copy-on-write, and log-structured volume. But it's very hard to
+ retrofit existing filesystems with new consistency mechanisms.
+ Data journalling is available on ext4, but is very slow.
+
+ - Rebuilding the the Merkle tree after every write, which would be
+ extremely inefficient. Alternatively, a different authenticated
+ dictionary structure such as an "authenticated skiplist" could
+ be used. However, this would be far more complex.
+
+ Compare it to dm-verity vs. dm-integrity. dm-verity is very
+ simple: the kernel just verifies read-only data against a
+ read-only Merkle tree. In contrast, dm-integrity supports writes
+ but is slow, is much more complex, and doesn't actually support
+ full-device authentication since it authenticates each sector
+ independently, i.e. there is no "root hash". It doesn't really
+ make sense for the same device-mapper target to support these two
+ very different cases; the same applies to fs-verity.
+
+:Q: Since verity files are immutable, why isn't the immutable bit set?
+:A: The existing "immutable" bit (FS_IMMUTABLE_FL) already has a
+ specific set of semantics which not only make the file contents
+ read-only, but also prevent the file from being deleted, renamed,
+ linked to, or having its owner or mode changed. These extra
+ properties are unwanted for fs-verity, so reusing the immutable
+ bit isn't appropriate.
+
+:Q: Why does the API use ioctls instead of setxattr() and getxattr()?
+:A: Abusing the xattr interface for basically arbitrary syscalls is
+ heavily frowned upon by most of the Linux filesystem developers.
+ An xattr should really just be an xattr on-disk, not an API to
+ e.g. magically trigger construction of a Merkle tree.
+
+:Q: Does fs-verity support remote filesystems?
+:A: Only ext4 and f2fs support is implemented currently, but in
+ principle any filesystem that can store per-file verity metadata
+ can support fs-verity, regardless of whether it's local or remote.
+ Some filesystems may have fewer options of where to store the
+ verity metadata; one possibility is to store it past the end of
+ the file and "hide" it from userspace by manipulating i_size. The
+ data verification functions provided by ``fs/verity/`` also assume
+ that the filesystem uses the Linux pagecache, but both local and
+ remote filesystems normally do so.
+
+:Q: Why is anything filesystem-specific at all? Shouldn't fs-verity
+ be implemented entirely at the VFS level?
+:A: There are many reasons why this is not possible or would be very
+ difficult, including the following:
+
+ - To prevent bypassing verification, pages must not be marked
+ Uptodate until they've been verified. Currently, each
+ filesystem is responsible for marking pages Uptodate via
+ ``->readpages()``. Therefore, currently it's not possible for
+ the VFS to do the verification on its own. Changing this would
+ require significant changes to the VFS and all filesystems.
+
+ - It would require defining a filesystem-independent way to store
+ the verity metadata. Extended attributes don't work for this
+ because (a) the Merkle tree may be gigabytes, but many
+ filesystems assume that all xattrs fit into a single 4K
+ filesystem block, and (b) ext4 and f2fs encryption doesn't
+ encrypt xattrs, yet the Merkle tree *must* be encrypted when the
+ file contents are, because it stores hashes of the plaintext
+ file contents.
+
+ So the verity metadata would have to be stored in an actual
+ file. Using a separate file would be very ugly, since the
+ metadata is fundamentally part of the file to be protected, and
+ it could cause problems where users could delete the real file
+ but not the metadata file or vice versa. On the other hand,
+ having it be in the same file would break applications unless
+ filesystems' notion of i_size were divorced from the VFS's,
+ which would be complex and require changes to all filesystems.
+
+ - It's desirable that FS_IOC_ENABLE_VERITY uses the filesystem's
+ transaction mechanism so that either the file ends up with
+ verity enabled, or no changes were made. Allowing intermediate
+ states to occur after a crash may cause problems.
diff --git a/Documentation/filesystems/fuse.txt b/Documentation/filesystems/fuse.rst
index 13af4a49e7db..8e455065ce9e 100644
--- a/Documentation/filesystems/fuse.txt
+++ b/Documentation/filesystems/fuse.rst
@@ -1,41 +1,40 @@
+.. SPDX-License-Identifier: GPL-2.0
+==============
+FUSE
+==============
+
Definitions
-~~~~~~~~~~~
+===========
Userspace filesystem:
-
A filesystem in which data and metadata are provided by an ordinary
userspace process. The filesystem can be accessed normally through
the kernel interface.
Filesystem daemon:
-
The process(es) providing the data and metadata of the filesystem.
Non-privileged mount (or user mount):
-
A userspace filesystem mounted by a non-privileged (non-root) user.
The filesystem daemon is running with the privileges of the mounting
user. NOTE: this is not the same as mounts allowed with the "user"
option in /etc/fstab, which is not discussed here.
Filesystem connection:
-
A connection between the filesystem daemon and the kernel. The
connection exists until either the daemon dies, or the filesystem is
umounted. Note that detaching (or lazy umounting) the filesystem
- does _not_ break the connection, in this case it will exist until
+ does *not* break the connection, in this case it will exist until
the last reference to the filesystem is released.
Mount owner:
-
The user who does the mounting.
User:
-
The user who is performing filesystem operations.
What is FUSE?
-~~~~~~~~~~~~~
+=============
FUSE is a userspace filesystem framework. It consists of a kernel
module (fuse.ko), a userspace library (libfuse.*) and a mount utility
@@ -46,50 +45,41 @@ non-privileged mounts. This opens up new possibilities for the use of
filesystems. A good example is sshfs: a secure network filesystem
using the sftp protocol.
-The userspace library and utilities are available from the FUSE
-homepage:
-
- http://fuse.sourceforge.net/
+The userspace library and utilities are available from the
+`FUSE homepage: <http://fuse.sourceforge.net/>`_
Filesystem type
-~~~~~~~~~~~~~~~
+===============
The filesystem type given to mount(2) can be one of the following:
-'fuse'
-
- This is the usual way to mount a FUSE filesystem. The first
- argument of the mount system call may contain an arbitrary string,
- which is not interpreted by the kernel.
+ fuse
+ This is the usual way to mount a FUSE filesystem. The first
+ argument of the mount system call may contain an arbitrary string,
+ which is not interpreted by the kernel.
-'fuseblk'
-
- The filesystem is block device based. The first argument of the
- mount system call is interpreted as the name of the device.
+ fuseblk
+ The filesystem is block device based. The first argument of the
+ mount system call is interpreted as the name of the device.
Mount options
-~~~~~~~~~~~~~
-
-'fd=N'
+=============
+fd=N
The file descriptor to use for communication between the userspace
filesystem and the kernel. The file descriptor must have been
obtained by opening the FUSE device ('/dev/fuse').
-'rootmode=M'
-
+rootmode=M
The file mode of the filesystem's root in octal representation.
-'user_id=N'
-
+user_id=N
The numeric user id of the mount owner.
-'group_id=N'
-
+group_id=N
The numeric group id of the mount owner.
-'default_permissions'
-
+default_permissions
By default FUSE doesn't check file access permissions, the
filesystem is free to implement its access policy or leave it to
the underlying file access mechanism (e.g. in case of network
@@ -97,28 +87,25 @@ Mount options
access based on file mode. It is usually useful together with the
'allow_other' mount option.
-'allow_other'
-
+allow_other
This option overrides the security measure restricting file access
to the user mounting the filesystem. This option is by default only
allowed to root, but this restriction can be removed with a
(userspace) configuration option.
-'max_read=N'
-
+max_read=N
With this option the maximum size of read operations can be set.
The default is infinite. Note that the size of read requests is
limited anyway to 32 pages (which is 128kbyte on i386).
-'blksize=N'
-
+blksize=N
Set the block size for the filesystem. The default is 512. This
option is only valid for 'fuseblk' type mounts.
Control filesystem
-~~~~~~~~~~~~~~~~~~
+==================
-There's a control filesystem for FUSE, which can be mounted by:
+There's a control filesystem for FUSE, which can be mounted by::
mount -t fusectl none /sys/fs/fuse/connections
@@ -130,53 +117,51 @@ named by a unique number.
For each connection the following files exist within this directory:
- 'waiting'
-
- The number of requests which are waiting to be transferred to
- userspace or being processed by the filesystem daemon. If there is
- no filesystem activity and 'waiting' is non-zero, then the
- filesystem is hung or deadlocked.
-
- 'abort'
+ waiting
+ The number of requests which are waiting to be transferred to
+ userspace or being processed by the filesystem daemon. If there is
+ no filesystem activity and 'waiting' is non-zero, then the
+ filesystem is hung or deadlocked.
- Writing anything into this file will abort the filesystem
- connection. This means that all waiting requests will be aborted an
- error returned for all aborted and new requests.
+ abort
+ Writing anything into this file will abort the filesystem
+ connection. This means that all waiting requests will be aborted an
+ error returned for all aborted and new requests.
Only the owner of the mount may read or write these files.
Interrupting filesystem operations
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+##################################
If a process issuing a FUSE filesystem request is interrupted, the
following will happen:
- 1) If the request is not yet sent to userspace AND the signal is
+ - If the request is not yet sent to userspace AND the signal is
fatal (SIGKILL or unhandled fatal signal), then the request is
dequeued and returns immediately.
- 2) If the request is not yet sent to userspace AND the signal is not
- fatal, then an 'interrupted' flag is set for the request. When
+ - If the request is not yet sent to userspace AND the signal is not
+ fatal, then an interrupted flag is set for the request. When
the request has been successfully transferred to userspace and
this flag is set, an INTERRUPT request is queued.
- 3) If the request is already sent to userspace, then an INTERRUPT
+ - If the request is already sent to userspace, then an INTERRUPT
request is queued.
INTERRUPT requests take precedence over other requests, so the
userspace filesystem will receive queued INTERRUPTs before any others.
The userspace filesystem may ignore the INTERRUPT requests entirely,
-or may honor them by sending a reply to the _original_ request, with
+or may honor them by sending a reply to the *original* request, with
the error set to EINTR.
It is also possible that there's a race between processing the
original request and its INTERRUPT request. There are two possibilities:
- 1) The INTERRUPT request is processed before the original request is
+ 1. The INTERRUPT request is processed before the original request is
processed
- 2) The INTERRUPT request is processed after the original request has
+ 2. The INTERRUPT request is processed after the original request has
been answered
If the filesystem cannot find the original request, it should wait for
@@ -186,7 +171,7 @@ should reply to the INTERRUPT request with an EAGAIN error. In case
reply will be ignored.
Aborting a filesystem connection
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+================================
It is possible to get into certain situations where the filesystem is
not responding. Reasons for this may be:
@@ -216,7 +201,7 @@ the filesystem. There are several ways to do this:
powerful method, always works.
How do non-privileged mounts work?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+==================================
Since the mount() system call is a privileged operation, a helper
program (fusermount) is needed, which is installed setuid root.
@@ -235,15 +220,13 @@ system. Obvious requirements arising from this are:
other users' or the super user's processes
How are requirements fulfilled?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+===============================
A) The mount owner could gain elevated privileges by either:
- 1) creating a filesystem containing a device file, then opening
- this device
+ 1. creating a filesystem containing a device file, then opening this device
- 2) creating a filesystem containing a suid or sgid application,
- then executing this application
+ 2. creating a filesystem containing a suid or sgid application, then executing this application
The solution is not to allow opening device files and ignore
setuid and setgid bits when executing programs. To ensure this
@@ -275,16 +258,16 @@ How are requirements fulfilled?
of other users' processes.
i) It can slow down or indefinitely delay the execution of a
- filesystem operation creating a DoS against the user or the
- whole system. For example a suid application locking a
- system file, and then accessing a file on the mount owner's
- filesystem could be stopped, and thus causing the system
- file to be locked forever.
+ filesystem operation creating a DoS against the user or the
+ whole system. For example a suid application locking a
+ system file, and then accessing a file on the mount owner's
+ filesystem could be stopped, and thus causing the system
+ file to be locked forever.
ii) It can present files or directories of unlimited length, or
- directory structures of unlimited depth, possibly causing a
- system process to eat up diskspace, memory or other
- resources, again causing DoS.
+ directory structures of unlimited depth, possibly causing a
+ system process to eat up diskspace, memory or other
+ resources, again causing *DoS*.
The solution to this as well as B) is not to allow processes
to access the filesystem, which could otherwise not be
@@ -294,28 +277,27 @@ How are requirements fulfilled?
ptrace can be used to check if a process is allowed to access
the filesystem or not.
- Note that the ptrace check is not strictly necessary to
+ Note that the *ptrace* check is not strictly necessary to
prevent B/2/i, it is enough to check if mount owner has enough
privilege to send signal to the process accessing the
- filesystem, since SIGSTOP can be used to get a similar effect.
+ filesystem, since *SIGSTOP* can be used to get a similar effect.
I think these limitations are unacceptable?
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+===========================================
If a sysadmin trusts the users enough, or can ensure through other
measures, that system processes will never enter non-privileged
-mounts, it can relax the last limitation with a "user_allow_other"
+mounts, it can relax the last limitation with a 'user_allow_other'
config option. If this config option is set, the mounting user can
-add the "allow_other" mount option which disables the check for other
+add the 'allow_other' mount option which disables the check for other
users' processes.
Kernel - userspace interface
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+============================
The following diagram shows how a filesystem operation (in this
-example unlink) is performed in FUSE.
+example unlink) is performed in FUSE. ::
-NOTE: everything in this description is greatly simplified
| "rm /mnt/fuse/file" | FUSE filesystem daemon
| |
@@ -357,12 +339,13 @@ NOTE: everything in this description is greatly simplified
| <fuse_unlink() |
| <sys_unlink() |
+.. note:: Everything in the description above is greatly simplified
+
There are a couple of ways in which to deadlock a FUSE filesystem.
Since we are talking about unprivileged userspace programs,
something must be done about these.
-Scenario 1 - Simple deadlock
------------------------------
+**Scenario 1 - Simple deadlock**::
| "rm /mnt/fuse/file" | FUSE filesystem daemon
| |
@@ -379,12 +362,12 @@ Scenario 1 - Simple deadlock
The solution for this is to allow the filesystem to be aborted.
-Scenario 2 - Tricky deadlock
-----------------------------
+**Scenario 2 - Tricky deadlock**
+
This one needs a carefully crafted filesystem. It's a variation on
the above, only the call back to the filesystem is not explicit,
-but is caused by a pagefault.
+but is caused by a pagefault. ::
| Kamikaze filesystem thread 1 | Kamikaze filesystem thread 2
| |
@@ -410,7 +393,7 @@ but is caused by a pagefault.
| | [lock page]
| | * DEADLOCK *
-Solution is basically the same as above.
+The solution is basically the same as above.
An additional problem is that while the write buffer is being copied
to the request, the request must not be interrupted/aborted. This is
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index 2de2fe2ab078..386eaad008b2 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -20,6 +20,10 @@ algorithms work.
path-lookup
api-summary
splice
+ locking
+ directory-locking
+
+ porting
Filesystem support layers
=========================
@@ -32,3 +36,18 @@ filesystem implementations.
journalling
fscrypt
+ fsverity
+
+Filesystems
+===========
+
+Documentation for filesystem implementations.
+
+.. toctree::
+ :maxdepth: 2
+
+ autofs
+ fuse
+ overlayfs
+ virtiofs
+ vfat
diff --git a/Documentation/filesystems/jfs.txt b/Documentation/filesystems/jfs.txt
deleted file mode 100644
index 41fd757997b3..000000000000
--- a/Documentation/filesystems/jfs.txt
+++ /dev/null
@@ -1,52 +0,0 @@
-IBM's Journaled File System (JFS) for Linux
-
-JFS Homepage: http://jfs.sourceforge.net/
-
-The following mount options are supported:
-(*) == default
-
-iocharset=name Character set to use for converting from Unicode to
- ASCII. The default is to do no conversion. Use
- iocharset=utf8 for UTF-8 translations. This requires
- CONFIG_NLS_UTF8 to be set in the kernel .config file.
- iocharset=none specifies the default behavior explicitly.
-
-resize=value Resize the volume to <value> blocks. JFS only supports
- growing a volume, not shrinking it. This option is only
- valid during a remount, when the volume is mounted
- read-write. The resize keyword with no value will grow
- the volume to the full size of the partition.
-
-nointegrity Do not write to the journal. The primary use of this option
- is to allow for higher performance when restoring a volume
- from backup media. The integrity of the volume is not
- guaranteed if the system abnormally abends.
-
-integrity(*) Commit metadata changes to the journal. Use this option to
- remount a volume where the nointegrity option was
- previously specified in order to restore normal behavior.
-
-errors=continue Keep going on a filesystem error.
-errors=remount-ro(*) Remount the filesystem read-only on an error.
-errors=panic Panic and halt the machine if an error occurs.
-
-uid=value Override on-disk uid with specified value
-gid=value Override on-disk gid with specified value
-umask=value Override on-disk umask with specified octal value. For
- directories, the execute bit will be set if the corresponding
- read bit is set.
-
-discard=minlen This enables/disables the use of discard/TRIM commands.
-discard The discard/TRIM commands are sent to the underlying
-nodiscard(*) block device when blocks are freed. This is useful for SSD
- devices and sparse/thinly-provisioned LUNs. The FITRIM ioctl
- command is also available together with the nodiscard option.
- The value of minlen specifies the minimum blockcount, when
- a TRIM command to the block device is considered useful.
- When no value is given to the discard option, it defaults to
- 64 blocks, which means 256KiB in JFS.
- The minlen value of discard overrides the minlen value given
- on an FITRIM ioctl().
-
-The JFS mailing list can be subscribed to by using the link labeled
-"Mail list Subscribe" at our web page http://jfs.sourceforge.net/
diff --git a/Documentation/filesystems/Locking b/Documentation/filesystems/locking.rst
index 204dd3ea36bb..5057e4d9dcd1 100644
--- a/Documentation/filesystems/Locking
+++ b/Documentation/filesystems/locking.rst
@@ -1,14 +1,22 @@
- The text below describes the locking rules for VFS-related methods.
+=======
+Locking
+=======
+
+The text below describes the locking rules for VFS-related methods.
It is (believed to be) up-to-date. *Please*, if you change anything in
prototypes or locking protocols - update this file. And update the relevant
instances in the tree, don't leave that to maintainers of filesystems/devices/
etc. At the very least, put the list of dubious cases in the end of this file.
Don't turn it into log - maintainers of out-of-the-tree code are supposed to
be able to use diff(1).
- Thing currently missing here: socket operations. Alexey?
---------------------------- dentry_operations --------------------------
-prototypes:
+Thing currently missing here: socket operations. Alexey?
+
+dentry_operations
+=================
+
+prototypes::
+
int (*d_revalidate)(struct dentry *, unsigned int);
int (*d_weak_revalidate)(struct dentry *, unsigned int);
int (*d_hash)(const struct dentry *, struct qstr *);
@@ -24,23 +32,30 @@ prototypes:
struct dentry *(*d_real)(struct dentry *, const struct inode *);
locking rules:
- rename_lock ->d_lock may block rcu-walk
-d_revalidate: no no yes (ref-walk) maybe
-d_weak_revalidate:no no yes no
-d_hash no no no maybe
-d_compare: yes no no maybe
-d_delete: no yes no no
-d_init: no no yes no
-d_release: no no yes no
-d_prune: no yes no no
-d_iput: no no yes no
-d_dname: no no no no
-d_automount: no no yes no
-d_manage: no no yes (ref-walk) maybe
-d_real no no yes no
-
---------------------------- inode_operations ---------------------------
-prototypes:
+
+================== =========== ======== ============== ========
+ops rename_lock ->d_lock may block rcu-walk
+================== =========== ======== ============== ========
+d_revalidate: no no yes (ref-walk) maybe
+d_weak_revalidate: no no yes no
+d_hash no no no maybe
+d_compare: yes no no maybe
+d_delete: no yes no no
+d_init: no no yes no
+d_release: no no yes no
+d_prune: no yes no no
+d_iput: no no yes no
+d_dname: no no no no
+d_automount: no no yes no
+d_manage: no no yes (ref-walk) maybe
+d_real no no yes no
+================== =========== ======== ============== ========
+
+inode_operations
+================
+
+prototypes::
+
int (*create) (struct inode *,struct dentry *,umode_t, bool);
struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);
int (*link) (struct dentry *,struct inode *,struct dentry *);
@@ -68,7 +83,10 @@ prototypes:
locking rules:
all may block
- i_rwsem(inode)
+
+============ =============================================
+ops i_rwsem(inode)
+============ =============================================
lookup: shared
create: exclusive
link: exclusive (both)
@@ -87,19 +105,23 @@ getattr: no
listxattr: no
fiemap: no
update_time: no
-atomic_open: exclusive
+atomic_open: shared (exclusive if O_CREAT is set in open flags)
tmpfile: no
+============ =============================================
Additionally, ->rmdir(), ->unlink() and ->rename() have ->i_rwsem
exclusive on victim.
cross-directory ->rename() has (per-superblock) ->s_vfs_rename_sem.
-See Documentation/filesystems/directory-locking for more detailed discussion
+See Documentation/filesystems/directory-locking.rst for more detailed discussion
of the locking scheme for directory operations.
------------------------ xattr_handler operations -----------------------
-prototypes:
+xattr_handler operations
+========================
+
+prototypes::
+
bool (*list)(struct dentry *dentry);
int (*get)(const struct xattr_handler *handler, struct dentry *dentry,
struct inode *inode, const char *name, void *buffer,
@@ -110,13 +132,20 @@ prototypes:
locking rules:
all may block
- i_rwsem(inode)
+
+===== ==============
+ops i_rwsem(inode)
+===== ==============
list: no
get: no
set: exclusive
+===== ==============
+
+super_operations
+================
+
+prototypes::
---------------------------- super_operations ---------------------------
-prototypes:
struct inode *(*alloc_inode)(struct super_block *sb);
void (*free_inode)(struct inode *);
void (*destroy_inode)(struct inode *);
@@ -138,7 +167,10 @@ prototypes:
locking rules:
All may block [not true, see below]
- s_umount
+
+====================== ============ ========================
+ops s_umount note
+====================== ============ ========================
alloc_inode:
free_inode: called from RCU callback
destroy_inode:
@@ -157,6 +189,7 @@ show_options: no (namespace_sem)
quota_read: no (see below)
quota_write: no (see below)
bdev_try_to_free_page: no (see below)
+====================== ============ ========================
->statfs() has s_umount (shared) when called by ustat(2) (native or
compat), but that's an accident of bad API; s_umount is used to pin
@@ -164,31 +197,44 @@ the superblock down when we only have dev_t given us by userland to
identify the superblock. Everything else (statfs(), fstatfs(), etc.)
doesn't hold it when calling ->statfs() - superblock is pinned down
by resolving the pathname passed to syscall.
+
->quota_read() and ->quota_write() functions are both guaranteed to
be the only ones operating on the quota file by the quota code (via
dqio_sem) (unless an admin really wants to screw up something and
writes to quota files with quotas on). For other details about locking
see also dquot_operations section.
+
->bdev_try_to_free_page is called from the ->releasepage handler of
the block device inode. See there for more details.
---------------------------- file_system_type ---------------------------
-prototypes:
+file_system_type
+================
+
+prototypes::
+
struct dentry *(*mount) (struct file_system_type *, int,
const char *, void *);
void (*kill_sb) (struct super_block *);
+
locking rules:
- may block
+
+======= =========
+ops may block
+======= =========
mount yes
kill_sb yes
+======= =========
->mount() returns ERR_PTR or the root dentry; its superblock should be locked
on return.
+
->kill_sb() takes a write-locked superblock, does all shutdown work on it,
unlocks and drops the reference.
---------------------------- address_space_operations --------------------------
-prototypes:
+address_space_operations
+========================
+prototypes::
+
int (*writepage)(struct page *page, struct writeback_control *wbc);
int (*readpage)(struct file *, struct page *);
int (*writepages)(struct address_space *, struct writeback_control *);
@@ -218,14 +264,16 @@ prototypes:
locking rules:
All except set_page_dirty and freepage may block
- PageLocked(page) i_rwsem
+====================== ======================== =========
+ops PageLocked(page) i_rwsem
+====================== ======================== =========
writepage: yes, unlocks (see below)
readpage: yes, unlocks
writepages:
set_page_dirty no
readpages:
-write_begin: locks the page exclusive
-write_end: yes, unlocks exclusive
+write_begin: locks the page exclusive
+write_end: yes, unlocks exclusive
bmap:
invalidatepage: yes
releasepage: yes
@@ -239,17 +287,18 @@ is_partially_uptodate: yes
error_remove_page: yes
swap_activate: no
swap_deactivate: no
+====================== ======================== =========
- ->write_begin(), ->write_end() and ->readpage() may be called from
+->write_begin(), ->write_end() and ->readpage() may be called from
the request handler (/dev/loop).
- ->readpage() unlocks the page, either synchronously or via I/O
+->readpage() unlocks the page, either synchronously or via I/O
completion.
- ->readpages() populates the pagecache with the passed pages and starts
+->readpages() populates the pagecache with the passed pages and starts
I/O against them. They come unlocked upon I/O completion.
- ->writepage() is used for two purposes: for "memory cleansing" and for
+->writepage() is used for two purposes: for "memory cleansing" and for
"sync". These are quite different operations and the behaviour may differ
depending upon the mode.
@@ -297,70 +346,81 @@ will leave the page itself marked clean but it will be tagged as dirty in the
radix tree. This incoherency can lead to all sorts of hard-to-debug problems
in the filesystem like having dirty inodes at umount and losing written data.
- ->writepages() is used for periodic writeback and for syscall-initiated
+->writepages() is used for periodic writeback and for syscall-initiated
sync operations. The address_space should start I/O against at least
-*nr_to_write pages. *nr_to_write must be decremented for each page which is
-written. The address_space implementation may write more (or less) pages
-than *nr_to_write asks for, but it should try to be reasonably close. If
-nr_to_write is NULL, all dirty pages must be written.
+``*nr_to_write`` pages. ``*nr_to_write`` must be decremented for each page
+which is written. The address_space implementation may write more (or less)
+pages than ``*nr_to_write`` asks for, but it should try to be reasonably close.
+If nr_to_write is NULL, all dirty pages must be written.
writepages should _only_ write pages which are present on
mapping->io_pages.
- ->set_page_dirty() is called from various places in the kernel
+->set_page_dirty() is called from various places in the kernel
when the target page is marked as needing writeback. It may be called
under spinlock (it cannot block) and is sometimes called with the page
not locked.
- ->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
+->bmap() is currently used by legacy ioctl() (FIBMAP) provided by some
filesystems and by the swapper. The latter will eventually go away. Please,
keep it that way and don't breed new callers.
- ->invalidatepage() is called when the filesystem must attempt to drop
+->invalidatepage() is called when the filesystem must attempt to drop
some or all of the buffers from the page when it is being truncated. It
returns zero on success. If ->invalidatepage is zero, the kernel uses
block_invalidatepage() instead.
- ->releasepage() is called when the kernel is about to try to drop the
+->releasepage() is called when the kernel is about to try to drop the
buffers from the page in preparation for freeing it. It returns zero to
indicate that the buffers are (or may be) freeable. If ->releasepage is zero,
the kernel assumes that the fs has no private interest in the buffers.
- ->freepage() is called when the kernel is done dropping the page
+->freepage() is called when the kernel is done dropping the page
from the page cache.
- ->launder_page() may be called prior to releasing a page if
+->launder_page() may be called prior to releasing a page if
it is still found to be dirty. It returns zero if the page was successfully
cleaned, or an error value if not. Note that in order to prevent the page
getting mapped back in and redirtied, it needs to be kept locked
across the entire operation.
- ->swap_activate will be called with a non-zero argument on
+->swap_activate will be called with a non-zero argument on
files backing (non block device backed) swapfiles. A return value
of zero indicates success, in which case this file can be used for
backing swapspace. The swapspace operations will be proxied to the
address space operations.
- ->swap_deactivate() will be called in the sys_swapoff()
+->swap_deactivate() will be called in the sys_swapoff()
path after ->swap_activate() returned success.
------------------------ file_lock_operations ------------------------------
-prototypes:
+file_lock_operations
+====================
+
+prototypes::
+
void (*fl_copy_lock)(struct file_lock *, struct file_lock *);
void (*fl_release_private)(struct file_lock *);
locking rules:
- inode->i_lock may block
+
+=================== ============= =========
+ops inode->i_lock may block
+=================== ============= =========
fl_copy_lock: yes no
-fl_release_private: maybe maybe[1]
+fl_release_private: maybe maybe[1]_
+=================== ============= =========
+
+.. [1]:
+ ->fl_release_private for flock or POSIX locks is currently allowed
+ to block. Leases however can still be freed while the i_lock is held and
+ so fl_release_private called on a lease should not block.
-[1]: ->fl_release_private for flock or POSIX locks is currently allowed
-to block. Leases however can still be freed while the i_lock is held and
-so fl_release_private called on a lease should not block.
+lock_manager_operations
+=======================
+
+prototypes::
------------------------ lock_manager_operations ---------------------------
-prototypes:
void (*lm_notify)(struct file_lock *); /* unblock callback */
int (*lm_grant)(struct file_lock *, struct file_lock *, int);
void (*lm_break)(struct file_lock *); /* break_lease callback */
@@ -368,24 +428,33 @@ prototypes:
locking rules:
- inode->i_lock blocked_lock_lock may block
+========== ============= ================= =========
+ops inode->i_lock blocked_lock_lock may block
+========== ============= ================= =========
lm_notify: yes yes no
lm_grant: no no no
lm_break: yes no no
lm_change yes no no
+========== ============= ================= =========
+
+buffer_head
+===========
+
+prototypes::
---------------------------- buffer_head -----------------------------------
-prototypes:
void (*b_end_io)(struct buffer_head *bh, int uptodate);
locking rules:
- called from interrupts. In other words, extreme care is needed here.
+
+called from interrupts. In other words, extreme care is needed here.
bh is locked, but that's all warranties we have here. Currently only RAID1,
highmem, fs/buffer.c, and fs/ntfs/aops.c are providing these. Block devices
call this method upon the IO completion.
---------------------------- block_device_operations -----------------------
-prototypes:
+block_device_operations
+=======================
+prototypes::
+
int (*open) (struct block_device *, fmode_t);
int (*release) (struct gendisk *, fmode_t);
int (*ioctl) (struct block_device *, fmode_t, unsigned, unsigned long);
@@ -399,7 +468,10 @@ prototypes:
void (*swap_slot_free_notify) (struct block_device *, unsigned long);
locking rules:
- bd_mutex
+
+======================= ===================
+ops bd_mutex
+======================= ===================
open: yes
release: yes
ioctl: no
@@ -410,6 +482,7 @@ unlock_native_capacity: no
revalidate_disk: no
getgeo: no
swap_slot_free_notify: no (see below)
+======================= ===================
media_changed, unlock_native_capacity and revalidate_disk are called only from
check_disk_change().
@@ -418,8 +491,11 @@ swap_slot_free_notify is called with swap_lock and sometimes the page lock
held.
---------------------------- file_operations -------------------------------
-prototypes:
+file_operations
+===============
+
+prototypes::
+
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
@@ -455,7 +531,6 @@ prototypes:
size_t, unsigned int);
int (*setlease)(struct file *, long, struct file_lock **, void **);
long (*fallocate)(struct file *, int, loff_t, loff_t);
-};
locking rules:
All may block.
@@ -490,8 +565,11 @@ in sys_read() and friends.
the lease within the individual filesystem to record the result of the
operation
---------------------------- dquot_operations -------------------------------
-prototypes:
+dquot_operations
+================
+
+prototypes::
+
int (*write_dquot) (struct dquot *);
int (*acquire_dquot) (struct dquot *);
int (*release_dquot) (struct dquot *);
@@ -503,20 +581,26 @@ a proper locking wrt the filesystem and call the generic quota operations.
What filesystem should expect from the generic quota functions:
- FS recursion Held locks when called
+============== ============ =========================
+ops FS recursion Held locks when called
+============== ============ =========================
write_dquot: yes dqonoff_sem or dqptr_sem
acquire_dquot: yes dqonoff_sem or dqptr_sem
release_dquot: yes dqonoff_sem or dqptr_sem
mark_dirty: no -
write_info: yes dqonoff_sem
+============== ============ =========================
FS recursion means calling ->quota_read() and ->quota_write() from superblock
operations.
More details about quota locking can be found in fs/dquot.c.
---------------------------- vm_operations_struct -----------------------------
-prototypes:
+vm_operations_struct
+====================
+
+prototypes::
+
void (*open)(struct vm_area_struct*);
void (*close)(struct vm_area_struct*);
vm_fault_t (*fault)(struct vm_area_struct*, struct vm_fault *);
@@ -525,7 +609,10 @@ prototypes:
int (*access)(struct vm_area_struct *, unsigned long, void*, int, int);
locking rules:
- mmap_sem PageLocked(page)
+
+============= ======== ===========================
+ops mmap_sem PageLocked(page)
+============= ======== ===========================
open: yes
close: yes
fault: yes can return with page locked
@@ -533,8 +620,9 @@ map_pages: yes
page_mkwrite: yes can return with page locked
pfn_mkwrite: yes
access: yes
+============= ======== ===========================
- ->fault() is called when a previously not present pte is about
+->fault() is called when a previously not present pte is about
to be faulted in. The filesystem must find and return the page associated
with the passed in "pgoff" in the vm_fault structure. If it is possible that
the page may be truncated and/or invalidated, then the filesystem must lock
@@ -542,7 +630,7 @@ the page, then ensure it is not already truncated (the page lock will block
subsequent truncate), and then return with VM_FAULT_LOCKED, and the page
locked. The VM will unlock the page.
- ->map_pages() is called when VM asks to map easy accessible pages.
+->map_pages() is called when VM asks to map easy accessible pages.
Filesystem should find and map pages associated with offsets from "start_pgoff"
till "end_pgoff". ->map_pages() is called with page table locked and must
not block. If it's not possible to reach a page without blocking,
@@ -551,25 +639,26 @@ page table entry. Pointer to entry associated with the page is passed in
"pte" field in vm_fault structure. Pointers to entries for other offsets
should be calculated relative to "pte".
- ->page_mkwrite() is called when a previously read-only pte is
+->page_mkwrite() is called when a previously read-only pte is
about to become writeable. The filesystem again must ensure that there are
no truncate/invalidate races, and then return with the page locked. If
the page has been truncated, the filesystem should not look up a new page
like the ->fault() handler, but simply return with VM_FAULT_NOPAGE, which
will cause the VM to retry the fault.
- ->pfn_mkwrite() is the same as page_mkwrite but when the pte is
+->pfn_mkwrite() is the same as page_mkwrite but when the pte is
VM_PFNMAP or VM_MIXEDMAP with a page-less entry. Expected return is
VM_FAULT_NOPAGE. Or one of the VM_FAULT_ERROR types. The default behavior
after this call is to make the pte read-write, unless pfn_mkwrite returns
an error.
- ->access() is called when get_user_pages() fails in
+->access() is called when get_user_pages() fails in
access_process_vm(), typically used to debug a process through
/proc/pid/mem or ptrace. This function is needed only for
VM_IO | VM_PFNMAP VMAs.
-================================================================================
+--------------------------------------------------------------------------------
+
Dubious stuff
(if you break something or notice that it is broken and do not fix it yourself
diff --git a/Documentation/filesystems/mandatory-locking.txt b/Documentation/filesystems/mandatory-locking.txt
index 0979d1d2ca8b..a251ca33164a 100644
--- a/Documentation/filesystems/mandatory-locking.txt
+++ b/Documentation/filesystems/mandatory-locking.txt
@@ -169,3 +169,13 @@ havoc if they lock crucial files. The way around it is to change the file
permissions (remove the setgid bit) before trying to read or write to it.
Of course, that might be a bit tricky if the system is hung :-(
+7. The "mand" mount option
+--------------------------
+Mandatory locking is disabled on all filesystems by default, and must be
+administratively enabled by mounting with "-o mand". That mount option
+is only allowed if the mounting task has the CAP_SYS_ADMIN capability.
+
+Since kernel v4.5, it is possible to disable mandatory locking
+altogether by setting CONFIG_MANDATORY_FILE_LOCKING to "n". A kernel
+with this disabled will reject attempts to mount filesystems with the
+"mand" mount option with the error status EPERM.
diff --git a/Documentation/filesystems/mount_api.txt b/Documentation/filesystems/mount_api.txt
index 00ff0cfccfa7..87c14bbb2b35 100644
--- a/Documentation/filesystems/mount_api.txt
+++ b/Documentation/filesystems/mount_api.txt
@@ -427,7 +427,6 @@ returned.
fs_value_is_string, Value is a string
fs_value_is_blob, Value is a binary blob
fs_value_is_filename, Value is a filename* + dirfd
- fs_value_is_filename_empty, Value is a filename* + dirfd + AT_EMPTY_PATH
fs_value_is_file, Value is an open file (file*)
If there is a value, that value is stored in a union in the struct in one
@@ -519,7 +518,6 @@ Parameters are described using structures defined in linux/fs_parser.h.
There's a core description struct that links everything together:
struct fs_parameter_description {
- const char name[16];
const struct fs_parameter_spec *specs;
const struct fs_parameter_enum *enums;
};
@@ -535,19 +533,13 @@ For example:
};
static const struct fs_parameter_description afs_fs_parameters = {
- .name = "kAFS",
.specs = afs_param_specs,
.enums = afs_param_enums,
};
The members are as follows:
- (1) const char name[16];
-
- The name to be used in error messages generated by the parse helper
- functions.
-
- (2) const struct fs_parameter_specification *specs;
+ (1) const struct fs_parameter_specification *specs;
Table of parameter specifications, terminated with a null entry, where the
entries are of type:
@@ -626,7 +618,7 @@ The members are as follows:
of arguments to specify the type and the flags for anything that doesn't
match one of the above macros.
- (6) const struct fs_parameter_enum *enums;
+ (2) const struct fs_parameter_enum *enums;
Table of enum value names to integer mappings, terminated with a null
entry. This is of type:
diff --git a/Documentation/filesystems/nfs/Exporting b/Documentation/filesystems/nfs/exporting.rst
index 63889149f532..33d588a01ace 100644
--- a/Documentation/filesystems/nfs/Exporting
+++ b/Documentation/filesystems/nfs/exporting.rst
@@ -1,3 +1,4 @@
+:orphan:
Making Filesystems Exportable
=============================
@@ -42,9 +43,9 @@ filehandle fragment, there is no automatic creation of a path prefix
for the object. This leads to two related but distinct features of
the dcache that are not needed for normal filesystem access.
-1/ The dcache must sometimes contain objects that are not part of the
+1. The dcache must sometimes contain objects that are not part of the
proper prefix. i.e that are not connected to the root.
-2/ The dcache must be prepared for a newly found (via ->lookup) directory
+2. The dcache must be prepared for a newly found (via ->lookup) directory
to already have a (non-connected) dentry, and must be able to move
that dentry into place (based on the parent and name in the
->lookup). This is particularly needed for directories as
@@ -52,7 +53,7 @@ the dcache that are not needed for normal filesystem access.
To implement these features, the dcache has:
-a/ A dentry flag DCACHE_DISCONNECTED which is set on
+a. A dentry flag DCACHE_DISCONNECTED which is set on
any dentry that might not be part of the proper prefix.
This is set when anonymous dentries are created, and cleared when a
dentry is noticed to be a child of a dentry which is in the proper
@@ -71,48 +72,52 @@ a/ A dentry flag DCACHE_DISCONNECTED which is set on
dentries. That guarantees that we won't need to hunt them down upon
umount.
-b/ A primitive for creation of secondary roots - d_obtain_root(inode).
+b. A primitive for creation of secondary roots - d_obtain_root(inode).
Those do _not_ bear DCACHE_DISCONNECTED. They are placed on the
per-superblock list (->s_roots), so they can be located at umount
time for eviction purposes.
-c/ Helper routines to allocate anonymous dentries, and to help attach
+c. Helper routines to allocate anonymous dentries, and to help attach
loose directory dentries at lookup time. They are:
+
d_obtain_alias(inode) will return a dentry for the given inode.
If the inode already has a dentry, one of those is returned.
+
If it doesn't, a new anonymous (IS_ROOT and
- DCACHE_DISCONNECTED) dentry is allocated and attached.
+ DCACHE_DISCONNECTED) dentry is allocated and attached.
+
In the case of a directory, care is taken that only one dentry
can ever be attached.
+
d_splice_alias(inode, dentry) will introduce a new dentry into the tree;
either the passed-in dentry or a preexisting alias for the given inode
(such as an anonymous one created by d_obtain_alias), if appropriate.
It returns NULL when the passed-in dentry is used, following the calling
convention of ->lookup.
-
+
Filesystem Issues
-----------------
For a filesystem to be exportable it must:
-
- 1/ provide the filehandle fragment routines described below.
- 2/ make sure that d_splice_alias is used rather than d_add
+
+ 1. provide the filehandle fragment routines described below.
+ 2. make sure that d_splice_alias is used rather than d_add
when ->lookup finds an inode for a given parent and name.
- If inode is NULL, d_splice_alias(inode, dentry) is equivalent to
+ If inode is NULL, d_splice_alias(inode, dentry) is equivalent to::
d_add(dentry, inode), NULL
Similarly, d_splice_alias(ERR_PTR(err), dentry) = ERR_PTR(err)
- Typically the ->lookup routine will simply end with a:
+ Typically the ->lookup routine will simply end with a::
return d_splice_alias(inode, dentry);
}
- A file system implementation declares that instances of the filesystem
+A file system implementation declares that instances of the filesystem
are exportable by setting the s_export_op field in the struct
super_block. This field must point to a "struct export_operations"
struct which has the following members:
diff --git a/Documentation/filesystems/nfs/fault_injection.txt b/Documentation/filesystems/nfs/fault_injection.txt
deleted file mode 100644
index f3a5b0a8ac05..000000000000
--- a/Documentation/filesystems/nfs/fault_injection.txt
+++ /dev/null
@@ -1,69 +0,0 @@
-
-Fault Injection
-===============
-Fault injection is a method for forcing errors that may not normally occur, or
-may be difficult to reproduce. Forcing these errors in a controlled environment
-can help the developer find and fix bugs before their code is shipped in a
-production system. Injecting an error on the Linux NFS server will allow us to
-observe how the client reacts and if it manages to recover its state correctly.
-
-NFSD_FAULT_INJECTION must be selected when configuring the kernel to use this
-feature.
-
-
-Using Fault Injection
-=====================
-On the client, mount the fault injection server through NFS v4.0+ and do some
-work over NFS (open files, take locks, ...).
-
-On the server, mount the debugfs filesystem to <debug_dir> and ls
-<debug_dir>/nfsd. This will show a list of files that will be used for
-injecting faults on the NFS server. As root, write a number n to the file
-corresponding to the action you want the server to take. The server will then
-process the first n items it finds. So if you want to forget 5 locks, echo '5'
-to <debug_dir>/nfsd/forget_locks. A value of 0 will tell the server to forget
-all corresponding items. A log message will be created containing the number
-of items forgotten (check dmesg).
-
-Go back to work on the client and check if the client recovered from the error
-correctly.
-
-
-Available Faults
-================
-forget_clients:
- The NFS server keeps a list of clients that have placed a mount call. If
- this list is cleared, the server will have no knowledge of who the client
- is, forcing the client to reauthenticate with the server.
-
-forget_openowners:
- The NFS server keeps a list of what files are currently opened and who
- they were opened by. Clearing this list will force the client to reopen
- its files.
-
-forget_locks:
- The NFS server keeps a list of what files are currently locked in the VFS.
- Clearing this list will force the client to reclaim its locks (files are
- unlocked through the VFS as they are cleared from this list).
-
-forget_delegations:
- A delegation is used to assure the client that a file, or part of a file,
- has not changed since the delegation was awarded. Clearing this list will
- force the client to reacquire its delegation before accessing the file
- again.
-
-recall_delegations:
- Delegations can be recalled by the server when another client attempts to
- access a file. This test will notify the client that its delegation has
- been revoked, forcing the client to reacquire the delegation before using
- the file again.
-
-
-tools/nfs/inject_faults.sh script
-=================================
-This script has been created to ease the fault injection process. This script
-will detect the mounted debugfs directory and write to the files located there
-based on the arguments passed by the user. For example, running
-`inject_faults.sh forget_locks 1` as root will instruct the server to forget
-one lock. Running `inject_faults forget_locks` will instruct the server to
-forgetall locks.
diff --git a/Documentation/filesystems/nfs/idmapper.txt b/Documentation/filesystems/nfs/idmapper.txt
deleted file mode 100644
index b86831acd583..000000000000
--- a/Documentation/filesystems/nfs/idmapper.txt
+++ /dev/null
@@ -1,75 +0,0 @@
-
-=========
-ID Mapper
-=========
-Id mapper is used by NFS to translate user and group ids into names, and to
-translate user and group names into ids. Part of this translation involves
-performing an upcall to userspace to request the information. There are two
-ways NFS could obtain this information: placing a call to /sbin/request-key
-or by placing a call to the rpc.idmap daemon.
-
-NFS will attempt to call /sbin/request-key first. If this succeeds, the
-result will be cached using the generic request-key cache. This call should
-only fail if /etc/request-key.conf is not configured for the id_resolver key
-type, see the "Configuring" section below if you wish to use the request-key
-method.
-
-If the call to /sbin/request-key fails (if /etc/request-key.conf is not
-configured with the id_resolver key type), then the idmapper will ask the
-legacy rpc.idmap daemon for the id mapping. This result will be stored
-in a custom NFS idmap cache.
-
-
-===========
-Configuring
-===========
-The file /etc/request-key.conf will need to be modified so /sbin/request-key can
-direct the upcall. The following line should be added:
-
-#OP TYPE DESCRIPTION CALLOUT INFO PROGRAM ARG1 ARG2 ARG3 ...
-#====== ======= =============== =============== ===============================
-create id_resolver * * /usr/sbin/nfs.idmap %k %d 600
-
-This will direct all id_resolver requests to the program /usr/sbin/nfs.idmap.
-The last parameter, 600, defines how many seconds into the future the key will
-expire. This parameter is optional for /usr/sbin/nfs.idmap. When the timeout
-is not specified, nfs.idmap will default to 600 seconds.
-
-id mapper uses for key descriptions:
- uid: Find the UID for the given user
- gid: Find the GID for the given group
- user: Find the user name for the given UID
- group: Find the group name for the given GID
-
-You can handle any of these individually, rather than using the generic upcall
-program. If you would like to use your own program for a uid lookup then you
-would edit your request-key.conf so it look similar to this:
-
-#OP TYPE DESCRIPTION CALLOUT INFO PROGRAM ARG1 ARG2 ARG3 ...
-#====== ======= =============== =============== ===============================
-create id_resolver uid:* * /some/other/program %k %d 600
-create id_resolver * * /usr/sbin/nfs.idmap %k %d 600
-
-Notice that the new line was added above the line for the generic program.
-request-key will find the first matching line and corresponding program. In
-this case, /some/other/program will handle all uid lookups and
-/usr/sbin/nfs.idmap will handle gid, user, and group lookups.
-
-See <file:Documentation/security/keys/request-key.rst> for more information
-about the request-key function.
-
-
-=========
-nfs.idmap
-=========
-nfs.idmap is designed to be called by request-key, and should not be run "by
-hand". This program takes two arguments, a serialized key and a key
-description. The serialized key is first converted into a key_serial_t, and
-then passed as an argument to keyctl_instantiate (both are part of keyutils.h).
-
-The actual lookups are performed by functions found in nfsidmap.h. nfs.idmap
-determines the correct function to call by looking at the first part of the
-description string. For example, a uid lookup description will appear as
-"uid:user@domain".
-
-nfs.idmap will return 0 if the key was instantiated, and non-zero otherwise.
diff --git a/Documentation/filesystems/nfs/nfs-rdma.txt b/Documentation/filesystems/nfs/nfs-rdma.txt
deleted file mode 100644
index 22dc0dd6889c..000000000000
--- a/Documentation/filesystems/nfs/nfs-rdma.txt
+++ /dev/null
@@ -1,274 +0,0 @@
-################################################################################
-# #
-# NFS/RDMA README #
-# #
-################################################################################
-
- Author: NetApp and Open Grid Computing
- Date: May 29, 2008
-
-Table of Contents
-~~~~~~~~~~~~~~~~~
- - Overview
- - Getting Help
- - Installation
- - Check RDMA and NFS Setup
- - NFS/RDMA Setup
-
-Overview
-~~~~~~~~
-
- This document describes how to install and setup the Linux NFS/RDMA client
- and server software.
-
- The NFS/RDMA client was first included in Linux 2.6.24. The NFS/RDMA server
- was first included in the following release, Linux 2.6.25.
-
- In our testing, we have obtained excellent performance results (full 10Gbit
- wire bandwidth at minimal client CPU) under many workloads. The code passes
- the full Connectathon test suite and operates over both Infiniband and iWARP
- RDMA adapters.
-
-Getting Help
-~~~~~~~~~~~~
-
- If you get stuck, you can ask questions on the
-
- nfs-rdma-devel@lists.sourceforge.net
-
- mailing list.
-
-Installation
-~~~~~~~~~~~~
-
- These instructions are a step by step guide to building a machine for
- use with NFS/RDMA.
-
- - Install an RDMA device
-
- Any device supported by the drivers in drivers/infiniband/hw is acceptable.
-
- Testing has been performed using several Mellanox-based IB cards, the
- Ammasso AMS1100 iWARP adapter, and the Chelsio cxgb3 iWARP adapter.
-
- - Install a Linux distribution and tools
-
- The first kernel release to contain both the NFS/RDMA client and server was
- Linux 2.6.25 Therefore, a distribution compatible with this and subsequent
- Linux kernel release should be installed.
-
- The procedures described in this document have been tested with
- distributions from Red Hat's Fedora Project (http://fedora.redhat.com/).
-
- - Install nfs-utils-1.1.2 or greater on the client
-
- An NFS/RDMA mount point can be obtained by using the mount.nfs command in
- nfs-utils-1.1.2 or greater (nfs-utils-1.1.1 was the first nfs-utils
- version with support for NFS/RDMA mounts, but for various reasons we
- recommend using nfs-utils-1.1.2 or greater). To see which version of
- mount.nfs you are using, type:
-
- $ /sbin/mount.nfs -V
-
- If the version is less than 1.1.2 or the command does not exist,
- you should install the latest version of nfs-utils.
-
- Download the latest package from:
-
- http://www.kernel.org/pub/linux/utils/nfs
-
- Uncompress the package and follow the installation instructions.
-
- If you will not need the idmapper and gssd executables (you do not need
- these to create an NFS/RDMA enabled mount command), the installation
- process can be simplified by disabling these features when running
- configure:
-
- $ ./configure --disable-gss --disable-nfsv4
-
- To build nfs-utils you will need the tcp_wrappers package installed. For
- more information on this see the package's README and INSTALL files.
-
- After building the nfs-utils package, there will be a mount.nfs binary in
- the utils/mount directory. This binary can be used to initiate NFS v2, v3,
- or v4 mounts. To initiate a v4 mount, the binary must be called
- mount.nfs4. The standard technique is to create a symlink called
- mount.nfs4 to mount.nfs.
-
- This mount.nfs binary should be installed at /sbin/mount.nfs as follows:
-
- $ sudo cp utils/mount/mount.nfs /sbin/mount.nfs
-
- In this location, mount.nfs will be invoked automatically for NFS mounts
- by the system mount command.
-
- NOTE: mount.nfs and therefore nfs-utils-1.1.2 or greater is only needed
- on the NFS client machine. You do not need this specific version of
- nfs-utils on the server. Furthermore, only the mount.nfs command from
- nfs-utils-1.1.2 is needed on the client.
-
- - Install a Linux kernel with NFS/RDMA
-
- The NFS/RDMA client and server are both included in the mainline Linux
- kernel version 2.6.25 and later. This and other versions of the Linux
- kernel can be found at:
-
- https://www.kernel.org/pub/linux/kernel/
-
- Download the sources and place them in an appropriate location.
-
- - Configure the RDMA stack
-
- Make sure your kernel configuration has RDMA support enabled. Under
- Device Drivers -> InfiniBand support, update the kernel configuration
- to enable InfiniBand support [NOTE: the option name is misleading. Enabling
- InfiniBand support is required for all RDMA devices (IB, iWARP, etc.)].
-
- Enable the appropriate IB HCA support (mlx4, mthca, ehca, ipath, etc.) or
- iWARP adapter support (amso, cxgb3, etc.).
-
- If you are using InfiniBand, be sure to enable IP-over-InfiniBand support.
-
- - Configure the NFS client and server
-
- Your kernel configuration must also have NFS file system support and/or
- NFS server support enabled. These and other NFS related configuration
- options can be found under File Systems -> Network File Systems.
-
- - Build, install, reboot
-
- The NFS/RDMA code will be enabled automatically if NFS and RDMA
- are turned on. The NFS/RDMA client and server are configured via the hidden
- SUNRPC_XPRT_RDMA config option that depends on SUNRPC and INFINIBAND. The
- value of SUNRPC_XPRT_RDMA will be:
-
- - N if either SUNRPC or INFINIBAND are N, in this case the NFS/RDMA client
- and server will not be built
- - M if both SUNRPC and INFINIBAND are on (M or Y) and at least one is M,
- in this case the NFS/RDMA client and server will be built as modules
- - Y if both SUNRPC and INFINIBAND are Y, in this case the NFS/RDMA client
- and server will be built into the kernel
-
- Therefore, if you have followed the steps above and turned no NFS and RDMA,
- the NFS/RDMA client and server will be built.
-
- Build a new kernel, install it, boot it.
-
-Check RDMA and NFS Setup
-~~~~~~~~~~~~~~~~~~~~~~~~
-
- Before configuring the NFS/RDMA software, it is a good idea to test
- your new kernel to ensure that the kernel is working correctly.
- In particular, it is a good idea to verify that the RDMA stack
- is functioning as expected and standard NFS over TCP/IP and/or UDP/IP
- is working properly.
-
- - Check RDMA Setup
-
- If you built the RDMA components as modules, load them at
- this time. For example, if you are using a Mellanox Tavor/Sinai/Arbel
- card:
-
- $ modprobe ib_mthca
- $ modprobe ib_ipoib
-
- If you are using InfiniBand, make sure there is a Subnet Manager (SM)
- running on the network. If your IB switch has an embedded SM, you can
- use it. Otherwise, you will need to run an SM, such as OpenSM, on one
- of your end nodes.
-
- If an SM is running on your network, you should see the following:
-
- $ cat /sys/class/infiniband/driverX/ports/1/state
- 4: ACTIVE
-
- where driverX is mthca0, ipath5, ehca3, etc.
-
- To further test the InfiniBand software stack, use IPoIB (this
- assumes you have two IB hosts named host1 and host2):
-
- host1$ ip link set dev ib0 up
- host1$ ip address add dev ib0 a.b.c.x
- host2$ ip link set dev ib0 up
- host2$ ip address add dev ib0 a.b.c.y
- host1$ ping a.b.c.y
- host2$ ping a.b.c.x
-
- For other device types, follow the appropriate procedures.
-
- - Check NFS Setup
-
- For the NFS components enabled above (client and/or server),
- test their functionality over standard Ethernet using TCP/IP or UDP/IP.
-
-NFS/RDMA Setup
-~~~~~~~~~~~~~~
-
- We recommend that you use two machines, one to act as the client and
- one to act as the server.
-
- One time configuration:
-
- - On the server system, configure the /etc/exports file and
- start the NFS/RDMA server.
-
- Exports entries with the following formats have been tested:
-
- /vol0 192.168.0.47(fsid=0,rw,async,insecure,no_root_squash)
- /vol0 192.168.0.0/255.255.255.0(fsid=0,rw,async,insecure,no_root_squash)
-
- The IP address(es) is(are) the client's IPoIB address for an InfiniBand
- HCA or the client's iWARP address(es) for an RNIC.
-
- NOTE: The "insecure" option must be used because the NFS/RDMA client does
- not use a reserved port.
-
- Each time a machine boots:
-
- - Load and configure the RDMA drivers
-
- For InfiniBand using a Mellanox adapter:
-
- $ modprobe ib_mthca
- $ modprobe ib_ipoib
- $ ip li set dev ib0 up
- $ ip addr add dev ib0 a.b.c.d
-
- NOTE: use unique addresses for the client and server
-
- - Start the NFS server
-
- If the NFS/RDMA server was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in
- kernel config), load the RDMA transport module:
-
- $ modprobe svcrdma
-
- Regardless of how the server was built (module or built-in), start the
- server:
-
- $ /etc/init.d/nfs start
-
- or
-
- $ service nfs start
-
- Instruct the server to listen on the RDMA transport:
-
- $ echo rdma 20049 > /proc/fs/nfsd/portlist
-
- - On the client system
-
- If the NFS/RDMA client was built as a module (CONFIG_SUNRPC_XPRT_RDMA=m in
- kernel config), load the RDMA client module:
-
- $ modprobe xprtrdma.ko
-
- Regardless of how the client was built (module or built-in), use this
- command to mount the NFS/RDMA server:
-
- $ mount -o rdma,port=20049 <IPoIB-server-name-or-address>:/<export> /mnt
-
- To verify that the mount is using RDMA, run "cat /proc/mounts" and check
- the "proto" field for the given mount.
-
- Congratulations! You're using NFS/RDMA!
diff --git a/Documentation/filesystems/nfs/nfs.txt b/Documentation/filesystems/nfs/nfs.txt
deleted file mode 100644
index f2571c8bef74..000000000000
--- a/Documentation/filesystems/nfs/nfs.txt
+++ /dev/null
@@ -1,136 +0,0 @@
-
-The NFS client
-==============
-
-The NFS version 2 protocol was first documented in RFC1094 (March 1989).
-Since then two more major releases of NFS have been published, with NFSv3
-being documented in RFC1813 (June 1995), and NFSv4 in RFC3530 (April
-2003).
-
-The Linux NFS client currently supports all the above published versions,
-and work is in progress on adding support for minor version 1 of the NFSv4
-protocol.
-
-The purpose of this document is to provide information on some of the
-special features of the NFS client that can be configured by system
-administrators.
-
-
-The nfs4_unique_id parameter
-============================
-
-NFSv4 requires clients to identify themselves to servers with a unique
-string. File open and lock state shared between one client and one server
-is associated with this identity. To support robust NFSv4 state recovery
-and transparent state migration, this identity string must not change
-across client reboots.
-
-Without any other intervention, the Linux client uses a string that contains
-the local system's node name. System administrators, however, often do not
-take care to ensure that node names are fully qualified and do not change
-over the lifetime of a client system. Node names can have other
-administrative requirements that require particular behavior that does not
-work well as part of an nfs_client_id4 string.
-
-The nfs.nfs4_unique_id boot parameter specifies a unique string that can be
-used instead of a system's node name when an NFS client identifies itself to
-a server. Thus, if the system's node name is not unique, or it changes, its
-nfs.nfs4_unique_id stays the same, preventing collision with other clients
-or loss of state during NFS reboot recovery or transparent state migration.
-
-The nfs.nfs4_unique_id string is typically a UUID, though it can contain
-anything that is believed to be unique across all NFS clients. An
-nfs4_unique_id string should be chosen when a client system is installed,
-just as a system's root file system gets a fresh UUID in its label at
-install time.
-
-The string should remain fixed for the lifetime of the client. It can be
-changed safely if care is taken that the client shuts down cleanly and all
-outstanding NFSv4 state has expired, to prevent loss of NFSv4 state.
-
-This string can be stored in an NFS client's grub.conf, or it can be provided
-via a net boot facility such as PXE. It may also be specified as an nfs.ko
-module parameter. Specifying a uniquifier string is not support for NFS
-clients running in containers.
-
-
-The DNS resolver
-================
-
-NFSv4 allows for one server to refer the NFS client to data that has been
-migrated onto another server by means of the special "fs_locations"
-attribute. See
- http://tools.ietf.org/html/rfc3530#section-6
-and
- http://tools.ietf.org/html/draft-ietf-nfsv4-referrals-00
-
-The fs_locations information can take the form of either an ip address and
-a path, or a DNS hostname and a path. The latter requires the NFS client to
-do a DNS lookup in order to mount the new volume, and hence the need for an
-upcall to allow userland to provide this service.
-
-Assuming that the user has the 'rpc_pipefs' filesystem mounted in the usual
-/var/lib/nfs/rpc_pipefs, the upcall consists of the following steps:
-
- (1) The process checks the dns_resolve cache to see if it contains a
- valid entry. If so, it returns that entry and exits.
-
- (2) If no valid entry exists, the helper script '/sbin/nfs_cache_getent'
- (may be changed using the 'nfs.cache_getent' kernel boot parameter)
- is run, with two arguments:
- - the cache name, "dns_resolve"
- - the hostname to resolve
-
- (3) After looking up the corresponding ip address, the helper script
- writes the result into the rpc_pipefs pseudo-file
- '/var/lib/nfs/rpc_pipefs/cache/dns_resolve/channel'
- in the following (text) format:
-
- "<ip address> <hostname> <ttl>\n"
-
- Where <ip address> is in the usual IPv4 (123.456.78.90) or IPv6
- (ffee:ddcc:bbaa:9988:7766:5544:3322:1100, ffee::1100, ...) format.
- <hostname> is identical to the second argument of the helper
- script, and <ttl> is the 'time to live' of this cache entry (in
- units of seconds).
-
- Note: If <ip address> is invalid, say the string "0", then a negative
- entry is created, which will cause the kernel to treat the hostname
- as having no valid DNS translation.
-
-
-
-
-A basic sample /sbin/nfs_cache_getent
-=====================================
-
-#!/bin/bash
-#
-ttl=600
-#
-cut=/usr/bin/cut
-getent=/usr/bin/getent
-rpc_pipefs=/var/lib/nfs/rpc_pipefs
-#
-die()
-{
- echo "Usage: $0 cache_name entry_name"
- exit 1
-}
-
-[ $# -lt 2 ] && die
-cachename="$1"
-cache_path=${rpc_pipefs}/cache/${cachename}/channel
-
-case "${cachename}" in
- dns_resolve)
- name="$2"
- result="$(${getent} hosts ${name} | ${cut} -f1 -d\ )"
- [ -z "${result}" ] && result="0"
- ;;
- *)
- die
- ;;
-esac
-echo "${result} ${name} ${ttl}" >${cache_path}
-
diff --git a/Documentation/filesystems/nfs/nfsd-admin-interfaces.txt b/Documentation/filesystems/nfs/nfsd-admin-interfaces.txt
deleted file mode 100644
index 56a96fb08a73..000000000000
--- a/Documentation/filesystems/nfs/nfsd-admin-interfaces.txt
+++ /dev/null
@@ -1,41 +0,0 @@
-Administrative interfaces for nfsd
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-Note that normally these interfaces are used only by the utilities in
-nfs-utils.
-
-nfsd is controlled mainly by pseudofiles under the "nfsd" filesystem,
-which is normally mounted at /proc/fs/nfsd/.
-
-The server is always started by the first write of a nonzero value to
-nfsd/threads.
-
-Before doing that, NFSD can be told which sockets to listen on by
-writing to nfsd/portlist; that write may be:
-
- - an ascii-encoded file descriptor, which should refer to a
- bound (and listening, for tcp) socket, or
- - "transportname port", where transportname is currently either
- "udp", "tcp", or "rdma".
-
-If nfsd is started without doing any of these, then it will create one
-udp and one tcp listener at port 2049 (see nfsd_init_socks).
-
-On startup, nfsd and lockd grace periods start.
-
-nfsd is shut down by a write of 0 to nfsd/threads. All locks and state
-are thrown away at that point.
-
-Between startup and shutdown, the number of threads may be adjusted up
-or down by additional writes to nfsd/threads or by writes to
-nfsd/pool_threads.
-
-For more detail about files under nfsd/ and what they control, see
-fs/nfsd/nfsctl.c; most of them have detailed comments.
-
-Implementation notes
-^^^^^^^^^^^^^^^^^^^^
-
-Note that the rpc server requires the caller to serialize addition and
-removal of listening sockets, and startup and shutdown of the server.
-For nfsd this is done using nfsd_mutex.
diff --git a/Documentation/filesystems/nfs/nfsroot.txt b/Documentation/filesystems/nfs/nfsroot.txt
deleted file mode 100644
index ae4332464560..000000000000
--- a/Documentation/filesystems/nfs/nfsroot.txt
+++ /dev/null
@@ -1,355 +0,0 @@
-Mounting the root filesystem via NFS (nfsroot)
-===============================================
-
-Written 1996 by Gero Kuhlmann <gero@gkminix.han.de>
-Updated 1997 by Martin Mares <mj@atrey.karlin.mff.cuni.cz>
-Updated 2006 by Nico Schottelius <nico-kernel-nfsroot@schottelius.org>
-Updated 2006 by Horms <horms@verge.net.au>
-Updated 2018 by Chris Novakovic <chris@chrisn.me.uk>
-
-
-
-In order to use a diskless system, such as an X-terminal or printer server
-for example, it is necessary for the root filesystem to be present on a
-non-disk device. This may be an initramfs (see Documentation/filesystems/
-ramfs-rootfs-initramfs.txt), a ramdisk (see Documentation/admin-guide/initrd.rst) or a
-filesystem mounted via NFS. The following text describes on how to use NFS
-for the root filesystem. For the rest of this text 'client' means the
-diskless system, and 'server' means the NFS server.
-
-
-
-
-1.) Enabling nfsroot capabilities
- -----------------------------
-
-In order to use nfsroot, NFS client support needs to be selected as
-built-in during configuration. Once this has been selected, the nfsroot
-option will become available, which should also be selected.
-
-In the networking options, kernel level autoconfiguration can be selected,
-along with the types of autoconfiguration to support. Selecting all of
-DHCP, BOOTP and RARP is safe.
-
-
-
-
-2.) Kernel command line
- -------------------
-
-When the kernel has been loaded by a boot loader (see below) it needs to be
-told what root fs device to use. And in the case of nfsroot, where to find
-both the server and the name of the directory on the server to mount as root.
-This can be established using the following kernel command line parameters:
-
-
-root=/dev/nfs
-
- This is necessary to enable the pseudo-NFS-device. Note that it's not a
- real device but just a synonym to tell the kernel to use NFS instead of
- a real device.
-
-
-nfsroot=[<server-ip>:]<root-dir>[,<nfs-options>]
-
- If the `nfsroot' parameter is NOT given on the command line,
- the default "/tftpboot/%s" will be used.
-
- <server-ip> Specifies the IP address of the NFS server.
- The default address is determined by the `ip' parameter
- (see below). This parameter allows the use of different
- servers for IP autoconfiguration and NFS.
-
- <root-dir> Name of the directory on the server to mount as root.
- If there is a "%s" token in the string, it will be
- replaced by the ASCII-representation of the client's
- IP address.
-
- <nfs-options> Standard NFS options. All options are separated by commas.
- The following defaults are used:
- port = as given by server portmap daemon
- rsize = 4096
- wsize = 4096
- timeo = 7
- retrans = 3
- acregmin = 3
- acregmax = 60
- acdirmin = 30
- acdirmax = 60
- flags = hard, nointr, noposix, cto, ac
-
-
-ip=<client-ip>:<server-ip>:<gw-ip>:<netmask>:<hostname>:<device>:<autoconf>:
- <dns0-ip>:<dns1-ip>:<ntp0-ip>
-
- This parameter tells the kernel how to configure IP addresses of devices
- and also how to set up the IP routing table. It was originally called
- `nfsaddrs', but now the boot-time IP configuration works independently of
- NFS, so it was renamed to `ip' and the old name remained as an alias for
- compatibility reasons.
-
- If this parameter is missing from the kernel command line, all fields are
- assumed to be empty, and the defaults mentioned below apply. In general
- this means that the kernel tries to configure everything using
- autoconfiguration.
-
- The <autoconf> parameter can appear alone as the value to the `ip'
- parameter (without all the ':' characters before). If the value is
- "ip=off" or "ip=none", no autoconfiguration will take place, otherwise
- autoconfiguration will take place. The most common way to use this
- is "ip=dhcp".
-
- <client-ip> IP address of the client.
-
- Default: Determined using autoconfiguration.
-
- <server-ip> IP address of the NFS server. If RARP is used to determine
- the client address and this parameter is NOT empty only
- replies from the specified server are accepted.
-
- Only required for NFS root. That is autoconfiguration
- will not be triggered if it is missing and NFS root is not
- in operation.
-
- Value is exported to /proc/net/pnp with the prefix "bootserver "
- (see below).
-
- Default: Determined using autoconfiguration.
- The address of the autoconfiguration server is used.
-
- <gw-ip> IP address of a gateway if the server is on a different subnet.
-
- Default: Determined using autoconfiguration.
-
- <netmask> Netmask for local network interface. If unspecified
- the netmask is derived from the client IP address assuming
- classful addressing.
-
- Default: Determined using autoconfiguration.
-
- <hostname> Name of the client. If a '.' character is present, anything
- before the first '.' is used as the client's hostname, and anything
- after it is used as its NIS domain name. May be supplied by
- autoconfiguration, but its absence will not trigger autoconfiguration.
- If specified and DHCP is used, the user-provided hostname (and NIS
- domain name, if present) will be carried in the DHCP request; this
- may cause a DNS record to be created or updated for the client.
-
- Default: Client IP address is used in ASCII notation.
-
- <device> Name of network device to use.
-
- Default: If the host only has one device, it is used.
- Otherwise the device is determined using
- autoconfiguration. This is done by sending
- autoconfiguration requests out of all devices,
- and using the device that received the first reply.
-
- <autoconf> Method to use for autoconfiguration. In the case of options
- which specify multiple autoconfiguration protocols,
- requests are sent using all protocols, and the first one
- to reply is used.
-
- Only autoconfiguration protocols that have been compiled
- into the kernel will be used, regardless of the value of
- this option.
-
- off or none: don't use autoconfiguration
- (do static IP assignment instead)
- on or any: use any protocol available in the kernel
- (default)
- dhcp: use DHCP
- bootp: use BOOTP
- rarp: use RARP
- both: use both BOOTP and RARP but not DHCP
- (old option kept for backwards compatibility)
-
- if dhcp is used, the client identifier can be used by following
- format "ip=dhcp,client-id-type,client-id-value"
-
- Default: any
-
- <dns0-ip> IP address of primary nameserver.
- Value is exported to /proc/net/pnp with the prefix "nameserver "
- (see below).
-
- Default: None if not using autoconfiguration; determined
- automatically if using autoconfiguration.
-
- <dns1-ip> IP address of secondary nameserver.
- See <dns0-ip>.
-
- <ntp0-ip> IP address of a Network Time Protocol (NTP) server.
- Value is exported to /proc/net/ipconfig/ntp_servers, but is
- otherwise unused (see below).
-
- Default: None if not using autoconfiguration; determined
- automatically if using autoconfiguration.
-
- After configuration (whether manual or automatic) is complete, two files
- are created in the following format; lines are omitted if their respective
- value is empty following configuration:
-
- - /proc/net/pnp:
-
- #PROTO: <DHCP|BOOTP|RARP|MANUAL> (depending on configuration method)
- domain <dns-domain> (if autoconfigured, the DNS domain)
- nameserver <dns0-ip> (primary name server IP)
- nameserver <dns1-ip> (secondary name server IP)
- nameserver <dns2-ip> (tertiary name server IP)
- bootserver <server-ip> (NFS server IP)
-
- - /proc/net/ipconfig/ntp_servers:
-
- <ntp0-ip> (NTP server IP)
- <ntp1-ip> (NTP server IP)
- <ntp2-ip> (NTP server IP)
-
- <dns-domain> and <dns2-ip> (in /proc/net/pnp) and <ntp1-ip> and <ntp2-ip>
- (in /proc/net/ipconfig/ntp_servers) are requested during autoconfiguration;
- they cannot be specified as part of the "ip=" kernel command line parameter.
-
- Because the "domain" and "nameserver" options are recognised by DNS
- resolvers, /etc/resolv.conf is often linked to /proc/net/pnp on systems
- that use an NFS root filesystem.
-
- Note that the kernel will not synchronise the system time with any NTP
- servers it discovers; this is the responsibility of a user space process
- (e.g. an initrd/initramfs script that passes the IP addresses listed in
- /proc/net/ipconfig/ntp_servers to an NTP client before mounting the real
- root filesystem if it is on NFS).
-
-
-nfsrootdebug
-
- This parameter enables debugging messages to appear in the kernel
- log at boot time so that administrators can verify that the correct
- NFS mount options, server address, and root path are passed to the
- NFS client.
-
-
-rdinit=<executable file>
-
- To specify which file contains the program that starts system
- initialization, administrators can use this command line parameter.
- The default value of this parameter is "/init". If the specified
- file exists and the kernel can execute it, root filesystem related
- kernel command line parameters, including `nfsroot=', are ignored.
-
- A description of the process of mounting the root file system can be
- found in:
-
- Documentation/driver-api/early-userspace/early_userspace_support.rst
-
-
-
-
-3.) Boot Loader
- ----------
-
-To get the kernel into memory different approaches can be used.
-They depend on various facilities being available:
-
-
-3.1) Booting from a floppy using syslinux
-
- When building kernels, an easy way to create a boot floppy that uses
- syslinux is to use the zdisk or bzdisk make targets which use zimage
- and bzimage images respectively. Both targets accept the
- FDARGS parameter which can be used to set the kernel command line.
-
- e.g.
- make bzdisk FDARGS="root=/dev/nfs"
-
- Note that the user running this command will need to have
- access to the floppy drive device, /dev/fd0
-
- For more information on syslinux, including how to create bootdisks
- for prebuilt kernels, see http://syslinux.zytor.com/
-
- N.B: Previously it was possible to write a kernel directly to
- a floppy using dd, configure the boot device using rdev, and
- boot using the resulting floppy. Linux no longer supports this
- method of booting.
-
-3.2) Booting from a cdrom using isolinux
-
- When building kernels, an easy way to create a bootable cdrom that
- uses isolinux is to use the isoimage target which uses a bzimage
- image. Like zdisk and bzdisk, this target accepts the FDARGS
- parameter which can be used to set the kernel command line.
-
- e.g.
- make isoimage FDARGS="root=/dev/nfs"
-
- The resulting iso image will be arch/<ARCH>/boot/image.iso
- This can be written to a cdrom using a variety of tools including
- cdrecord.
-
- e.g.
- cdrecord dev=ATAPI:1,0,0 arch/x86/boot/image.iso
-
- For more information on isolinux, including how to create bootdisks
- for prebuilt kernels, see http://syslinux.zytor.com/
-
-3.2) Using LILO
- When using LILO all the necessary command line parameters may be
- specified using the 'append=' directive in the LILO configuration
- file.
-
- However, to use the 'root=' directive you also need to create
- a dummy root device, which may be removed after LILO is run.
-
- mknod /dev/boot255 c 0 255
-
- For information on configuring LILO, please refer to its documentation.
-
-3.3) Using GRUB
- When using GRUB, kernel parameter are simply appended after the kernel
- specification: kernel <kernel> <parameters>
-
-3.4) Using loadlin
- loadlin may be used to boot Linux from a DOS command prompt without
- requiring a local hard disk to mount as root. This has not been
- thoroughly tested by the authors of this document, but in general
- it should be possible configure the kernel command line similarly
- to the configuration of LILO.
-
- Please refer to the loadlin documentation for further information.
-
-3.5) Using a boot ROM
- This is probably the most elegant way of booting a diskless client.
- With a boot ROM the kernel is loaded using the TFTP protocol. The
- authors of this document are not aware of any no commercial boot
- ROMs that support booting Linux over the network. However, there
- are two free implementations of a boot ROM, netboot-nfs and
- etherboot, both of which are available on sunsite.unc.edu, and both
- of which contain everything you need to boot a diskless Linux client.
-
-3.6) Using pxelinux
- Pxelinux may be used to boot linux using the PXE boot loader
- which is present on many modern network cards.
-
- When using pxelinux, the kernel image is specified using
- "kernel <relative-path-below /tftpboot>". The nfsroot parameters
- are passed to the kernel by adding them to the "append" line.
- It is common to use serial console in conjunction with pxeliunx,
- see Documentation/admin-guide/serial-console.rst for more information.
-
- For more information on isolinux, including how to create bootdisks
- for prebuilt kernels, see http://syslinux.zytor.com/
-
-
-
-
-4.) Credits
- -------
-
- The nfsroot code in the kernel and the RARP support have been written
- by Gero Kuhlmann <gero@gkminix.han.de>.
-
- The rest of the IP layer autoconfiguration code has been written
- by Martin Mares <mj@atrey.karlin.mff.cuni.cz>.
-
- In order to write the initial version of nfsroot I would like to thank
- Jens-Uwe Mager <jum@anubis.han.de> for his help.
diff --git a/Documentation/filesystems/nfs/pnfs-block-server.txt b/Documentation/filesystems/nfs/pnfs-block-server.txt
deleted file mode 100644
index 2143673cf154..000000000000
--- a/Documentation/filesystems/nfs/pnfs-block-server.txt
+++ /dev/null
@@ -1,37 +0,0 @@
-pNFS block layout server user guide
-
-The Linux NFS server now supports the pNFS block layout extension. In this
-case the NFS server acts as Metadata Server (MDS) for pNFS, which in addition
-to handling all the metadata access to the NFS export also hands out layouts
-to the clients to directly access the underlying block devices that are
-shared with the client.
-
-To use pNFS block layouts with with the Linux NFS server the exported file
-system needs to support the pNFS block layouts (currently just XFS), and the
-file system must sit on shared storage (typically iSCSI) that is accessible
-to the clients in addition to the MDS. As of now the file system needs to
-sit directly on the exported volume, striping or concatenation of
-volumes on the MDS and clients is not supported yet.
-
-On the server, pNFS block volume support is automatically if the file system
-support it. On the client make sure the kernel has the CONFIG_PNFS_BLOCK
-option enabled, the blkmapd daemon from nfs-utils is running, and the
-file system is mounted using the NFSv4.1 protocol version (mount -o vers=4.1).
-
-If the nfsd server needs to fence a non-responding client it calls
-/sbin/nfsd-recall-failed with the first argument set to the IP address of
-the client, and the second argument set to the device node without the /dev
-prefix for the file system to be fenced. Below is an example file that shows
-how to translate the device into a serial number from SCSI EVPD 0x80:
-
-cat > /sbin/nfsd-recall-failed << EOF
-#!/bin/sh
-
-CLIENT="$1"
-DEV="/dev/$2"
-EVPD=`sg_inq --page=0x80 ${DEV} | \
- grep "Unit serial number:" | \
- awk -F ': ' '{print $2}'`
-
-echo "fencing client ${CLIENT} serial ${EVPD}" >> /var/log/pnfsd-fence.log
-EOF
diff --git a/Documentation/filesystems/nfs/pnfs-scsi-server.txt b/Documentation/filesystems/nfs/pnfs-scsi-server.txt
deleted file mode 100644
index 5bef7268bd9f..000000000000
--- a/Documentation/filesystems/nfs/pnfs-scsi-server.txt
+++ /dev/null
@@ -1,23 +0,0 @@
-
-pNFS SCSI layout server user guide
-==================================
-
-This document describes support for pNFS SCSI layouts in the Linux NFS server.
-With pNFS SCSI layouts, the NFS server acts as Metadata Server (MDS) for pNFS,
-which in addition to handling all the metadata access to the NFS export,
-also hands out layouts to the clients so that they can directly access the
-underlying SCSI LUNs that are shared with the client.
-
-To use pNFS SCSI layouts with with the Linux NFS server, the exported file
-system needs to support the pNFS SCSI layouts (currently just XFS), and the
-file system must sit on a SCSI LUN that is accessible to the clients in
-addition to the MDS. As of now the file system needs to sit directly on the
-exported LUN, striping or concatenation of LUNs on the MDS and clients
-is not supported yet.
-
-On a server built with CONFIG_NFSD_SCSI, the pNFS SCSI volume support is
-automatically enabled if the file system is exported using the "pnfs"
-option and the underlying SCSI device support persistent reservations.
-On the client make sure the kernel has the CONFIG_PNFS_BLOCK option
-enabled, and the file system is mounted using the NFSv4.1 protocol
-version (mount -o vers=4.1).
diff --git a/Documentation/filesystems/overlayfs.txt b/Documentation/filesystems/overlayfs.rst
index 1da2f1668f08..e443be7928db 100644
--- a/Documentation/filesystems/overlayfs.txt
+++ b/Documentation/filesystems/overlayfs.rst
@@ -1,3 +1,5 @@
+.. SPDX-License-Identifier: GPL-2.0
+
Written by: Neil Brown
Please see MAINTAINERS file for where to send questions.
@@ -181,7 +183,7 @@ Kernel config options:
worried about backward compatibility with kernels that have the redirect_dir
feature and follow redirects even if turned off.
-Module options (can also be changed through /sys/module/overlay/parameters/*):
+Module options (can also be changed through /sys/module/overlay/parameters/):
- "redirect_dir=BOOL":
See OVERLAY_FS_REDIRECT_DIR kernel config option above.
@@ -263,7 +265,7 @@ top, lower2 the middle and lower3 the bottom layer.
Metadata only copy up
---------------------
+---------------------
When metadata only copy up feature is enabled, overlayfs will only copy
up metadata (as opposed to whole file), when a metadata specific operation
@@ -286,10 +288,10 @@ pointed by REDIRECT. This should not be possible on local system as setting
"trusted." xattrs will require CAP_SYS_ADMIN. But it should be possible
for untrusted layers like from a pen drive.
-Note: redirect_dir={off|nofollow|follow(*)} conflicts with metacopy=on, and
+Note: redirect_dir={off|nofollow|follow[*]} conflicts with metacopy=on, and
results in an error.
-(*) redirect_dir=follow only conflicts with metacopy=on if upperdir=... is
+[*] redirect_dir=follow only conflicts with metacopy=on if upperdir=... is
given.
Sharing and copying layers
@@ -302,7 +304,7 @@ beneath or above the path of another overlay lower layer path.
Using an upper layer path and/or a workdir path that are already used by
another overlay mount is not allowed and may fail with EBUSY. Using
-partially overlapping paths is not allowed but will not fail with EBUSY.
+partially overlapping paths is not allowed and may fail with EBUSY.
If files are accessed from two overlayfs mounts which share or overlap the
upper layer and/or workdir path the behavior of the overlay is undefined,
though it will not result in a crash or deadlock.
diff --git a/Documentation/filesystems/path-lookup.rst b/Documentation/filesystems/path-lookup.rst
index 434a07b0002b..a3216979298b 100644
--- a/Documentation/filesystems/path-lookup.rst
+++ b/Documentation/filesystems/path-lookup.rst
@@ -13,6 +13,7 @@ It has subsequently been updated to reflect changes in the kernel
including:
- per-directory parallel name lookup.
+- ``openat2()`` resolution restriction flags.
Introduction to pathname lookup
===============================
@@ -235,6 +236,13 @@ renamed. If ``d_lookup`` finds that a rename happened while it
unsuccessfully scanned a chain in the hash table, it simply tries
again.
+``rename_lock`` is also used to detect and defend against potential attacks
+against ``LOOKUP_BENEATH`` and ``LOOKUP_IN_ROOT`` when resolving ".." (where
+the parent directory is moved outside the root, bypassing the ``path_equal()``
+check). If ``rename_lock`` is updated during the lookup and the path encounters
+a "..", a potential attack occurred and ``handle_dots()`` will bail out with
+``-EAGAIN``.
+
inode->i_rwsem
~~~~~~~~~~~~~~
@@ -348,6 +356,13 @@ any changes to any mount points while stepping up. This locking is
needed to stabilize the link to the mounted-on dentry, which the
refcount on the mount itself doesn't ensure.
+``mount_lock`` is also used to detect and defend against potential attacks
+against ``LOOKUP_BENEATH`` and ``LOOKUP_IN_ROOT`` when resolving ".." (where
+the parent directory is moved outside the root, bypassing the ``path_equal()``
+check). If ``mount_lock`` is updated during the lookup and the path encounters
+a "..", a potential attack occurred and ``handle_dots()`` will bail out with
+``-EAGAIN``.
+
RCU
~~~
@@ -405,6 +420,10 @@ is requested. Keeping a reference in the ``nameidata`` ensures that
only one root is in effect for the entire path walk, even if it races
with a ``chroot()`` system call.
+It should be noted that in the case of ``LOOKUP_IN_ROOT`` or
+``LOOKUP_BENEATH``, the effective root becomes the directory file descriptor
+passed to ``openat2()`` (which exposes these ``LOOKUP_`` flags).
+
The root is needed when either of two conditions holds: (1) either the
pathname or a symbolic link starts with a "'/'", or (2) a "``..``"
component is being handled, since "``..``" from the root must always stay
@@ -1149,7 +1168,7 @@ so ``NULL`` is returned to indicate that the symlink can be released and
the stack frame discarded.
The other case involves things in ``/proc`` that look like symlinks but
-aren't really::
+aren't really (and are therefore commonly referred to as "magic-links")::
$ ls -l /proc/self/fd/1
lrwx------ 1 neilb neilb 64 Jun 13 10:19 /proc/self/fd/1 -> /dev/pts/4
@@ -1286,7 +1305,9 @@ A few flags
A suitable way to wrap up this tour of pathname walking is to list
the various flags that can be stored in the ``nameidata`` to guide the
lookup process. Many of these are only meaningful on the final
-component, others reflect the current state of the pathname lookup.
+component, others reflect the current state of the pathname lookup, and some
+apply restrictions to all path components encountered in the path lookup.
+
And then there is ``LOOKUP_EMPTY``, which doesn't fit conceptually with
the others. If this is not set, an empty pathname causes an error
very early on. If it is set, empty pathnames are not considered to be
@@ -1310,13 +1331,48 @@ longer needed.
``LOOKUP_JUMPED`` means that the current dentry was chosen not because
it had the right name but for some other reason. This happens when
following "``..``", following a symlink to ``/``, crossing a mount point
-or accessing a "``/proc/$PID/fd/$FD``" symlink. In this case the
-filesystem has not been asked to revalidate the name (with
-``d_revalidate()``). In such cases the inode may still need to be
-revalidated, so ``d_op->d_weak_revalidate()`` is called if
+or accessing a "``/proc/$PID/fd/$FD``" symlink (also known as a "magic
+link"). In this case the filesystem has not been asked to revalidate the
+name (with ``d_revalidate()``). In such cases the inode may still need
+to be revalidated, so ``d_op->d_weak_revalidate()`` is called if
``LOOKUP_JUMPED`` is set when the look completes - which may be at the
final component or, when creating, unlinking, or renaming, at the penultimate component.
+Resolution-restriction flags
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+In order to allow userspace to protect itself against certain race conditions
+and attack scenarios involving changing path components, a series of flags are
+available which apply restrictions to all path components encountered during
+path lookup. These flags are exposed through ``openat2()``'s ``resolve`` field.
+
+``LOOKUP_NO_SYMLINKS`` blocks all symlink traversals (including magic-links).
+This is distinctly different from ``LOOKUP_FOLLOW``, because the latter only
+relates to restricting the following of trailing symlinks.
+
+``LOOKUP_NO_MAGICLINKS`` blocks all magic-link traversals. Filesystems must
+ensure that they return errors from ``nd_jump_link()``, because that is how
+``LOOKUP_NO_MAGICLINKS`` and other magic-link restrictions are implemented.
+
+``LOOKUP_NO_XDEV`` blocks all ``vfsmount`` traversals (this includes both
+bind-mounts and ordinary mounts). Note that the ``vfsmount`` which contains the
+lookup is determined by the first mountpoint the path lookup reaches --
+absolute paths start with the ``vfsmount`` of ``/``, and relative paths start
+with the ``dfd``'s ``vfsmount``. Magic-links are only permitted if the
+``vfsmount`` of the path is unchanged.
+
+``LOOKUP_BENEATH`` blocks any path components which resolve outside the
+starting point of the resolution. This is done by blocking ``nd_jump_root()``
+as well as blocking ".." if it would jump outside the starting point.
+``rename_lock`` and ``mount_lock`` are used to detect attacks against the
+resolution of "..". Magic-links are also blocked.
+
+``LOOKUP_IN_ROOT`` resolves all path components as though the starting point
+were the filesystem root. ``nd_jump_root()`` brings the resolution back to to
+the starting point, and ".." at the starting point will act as a no-op. As with
+``LOOKUP_BENEATH``, ``rename_lock`` and ``mount_lock`` are used to detect
+attacks against ".." resolution. Magic-links are also blocked.
+
Final-component flags
~~~~~~~~~~~~~~~~~~~~~
diff --git a/Documentation/filesystems/porting b/Documentation/filesystems/porting
deleted file mode 100644
index 6b7a41cfcaed..000000000000
--- a/Documentation/filesystems/porting
+++ /dev/null
@@ -1,686 +0,0 @@
-Changes since 2.5.0:
-
----
-[recommended]
-
-New helpers: sb_bread(), sb_getblk(), sb_find_get_block(), set_bh(),
- sb_set_blocksize() and sb_min_blocksize().
-
-Use them.
-
-(sb_find_get_block() replaces 2.4's get_hash_table())
-
----
-[recommended]
-
-New methods: ->alloc_inode() and ->destroy_inode().
-
-Remove inode->u.foo_inode_i
-Declare
- struct foo_inode_info {
- /* fs-private stuff */
- struct inode vfs_inode;
- };
- static inline struct foo_inode_info *FOO_I(struct inode *inode)
- {
- return list_entry(inode, struct foo_inode_info, vfs_inode);
- }
-
-Use FOO_I(inode) instead of &inode->u.foo_inode_i;
-
-Add foo_alloc_inode() and foo_destroy_inode() - the former should allocate
-foo_inode_info and return the address of ->vfs_inode, the latter should free
-FOO_I(inode) (see in-tree filesystems for examples).
-
-Make them ->alloc_inode and ->destroy_inode in your super_operations.
-
-Keep in mind that now you need explicit initialization of private data
-typically between calling iget_locked() and unlocking the inode.
-
-At some point that will become mandatory.
-
----
-[mandatory]
-
-Change of file_system_type method (->read_super to ->get_sb)
-
-->read_super() is no more. Ditto for DECLARE_FSTYPE and DECLARE_FSTYPE_DEV.
-
-Turn your foo_read_super() into a function that would return 0 in case of
-success and negative number in case of error (-EINVAL unless you have more
-informative error value to report). Call it foo_fill_super(). Now declare
-
-int foo_get_sb(struct file_system_type *fs_type,
- int flags, const char *dev_name, void *data, struct vfsmount *mnt)
-{
- return get_sb_bdev(fs_type, flags, dev_name, data, foo_fill_super,
- mnt);
-}
-
-(or similar with s/bdev/nodev/ or s/bdev/single/, depending on the kind of
-filesystem).
-
-Replace DECLARE_FSTYPE... with explicit initializer and have ->get_sb set as
-foo_get_sb.
-
----
-[mandatory]
-
-Locking change: ->s_vfs_rename_sem is taken only by cross-directory renames.
-Most likely there is no need to change anything, but if you relied on
-global exclusion between renames for some internal purpose - you need to
-change your internal locking. Otherwise exclusion warranties remain the
-same (i.e. parents and victim are locked, etc.).
-
----
-[informational]
-
-Now we have the exclusion between ->lookup() and directory removal (by
-->rmdir() and ->rename()). If you used to need that exclusion and do
-it by internal locking (most of filesystems couldn't care less) - you
-can relax your locking.
-
----
-[mandatory]
-
-->lookup(), ->truncate(), ->create(), ->unlink(), ->mknod(), ->mkdir(),
-->rmdir(), ->link(), ->lseek(), ->symlink(), ->rename()
-and ->readdir() are called without BKL now. Grab it on entry, drop upon return
-- that will guarantee the same locking you used to have. If your method or its
-parts do not need BKL - better yet, now you can shift lock_kernel() and
-unlock_kernel() so that they would protect exactly what needs to be
-protected.
-
----
-[mandatory]
-
-BKL is also moved from around sb operations. BKL should have been shifted into
-individual fs sb_op functions. If you don't need it, remove it.
-
----
-[informational]
-
-check for ->link() target not being a directory is done by callers. Feel
-free to drop it...
-
----
-[informational]
-
-->link() callers hold ->i_mutex on the object we are linking to. Some of your
-problems might be over...
-
----
-[mandatory]
-
-new file_system_type method - kill_sb(superblock). If you are converting
-an existing filesystem, set it according to ->fs_flags:
- FS_REQUIRES_DEV - kill_block_super
- FS_LITTER - kill_litter_super
- neither - kill_anon_super
-FS_LITTER is gone - just remove it from fs_flags.
-
----
-[mandatory]
-
- FS_SINGLE is gone (actually, that had happened back when ->get_sb()
-went in - and hadn't been documented ;-/). Just remove it from fs_flags
-(and see ->get_sb() entry for other actions).
-
----
-[mandatory]
-
-->setattr() is called without BKL now. Caller _always_ holds ->i_mutex, so
-watch for ->i_mutex-grabbing code that might be used by your ->setattr().
-Callers of notify_change() need ->i_mutex now.
-
----
-[recommended]
-
-New super_block field "struct export_operations *s_export_op" for
-explicit support for exporting, e.g. via NFS. The structure is fully
-documented at its declaration in include/linux/fs.h, and in
-Documentation/filesystems/nfs/Exporting.
-
-Briefly it allows for the definition of decode_fh and encode_fh operations
-to encode and decode filehandles, and allows the filesystem to use
-a standard helper function for decode_fh, and provide file-system specific
-support for this helper, particularly get_parent.
-
-It is planned that this will be required for exporting once the code
-settles down a bit.
-
-[mandatory]
-
-s_export_op is now required for exporting a filesystem.
-isofs, ext2, ext3, resierfs, fat
-can be used as examples of very different filesystems.
-
----
-[mandatory]
-
-iget4() and the read_inode2 callback have been superseded by iget5_locked()
-which has the following prototype,
-
- struct inode *iget5_locked(struct super_block *sb, unsigned long ino,
- int (*test)(struct inode *, void *),
- int (*set)(struct inode *, void *),
- void *data);
-
-'test' is an additional function that can be used when the inode
-number is not sufficient to identify the actual file object. 'set'
-should be a non-blocking function that initializes those parts of a
-newly created inode to allow the test function to succeed. 'data' is
-passed as an opaque value to both test and set functions.
-
-When the inode has been created by iget5_locked(), it will be returned with the
-I_NEW flag set and will still be locked. The filesystem then needs to finalize
-the initialization. Once the inode is initialized it must be unlocked by
-calling unlock_new_inode().
-
-The filesystem is responsible for setting (and possibly testing) i_ino
-when appropriate. There is also a simpler iget_locked function that
-just takes the superblock and inode number as arguments and does the
-test and set for you.
-
-e.g.
- inode = iget_locked(sb, ino);
- if (inode->i_state & I_NEW) {
- err = read_inode_from_disk(inode);
- if (err < 0) {
- iget_failed(inode);
- return err;
- }
- unlock_new_inode(inode);
- }
-
-Note that if the process of setting up a new inode fails, then iget_failed()
-should be called on the inode to render it dead, and an appropriate error
-should be passed back to the caller.
-
----
-[recommended]
-
-->getattr() finally getting used. See instances in nfs, minix, etc.
-
----
-[mandatory]
-
-->revalidate() is gone. If your filesystem had it - provide ->getattr()
-and let it call whatever you had as ->revlidate() + (for symlinks that
-had ->revalidate()) add calls in ->follow_link()/->readlink().
-
----
-[mandatory]
-
-->d_parent changes are not protected by BKL anymore. Read access is safe
-if at least one of the following is true:
- * filesystem has no cross-directory rename()
- * we know that parent had been locked (e.g. we are looking at
-->d_parent of ->lookup() argument).
- * we are called from ->rename().
- * the child's ->d_lock is held
-Audit your code and add locking if needed. Notice that any place that is
-not protected by the conditions above is risky even in the old tree - you
-had been relying on BKL and that's prone to screwups. Old tree had quite
-a few holes of that kind - unprotected access to ->d_parent leading to
-anything from oops to silent memory corruption.
-
----
-[mandatory]
-
- FS_NOMOUNT is gone. If you use it - just set SB_NOUSER in flags
-(see rootfs for one kind of solution and bdev/socket/pipe for another).
-
----
-[recommended]
-
- Use bdev_read_only(bdev) instead of is_read_only(kdev). The latter
-is still alive, but only because of the mess in drivers/s390/block/dasd.c.
-As soon as it gets fixed is_read_only() will die.
-
----
-[mandatory]
-
-->permission() is called without BKL now. Grab it on entry, drop upon
-return - that will guarantee the same locking you used to have. If
-your method or its parts do not need BKL - better yet, now you can
-shift lock_kernel() and unlock_kernel() so that they would protect
-exactly what needs to be protected.
-
----
-[mandatory]
-
-->statfs() is now called without BKL held. BKL should have been
-shifted into individual fs sb_op functions where it's not clear that
-it's safe to remove it. If you don't need it, remove it.
-
----
-[mandatory]
-
- is_read_only() is gone; use bdev_read_only() instead.
-
----
-[mandatory]
-
- destroy_buffers() is gone; use invalidate_bdev().
-
----
-[mandatory]
-
- fsync_dev() is gone; use fsync_bdev(). NOTE: lvm breakage is
-deliberate; as soon as struct block_device * is propagated in a reasonable
-way by that code fixing will become trivial; until then nothing can be
-done.
-
-[mandatory]
-
- block truncatation on error exit from ->write_begin, and ->direct_IO
-moved from generic methods (block_write_begin, cont_write_begin,
-nobh_write_begin, blockdev_direct_IO*) to callers. Take a look at
-ext2_write_failed and callers for an example.
-
-[mandatory]
-
- ->truncate is gone. The whole truncate sequence needs to be
-implemented in ->setattr, which is now mandatory for filesystems
-implementing on-disk size changes. Start with a copy of the old inode_setattr
-and vmtruncate, and the reorder the vmtruncate + foofs_vmtruncate sequence to
-be in order of zeroing blocks using block_truncate_page or similar helpers,
-size update and on finally on-disk truncation which should not fail.
-setattr_prepare (which used to be inode_change_ok) now includes the size checks
-for ATTR_SIZE and must be called in the beginning of ->setattr unconditionally.
-
-[mandatory]
-
- ->clear_inode() and ->delete_inode() are gone; ->evict_inode() should
-be used instead. It gets called whenever the inode is evicted, whether it has
-remaining links or not. Caller does *not* evict the pagecache or inode-associated
-metadata buffers; the method has to use truncate_inode_pages_final() to get rid
-of those. Caller makes sure async writeback cannot be running for the inode while
-(or after) ->evict_inode() is called.
-
- ->drop_inode() returns int now; it's called on final iput() with
-inode->i_lock held and it returns true if filesystems wants the inode to be
-dropped. As before, generic_drop_inode() is still the default and it's been
-updated appropriately. generic_delete_inode() is also alive and it consists
-simply of return 1. Note that all actual eviction work is done by caller after
-->drop_inode() returns.
-
- As before, clear_inode() must be called exactly once on each call of
-->evict_inode() (as it used to be for each call of ->delete_inode()). Unlike
-before, if you are using inode-associated metadata buffers (i.e.
-mark_buffer_dirty_inode()), it's your responsibility to call
-invalidate_inode_buffers() before clear_inode().
-
- NOTE: checking i_nlink in the beginning of ->write_inode() and bailing out
-if it's zero is not *and* *never* *had* *been* enough. Final unlink() and iput()
-may happen while the inode is in the middle of ->write_inode(); e.g. if you blindly
-free the on-disk inode, you may end up doing that while ->write_inode() is writing
-to it.
-
----
-[mandatory]
-
- .d_delete() now only advises the dcache as to whether or not to cache
-unreferenced dentries, and is now only called when the dentry refcount goes to
-0. Even on 0 refcount transition, it must be able to tolerate being called 0,
-1, or more times (eg. constant, idempotent).
-
----
-[mandatory]
-
- .d_compare() calling convention and locking rules are significantly
-changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
-look at examples of other filesystems) for guidance.
-
----
-[mandatory]
-
- .d_hash() calling convention and locking rules are significantly
-changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
-look at examples of other filesystems) for guidance.
-
----
-[mandatory]
- dcache_lock is gone, replaced by fine grained locks. See fs/dcache.c
-for details of what locks to replace dcache_lock with in order to protect
-particular things. Most of the time, a filesystem only needs ->d_lock, which
-protects *all* the dcache state of a given dentry.
-
---
-[mandatory]
-
- Filesystems must RCU-free their inodes, if they can have been accessed
-via rcu-walk path walk (basically, if the file can have had a path name in the
-vfs namespace).
-
- Even though i_dentry and i_rcu share storage in a union, we will
-initialize the former in inode_init_always(), so just leave it alone in
-the callback. It used to be necessary to clean it there, but not anymore
-(starting at 3.2).
-
---
-[recommended]
- vfs now tries to do path walking in "rcu-walk mode", which avoids
-atomic operations and scalability hazards on dentries and inodes (see
-Documentation/filesystems/path-lookup.txt). d_hash and d_compare changes
-(above) are examples of the changes required to support this. For more complex
-filesystem callbacks, the vfs drops out of rcu-walk mode before the fs call, so
-no changes are required to the filesystem. However, this is costly and loses
-the benefits of rcu-walk mode. We will begin to add filesystem callbacks that
-are rcu-walk aware, shown below. Filesystems should take advantage of this
-where possible.
-
---
-[mandatory]
- d_revalidate is a callback that is made on every path element (if
-the filesystem provides it), which requires dropping out of rcu-walk mode. This
-may now be called in rcu-walk mode (nd->flags & LOOKUP_RCU). -ECHILD should be
-returned if the filesystem cannot handle rcu-walk. See
-Documentation/filesystems/vfs.rst for more details.
-
- permission is an inode permission check that is called on many or all
-directory inodes on the way down a path walk (to check for exec permission). It
-must now be rcu-walk aware (mask & MAY_NOT_BLOCK). See
-Documentation/filesystems/vfs.rst for more details.
-
---
-[mandatory]
- In ->fallocate() you must check the mode option passed in. If your
-filesystem does not support hole punching (deallocating space in the middle of a
-file) you must return -EOPNOTSUPP if FALLOC_FL_PUNCH_HOLE is set in mode.
-Currently you can only have FALLOC_FL_PUNCH_HOLE with FALLOC_FL_KEEP_SIZE set,
-so the i_size should not change when hole punching, even when puching the end of
-a file off.
-
---
-[mandatory]
- ->get_sb() is gone. Switch to use of ->mount(). Typically it's just
-a matter of switching from calling get_sb_... to mount_... and changing the
-function type. If you were doing it manually, just switch from setting ->mnt_root
-to some pointer to returning that pointer. On errors return ERR_PTR(...).
-
---
-[mandatory]
- ->permission() and generic_permission()have lost flags
-argument; instead of passing IPERM_FLAG_RCU we add MAY_NOT_BLOCK into mask.
- generic_permission() has also lost the check_acl argument; ACL checking
-has been taken to VFS and filesystems need to provide a non-NULL ->i_op->get_acl
-to read an ACL from disk.
-
---
-[mandatory]
- If you implement your own ->llseek() you must handle SEEK_HOLE and
-SEEK_DATA. You can hanle this by returning -EINVAL, but it would be nicer to
-support it in some way. The generic handler assumes that the entire file is
-data and there is a virtual hole at the end of the file. So if the provided
-offset is less than i_size and SEEK_DATA is specified, return the same offset.
-If the above is true for the offset and you are given SEEK_HOLE, return the end
-of the file. If the offset is i_size or greater return -ENXIO in either case.
-
-[mandatory]
- If you have your own ->fsync() you must make sure to call
-filemap_write_and_wait_range() so that all dirty pages are synced out properly.
-You must also keep in mind that ->fsync() is not called with i_mutex held
-anymore, so if you require i_mutex locking you must make sure to take it and
-release it yourself.
-
---
-[mandatory]
- d_alloc_root() is gone, along with a lot of bugs caused by code
-misusing it. Replacement: d_make_root(inode). On success d_make_root(inode)
-allocates and returns a new dentry instantiated with the passed in inode.
-On failure NULL is returned and the passed in inode is dropped so the reference
-to inode is consumed in all cases and failure handling need not do any cleanup
-for the inode. If d_make_root(inode) is passed a NULL inode it returns NULL
-and also requires no further error handling. Typical usage is:
-
- inode = foofs_new_inode(....);
- s->s_root = d_make_root(inode);
- if (!s->s_root)
- /* Nothing needed for the inode cleanup */
- return -ENOMEM;
- ...
-
---
-[mandatory]
- The witch is dead! Well, 2/3 of it, anyway. ->d_revalidate() and
-->lookup() do *not* take struct nameidata anymore; just the flags.
---
-[mandatory]
- ->create() doesn't take struct nameidata *; unlike the previous
-two, it gets "is it an O_EXCL or equivalent?" boolean argument. Note that
-local filesystems can ignore tha argument - they are guaranteed that the
-object doesn't exist. It's remote/distributed ones that might care...
---
-[mandatory]
- FS_REVAL_DOT is gone; if you used to have it, add ->d_weak_revalidate()
-in your dentry operations instead.
---
-[mandatory]
- vfs_readdir() is gone; switch to iterate_dir() instead
---
-[mandatory]
- ->readdir() is gone now; switch to ->iterate()
-[mandatory]
- vfs_follow_link has been removed. Filesystems must use nd_set_link
- from ->follow_link for normal symlinks, or nd_jump_link for magic
- /proc/<pid> style links.
---
-[mandatory]
- iget5_locked()/ilookup5()/ilookup5_nowait() test() callback used to be
- called with both ->i_lock and inode_hash_lock held; the former is *not*
- taken anymore, so verify that your callbacks do not rely on it (none
- of the in-tree instances did). inode_hash_lock is still held,
- of course, so they are still serialized wrt removal from inode hash,
- as well as wrt set() callback of iget5_locked().
---
-[mandatory]
- d_materialise_unique() is gone; d_splice_alias() does everything you
- need now. Remember that they have opposite orders of arguments ;-/
---
-[mandatory]
- f_dentry is gone; use f_path.dentry, or, better yet, see if you can avoid
- it entirely.
---
-[mandatory]
- never call ->read() and ->write() directly; use __vfs_{read,write} or
- wrappers; instead of checking for ->write or ->read being NULL, look for
- FMODE_CAN_{WRITE,READ} in file->f_mode.
---
-[mandatory]
- do _not_ use new_sync_{read,write} for ->read/->write; leave it NULL
- instead.
---
-[mandatory]
- ->aio_read/->aio_write are gone. Use ->read_iter/->write_iter.
----
-[recommended]
- for embedded ("fast") symlinks just set inode->i_link to wherever the
- symlink body is and use simple_follow_link() as ->follow_link().
---
-[mandatory]
- calling conventions for ->follow_link() have changed. Instead of returning
- cookie and using nd_set_link() to store the body to traverse, we return
- the body to traverse and store the cookie using explicit void ** argument.
- nameidata isn't passed at all - nd_jump_link() doesn't need it and
- nd_[gs]et_link() is gone.
---
-[mandatory]
- calling conventions for ->put_link() have changed. It gets inode instead of
- dentry, it does not get nameidata at all and it gets called only when cookie
- is non-NULL. Note that link body isn't available anymore, so if you need it,
- store it as cookie.
---
-[mandatory]
- any symlink that might use page_follow_link_light/page_put_link() must
- have inode_nohighmem(inode) called before anything might start playing with
- its pagecache. No highmem pages should end up in the pagecache of such
- symlinks. That includes any preseeding that might be done during symlink
- creation. __page_symlink() will honour the mapping gfp flags, so once
- you've done inode_nohighmem() it's safe to use, but if you allocate and
- insert the page manually, make sure to use the right gfp flags.
---
-[mandatory]
- ->follow_link() is replaced with ->get_link(); same API, except that
- * ->get_link() gets inode as a separate argument
- * ->get_link() may be called in RCU mode - in that case NULL
- dentry is passed
---
-[mandatory]
- ->get_link() gets struct delayed_call *done now, and should do
- set_delayed_call() where it used to set *cookie.
- ->put_link() is gone - just give the destructor to set_delayed_call()
- in ->get_link().
---
-[mandatory]
- ->getxattr() and xattr_handler.get() get dentry and inode passed separately.
- dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
- in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
- called before we attach dentry to inode.
---
-[mandatory]
- symlinks are no longer the only inodes that do *not* have i_bdev/i_cdev/
- i_pipe/i_link union zeroed out at inode eviction. As the result, you can't
- assume that non-NULL value in ->i_nlink at ->destroy_inode() implies that
- it's a symlink. Checking ->i_mode is really needed now. In-tree we had
- to fix shmem_destroy_callback() that used to take that kind of shortcut;
- watch out, since that shortcut is no longer valid.
---
-[mandatory]
- ->i_mutex is replaced with ->i_rwsem now. inode_lock() et.al. work as
- they used to - they just take it exclusive. However, ->lookup() may be
- called with parent locked shared. Its instances must not
- * use d_instantiate) and d_rehash() separately - use d_add() or
- d_splice_alias() instead.
- * use d_rehash() alone - call d_add(new_dentry, NULL) instead.
- * in the unlikely case when (read-only) access to filesystem
- data structures needs exclusion for some reason, arrange it
- yourself. None of the in-tree filesystems needed that.
- * rely on ->d_parent and ->d_name not changing after dentry has
- been fed to d_add() or d_splice_alias(). Again, none of the
- in-tree instances relied upon that.
- We are guaranteed that lookups of the same name in the same directory
- will not happen in parallel ("same" in the sense of your ->d_compare()).
- Lookups on different names in the same directory can and do happen in
- parallel now.
---
-[recommended]
- ->iterate_shared() is added; it's a parallel variant of ->iterate().
- Exclusion on struct file level is still provided (as well as that
- between it and lseek on the same struct file), but if your directory
- has been opened several times, you can get these called in parallel.
- Exclusion between that method and all directory-modifying ones is
- still provided, of course.
-
- Often enough ->iterate() can serve as ->iterate_shared() without any
- changes - it is a read-only operation, after all. If you have any
- per-inode or per-dentry in-core data structures modified by ->iterate(),
- you might need something to serialize the access to them. If you
- do dcache pre-seeding, you'll need to switch to d_alloc_parallel() for
- that; look for in-tree examples.
-
- Old method is only used if the new one is absent; eventually it will
- be removed. Switch while you still can; the old one won't stay.
---
-[mandatory]
- ->atomic_open() calls without O_CREAT may happen in parallel.
---
-[mandatory]
- ->setxattr() and xattr_handler.set() get dentry and inode passed separately.
- dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
- in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
- called before we attach dentry to inode and !@#!@##!@$!$#!@#$!@$!@$ smack
- ->d_instantiate() uses not just ->getxattr() but ->setxattr() as well.
---
-[mandatory]
- ->d_compare() doesn't get parent as a separate argument anymore. If you
- used it for finding the struct super_block involved, dentry->d_sb will
- work just as well; if it's something more complicated, use dentry->d_parent.
- Just be careful not to assume that fetching it more than once will yield
- the same value - in RCU mode it could change under you.
---
-[mandatory]
- ->rename() has an added flags argument. Any flags not handled by the
- filesystem should result in EINVAL being returned.
---
-[recommended]
- ->readlink is optional for symlinks. Don't set, unless filesystem needs
- to fake something for readlink(2).
---
-[mandatory]
- ->getattr() is now passed a struct path rather than a vfsmount and
- dentry separately, and it now has request_mask and query_flags arguments
- to specify the fields and sync type requested by statx. Filesystems not
- supporting any statx-specific features may ignore the new arguments.
---
-[mandatory]
- ->atomic_open() calling conventions have changed. Gone is int *opened,
- along with FILE_OPENED/FILE_CREATED. In place of those we have
- FMODE_OPENED/FMODE_CREATED, set in file->f_mode. Additionally, return
- value for 'called finish_no_open(), open it yourself' case has become
- 0, not 1. Since finish_no_open() itself is returning 0 now, that part
- does not need any changes in ->atomic_open() instances.
---
-[mandatory]
- alloc_file() has become static now; two wrappers are to be used instead.
- alloc_file_pseudo(inode, vfsmount, name, flags, ops) is for the cases
- when dentry needs to be created; that's the majority of old alloc_file()
- users. Calling conventions: on success a reference to new struct file
- is returned and callers reference to inode is subsumed by that. On
- failure, ERR_PTR() is returned and no caller's references are affected,
- so the caller needs to drop the inode reference it held.
- alloc_file_clone(file, flags, ops) does not affect any caller's references.
- On success you get a new struct file sharing the mount/dentry with the
- original, on failure - ERR_PTR().
---
-[mandatory]
- ->clone_file_range() and ->dedupe_file_range have been replaced with
- ->remap_file_range(). See Documentation/filesystems/vfs.rst for more
- information.
---
-[recommended]
- ->lookup() instances doing an equivalent of
- if (IS_ERR(inode))
- return ERR_CAST(inode);
- return d_splice_alias(inode, dentry);
- don't need to bother with the check - d_splice_alias() will do the
- right thing when given ERR_PTR(...) as inode. Moreover, passing NULL
- inode to d_splice_alias() will also do the right thing (equivalent of
- d_add(dentry, NULL); return NULL;), so that kind of special cases
- also doesn't need a separate treatment.
---
-[strongly recommended]
- take the RCU-delayed parts of ->destroy_inode() into a new method -
- ->free_inode(). If ->destroy_inode() becomes empty - all the better,
- just get rid of it. Synchronous work (e.g. the stuff that can't
- be done from an RCU callback, or any WARN_ON() where we want the
- stack trace) *might* be movable to ->evict_inode(); however,
- that goes only for the things that are not needed to balance something
- done by ->alloc_inode(). IOW, if it's cleaning up the stuff that
- might have accumulated over the life of in-core inode, ->evict_inode()
- might be a fit.
-
- Rules for inode destruction:
- * if ->destroy_inode() is non-NULL, it gets called
- * if ->free_inode() is non-NULL, it gets scheduled by call_rcu()
- * combination of NULL ->destroy_inode and NULL ->free_inode is
- treated as NULL/free_inode_nonrcu, to preserve the compatibility.
-
- Note that the callback (be it via ->free_inode() or explicit call_rcu()
- in ->destroy_inode()) is *NOT* ordered wrt superblock destruction;
- as the matter of fact, the superblock and all associated structures
- might be already gone. The filesystem driver is guaranteed to be still
- there, but that's it. Freeing memory in the callback is fine; doing
- more than that is possible, but requires a lot of care and is best
- avoided.
---
-[mandatory]
- DCACHE_RCUACCESS is gone; having an RCU delay on dentry freeing is the
- default. DCACHE_NORCU opts out, and only d_alloc_pseudo() has any
- business doing so.
---
-[mandatory]
- d_alloc_pseudo() is internal-only; uses outside of alloc_file_pseudo() are
- very suspect (and won't work in modules). Such uses are very likely to
- be misspelled d_alloc_anon().
diff --git a/Documentation/filesystems/porting.rst b/Documentation/filesystems/porting.rst
new file mode 100644
index 000000000000..f18506083ced
--- /dev/null
+++ b/Documentation/filesystems/porting.rst
@@ -0,0 +1,852 @@
+====================
+Changes since 2.5.0:
+====================
+
+---
+
+**recommended**
+
+New helpers: sb_bread(), sb_getblk(), sb_find_get_block(), set_bh(),
+sb_set_blocksize() and sb_min_blocksize().
+
+Use them.
+
+(sb_find_get_block() replaces 2.4's get_hash_table())
+
+---
+
+**recommended**
+
+New methods: ->alloc_inode() and ->destroy_inode().
+
+Remove inode->u.foo_inode_i
+
+Declare::
+
+ struct foo_inode_info {
+ /* fs-private stuff */
+ struct inode vfs_inode;
+ };
+ static inline struct foo_inode_info *FOO_I(struct inode *inode)
+ {
+ return list_entry(inode, struct foo_inode_info, vfs_inode);
+ }
+
+Use FOO_I(inode) instead of &inode->u.foo_inode_i;
+
+Add foo_alloc_inode() and foo_destroy_inode() - the former should allocate
+foo_inode_info and return the address of ->vfs_inode, the latter should free
+FOO_I(inode) (see in-tree filesystems for examples).
+
+Make them ->alloc_inode and ->destroy_inode in your super_operations.
+
+Keep in mind that now you need explicit initialization of private data
+typically between calling iget_locked() and unlocking the inode.
+
+At some point that will become mandatory.
+
+---
+
+**mandatory**
+
+Change of file_system_type method (->read_super to ->get_sb)
+
+->read_super() is no more. Ditto for DECLARE_FSTYPE and DECLARE_FSTYPE_DEV.
+
+Turn your foo_read_super() into a function that would return 0 in case of
+success and negative number in case of error (-EINVAL unless you have more
+informative error value to report). Call it foo_fill_super(). Now declare::
+
+ int foo_get_sb(struct file_system_type *fs_type,
+ int flags, const char *dev_name, void *data, struct vfsmount *mnt)
+ {
+ return get_sb_bdev(fs_type, flags, dev_name, data, foo_fill_super,
+ mnt);
+ }
+
+(or similar with s/bdev/nodev/ or s/bdev/single/, depending on the kind of
+filesystem).
+
+Replace DECLARE_FSTYPE... with explicit initializer and have ->get_sb set as
+foo_get_sb.
+
+---
+
+**mandatory**
+
+Locking change: ->s_vfs_rename_sem is taken only by cross-directory renames.
+Most likely there is no need to change anything, but if you relied on
+global exclusion between renames for some internal purpose - you need to
+change your internal locking. Otherwise exclusion warranties remain the
+same (i.e. parents and victim are locked, etc.).
+
+---
+
+**informational**
+
+Now we have the exclusion between ->lookup() and directory removal (by
+->rmdir() and ->rename()). If you used to need that exclusion and do
+it by internal locking (most of filesystems couldn't care less) - you
+can relax your locking.
+
+---
+
+**mandatory**
+
+->lookup(), ->truncate(), ->create(), ->unlink(), ->mknod(), ->mkdir(),
+->rmdir(), ->link(), ->lseek(), ->symlink(), ->rename()
+and ->readdir() are called without BKL now. Grab it on entry, drop upon return
+- that will guarantee the same locking you used to have. If your method or its
+parts do not need BKL - better yet, now you can shift lock_kernel() and
+unlock_kernel() so that they would protect exactly what needs to be
+protected.
+
+---
+
+**mandatory**
+
+BKL is also moved from around sb operations. BKL should have been shifted into
+individual fs sb_op functions. If you don't need it, remove it.
+
+---
+
+**informational**
+
+check for ->link() target not being a directory is done by callers. Feel
+free to drop it...
+
+---
+
+**informational**
+
+->link() callers hold ->i_mutex on the object we are linking to. Some of your
+problems might be over...
+
+---
+
+**mandatory**
+
+new file_system_type method - kill_sb(superblock). If you are converting
+an existing filesystem, set it according to ->fs_flags::
+
+ FS_REQUIRES_DEV - kill_block_super
+ FS_LITTER - kill_litter_super
+ neither - kill_anon_super
+
+FS_LITTER is gone - just remove it from fs_flags.
+
+---
+
+**mandatory**
+
+FS_SINGLE is gone (actually, that had happened back when ->get_sb()
+went in - and hadn't been documented ;-/). Just remove it from fs_flags
+(and see ->get_sb() entry for other actions).
+
+---
+
+**mandatory**
+
+->setattr() is called without BKL now. Caller _always_ holds ->i_mutex, so
+watch for ->i_mutex-grabbing code that might be used by your ->setattr().
+Callers of notify_change() need ->i_mutex now.
+
+---
+
+**recommended**
+
+New super_block field ``struct export_operations *s_export_op`` for
+explicit support for exporting, e.g. via NFS. The structure is fully
+documented at its declaration in include/linux/fs.h, and in
+Documentation/filesystems/nfs/exporting.rst.
+
+Briefly it allows for the definition of decode_fh and encode_fh operations
+to encode and decode filehandles, and allows the filesystem to use
+a standard helper function for decode_fh, and provide file-system specific
+support for this helper, particularly get_parent.
+
+It is planned that this will be required for exporting once the code
+settles down a bit.
+
+**mandatory**
+
+s_export_op is now required for exporting a filesystem.
+isofs, ext2, ext3, resierfs, fat
+can be used as examples of very different filesystems.
+
+---
+
+**mandatory**
+
+iget4() and the read_inode2 callback have been superseded by iget5_locked()
+which has the following prototype::
+
+ struct inode *iget5_locked(struct super_block *sb, unsigned long ino,
+ int (*test)(struct inode *, void *),
+ int (*set)(struct inode *, void *),
+ void *data);
+
+'test' is an additional function that can be used when the inode
+number is not sufficient to identify the actual file object. 'set'
+should be a non-blocking function that initializes those parts of a
+newly created inode to allow the test function to succeed. 'data' is
+passed as an opaque value to both test and set functions.
+
+When the inode has been created by iget5_locked(), it will be returned with the
+I_NEW flag set and will still be locked. The filesystem then needs to finalize
+the initialization. Once the inode is initialized it must be unlocked by
+calling unlock_new_inode().
+
+The filesystem is responsible for setting (and possibly testing) i_ino
+when appropriate. There is also a simpler iget_locked function that
+just takes the superblock and inode number as arguments and does the
+test and set for you.
+
+e.g.::
+
+ inode = iget_locked(sb, ino);
+ if (inode->i_state & I_NEW) {
+ err = read_inode_from_disk(inode);
+ if (err < 0) {
+ iget_failed(inode);
+ return err;
+ }
+ unlock_new_inode(inode);
+ }
+
+Note that if the process of setting up a new inode fails, then iget_failed()
+should be called on the inode to render it dead, and an appropriate error
+should be passed back to the caller.
+
+---
+
+**recommended**
+
+->getattr() finally getting used. See instances in nfs, minix, etc.
+
+---
+
+**mandatory**
+
+->revalidate() is gone. If your filesystem had it - provide ->getattr()
+and let it call whatever you had as ->revlidate() + (for symlinks that
+had ->revalidate()) add calls in ->follow_link()/->readlink().
+
+---
+
+**mandatory**
+
+->d_parent changes are not protected by BKL anymore. Read access is safe
+if at least one of the following is true:
+
+ * filesystem has no cross-directory rename()
+ * we know that parent had been locked (e.g. we are looking at
+ ->d_parent of ->lookup() argument).
+ * we are called from ->rename().
+ * the child's ->d_lock is held
+
+Audit your code and add locking if needed. Notice that any place that is
+not protected by the conditions above is risky even in the old tree - you
+had been relying on BKL and that's prone to screwups. Old tree had quite
+a few holes of that kind - unprotected access to ->d_parent leading to
+anything from oops to silent memory corruption.
+
+---
+
+**mandatory**
+
+FS_NOMOUNT is gone. If you use it - just set SB_NOUSER in flags
+(see rootfs for one kind of solution and bdev/socket/pipe for another).
+
+---
+
+**recommended**
+
+Use bdev_read_only(bdev) instead of is_read_only(kdev). The latter
+is still alive, but only because of the mess in drivers/s390/block/dasd.c.
+As soon as it gets fixed is_read_only() will die.
+
+---
+
+**mandatory**
+
+->permission() is called without BKL now. Grab it on entry, drop upon
+return - that will guarantee the same locking you used to have. If
+your method or its parts do not need BKL - better yet, now you can
+shift lock_kernel() and unlock_kernel() so that they would protect
+exactly what needs to be protected.
+
+---
+
+**mandatory**
+
+->statfs() is now called without BKL held. BKL should have been
+shifted into individual fs sb_op functions where it's not clear that
+it's safe to remove it. If you don't need it, remove it.
+
+---
+
+**mandatory**
+
+is_read_only() is gone; use bdev_read_only() instead.
+
+---
+
+**mandatory**
+
+destroy_buffers() is gone; use invalidate_bdev().
+
+---
+
+**mandatory**
+
+fsync_dev() is gone; use fsync_bdev(). NOTE: lvm breakage is
+deliberate; as soon as struct block_device * is propagated in a reasonable
+way by that code fixing will become trivial; until then nothing can be
+done.
+
+**mandatory**
+
+block truncatation on error exit from ->write_begin, and ->direct_IO
+moved from generic methods (block_write_begin, cont_write_begin,
+nobh_write_begin, blockdev_direct_IO*) to callers. Take a look at
+ext2_write_failed and callers for an example.
+
+**mandatory**
+
+->truncate is gone. The whole truncate sequence needs to be
+implemented in ->setattr, which is now mandatory for filesystems
+implementing on-disk size changes. Start with a copy of the old inode_setattr
+and vmtruncate, and the reorder the vmtruncate + foofs_vmtruncate sequence to
+be in order of zeroing blocks using block_truncate_page or similar helpers,
+size update and on finally on-disk truncation which should not fail.
+setattr_prepare (which used to be inode_change_ok) now includes the size checks
+for ATTR_SIZE and must be called in the beginning of ->setattr unconditionally.
+
+**mandatory**
+
+->clear_inode() and ->delete_inode() are gone; ->evict_inode() should
+be used instead. It gets called whenever the inode is evicted, whether it has
+remaining links or not. Caller does *not* evict the pagecache or inode-associated
+metadata buffers; the method has to use truncate_inode_pages_final() to get rid
+of those. Caller makes sure async writeback cannot be running for the inode while
+(or after) ->evict_inode() is called.
+
+->drop_inode() returns int now; it's called on final iput() with
+inode->i_lock held and it returns true if filesystems wants the inode to be
+dropped. As before, generic_drop_inode() is still the default and it's been
+updated appropriately. generic_delete_inode() is also alive and it consists
+simply of return 1. Note that all actual eviction work is done by caller after
+->drop_inode() returns.
+
+As before, clear_inode() must be called exactly once on each call of
+->evict_inode() (as it used to be for each call of ->delete_inode()). Unlike
+before, if you are using inode-associated metadata buffers (i.e.
+mark_buffer_dirty_inode()), it's your responsibility to call
+invalidate_inode_buffers() before clear_inode().
+
+NOTE: checking i_nlink in the beginning of ->write_inode() and bailing out
+if it's zero is not *and* *never* *had* *been* enough. Final unlink() and iput()
+may happen while the inode is in the middle of ->write_inode(); e.g. if you blindly
+free the on-disk inode, you may end up doing that while ->write_inode() is writing
+to it.
+
+---
+
+**mandatory**
+
+.d_delete() now only advises the dcache as to whether or not to cache
+unreferenced dentries, and is now only called when the dentry refcount goes to
+0. Even on 0 refcount transition, it must be able to tolerate being called 0,
+1, or more times (eg. constant, idempotent).
+
+---
+
+**mandatory**
+
+.d_compare() calling convention and locking rules are significantly
+changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
+look at examples of other filesystems) for guidance.
+
+---
+
+**mandatory**
+
+.d_hash() calling convention and locking rules are significantly
+changed. Read updated documentation in Documentation/filesystems/vfs.rst (and
+look at examples of other filesystems) for guidance.
+
+---
+
+**mandatory**
+
+dcache_lock is gone, replaced by fine grained locks. See fs/dcache.c
+for details of what locks to replace dcache_lock with in order to protect
+particular things. Most of the time, a filesystem only needs ->d_lock, which
+protects *all* the dcache state of a given dentry.
+
+---
+
+**mandatory**
+
+Filesystems must RCU-free their inodes, if they can have been accessed
+via rcu-walk path walk (basically, if the file can have had a path name in the
+vfs namespace).
+
+Even though i_dentry and i_rcu share storage in a union, we will
+initialize the former in inode_init_always(), so just leave it alone in
+the callback. It used to be necessary to clean it there, but not anymore
+(starting at 3.2).
+
+---
+
+**recommended**
+
+vfs now tries to do path walking in "rcu-walk mode", which avoids
+atomic operations and scalability hazards on dentries and inodes (see
+Documentation/filesystems/path-lookup.txt). d_hash and d_compare changes
+(above) are examples of the changes required to support this. For more complex
+filesystem callbacks, the vfs drops out of rcu-walk mode before the fs call, so
+no changes are required to the filesystem. However, this is costly and loses
+the benefits of rcu-walk mode. We will begin to add filesystem callbacks that
+are rcu-walk aware, shown below. Filesystems should take advantage of this
+where possible.
+
+---
+
+**mandatory**
+
+d_revalidate is a callback that is made on every path element (if
+the filesystem provides it), which requires dropping out of rcu-walk mode. This
+may now be called in rcu-walk mode (nd->flags & LOOKUP_RCU). -ECHILD should be
+returned if the filesystem cannot handle rcu-walk. See
+Documentation/filesystems/vfs.rst for more details.
+
+permission is an inode permission check that is called on many or all
+directory inodes on the way down a path walk (to check for exec permission). It
+must now be rcu-walk aware (mask & MAY_NOT_BLOCK). See
+Documentation/filesystems/vfs.rst for more details.
+
+---
+
+**mandatory**
+
+In ->fallocate() you must check the mode option passed in. If your
+filesystem does not support hole punching (deallocating space in the middle of a
+file) you must return -EOPNOTSUPP if FALLOC_FL_PUNCH_HOLE is set in mode.
+Currently you can only have FALLOC_FL_PUNCH_HOLE with FALLOC_FL_KEEP_SIZE set,
+so the i_size should not change when hole punching, even when puching the end of
+a file off.
+
+---
+
+**mandatory**
+
+->get_sb() is gone. Switch to use of ->mount(). Typically it's just
+a matter of switching from calling ``get_sb_``... to ``mount_``... and changing
+the function type. If you were doing it manually, just switch from setting
+->mnt_root to some pointer to returning that pointer. On errors return
+ERR_PTR(...).
+
+---
+
+**mandatory**
+
+->permission() and generic_permission()have lost flags
+argument; instead of passing IPERM_FLAG_RCU we add MAY_NOT_BLOCK into mask.
+
+generic_permission() has also lost the check_acl argument; ACL checking
+has been taken to VFS and filesystems need to provide a non-NULL ->i_op->get_acl
+to read an ACL from disk.
+
+---
+
+**mandatory**
+
+If you implement your own ->llseek() you must handle SEEK_HOLE and
+SEEK_DATA. You can hanle this by returning -EINVAL, but it would be nicer to
+support it in some way. The generic handler assumes that the entire file is
+data and there is a virtual hole at the end of the file. So if the provided
+offset is less than i_size and SEEK_DATA is specified, return the same offset.
+If the above is true for the offset and you are given SEEK_HOLE, return the end
+of the file. If the offset is i_size or greater return -ENXIO in either case.
+
+**mandatory**
+
+If you have your own ->fsync() you must make sure to call
+filemap_write_and_wait_range() so that all dirty pages are synced out properly.
+You must also keep in mind that ->fsync() is not called with i_mutex held
+anymore, so if you require i_mutex locking you must make sure to take it and
+release it yourself.
+
+---
+
+**mandatory**
+
+d_alloc_root() is gone, along with a lot of bugs caused by code
+misusing it. Replacement: d_make_root(inode). On success d_make_root(inode)
+allocates and returns a new dentry instantiated with the passed in inode.
+On failure NULL is returned and the passed in inode is dropped so the reference
+to inode is consumed in all cases and failure handling need not do any cleanup
+for the inode. If d_make_root(inode) is passed a NULL inode it returns NULL
+and also requires no further error handling. Typical usage is::
+
+ inode = foofs_new_inode(....);
+ s->s_root = d_make_root(inode);
+ if (!s->s_root)
+ /* Nothing needed for the inode cleanup */
+ return -ENOMEM;
+ ...
+
+---
+
+**mandatory**
+
+The witch is dead! Well, 2/3 of it, anyway. ->d_revalidate() and
+->lookup() do *not* take struct nameidata anymore; just the flags.
+
+---
+
+**mandatory**
+
+->create() doesn't take ``struct nameidata *``; unlike the previous
+two, it gets "is it an O_EXCL or equivalent?" boolean argument. Note that
+local filesystems can ignore tha argument - they are guaranteed that the
+object doesn't exist. It's remote/distributed ones that might care...
+
+---
+
+**mandatory**
+
+FS_REVAL_DOT is gone; if you used to have it, add ->d_weak_revalidate()
+in your dentry operations instead.
+
+---
+
+**mandatory**
+
+vfs_readdir() is gone; switch to iterate_dir() instead
+
+---
+
+**mandatory**
+
+->readdir() is gone now; switch to ->iterate()
+
+**mandatory**
+
+vfs_follow_link has been removed. Filesystems must use nd_set_link
+from ->follow_link for normal symlinks, or nd_jump_link for magic
+/proc/<pid> style links.
+
+---
+
+**mandatory**
+
+iget5_locked()/ilookup5()/ilookup5_nowait() test() callback used to be
+called with both ->i_lock and inode_hash_lock held; the former is *not*
+taken anymore, so verify that your callbacks do not rely on it (none
+of the in-tree instances did). inode_hash_lock is still held,
+of course, so they are still serialized wrt removal from inode hash,
+as well as wrt set() callback of iget5_locked().
+
+---
+
+**mandatory**
+
+d_materialise_unique() is gone; d_splice_alias() does everything you
+need now. Remember that they have opposite orders of arguments ;-/
+
+---
+
+**mandatory**
+
+f_dentry is gone; use f_path.dentry, or, better yet, see if you can avoid
+it entirely.
+
+---
+
+**mandatory**
+
+never call ->read() and ->write() directly; use __vfs_{read,write} or
+wrappers; instead of checking for ->write or ->read being NULL, look for
+FMODE_CAN_{WRITE,READ} in file->f_mode.
+
+---
+
+**mandatory**
+
+do _not_ use new_sync_{read,write} for ->read/->write; leave it NULL
+instead.
+
+---
+
+**mandatory**
+ ->aio_read/->aio_write are gone. Use ->read_iter/->write_iter.
+
+---
+
+**recommended**
+
+for embedded ("fast") symlinks just set inode->i_link to wherever the
+symlink body is and use simple_follow_link() as ->follow_link().
+
+---
+
+**mandatory**
+
+calling conventions for ->follow_link() have changed. Instead of returning
+cookie and using nd_set_link() to store the body to traverse, we return
+the body to traverse and store the cookie using explicit void ** argument.
+nameidata isn't passed at all - nd_jump_link() doesn't need it and
+nd_[gs]et_link() is gone.
+
+---
+
+**mandatory**
+
+calling conventions for ->put_link() have changed. It gets inode instead of
+dentry, it does not get nameidata at all and it gets called only when cookie
+is non-NULL. Note that link body isn't available anymore, so if you need it,
+store it as cookie.
+
+---
+
+**mandatory**
+
+any symlink that might use page_follow_link_light/page_put_link() must
+have inode_nohighmem(inode) called before anything might start playing with
+its pagecache. No highmem pages should end up in the pagecache of such
+symlinks. That includes any preseeding that might be done during symlink
+creation. __page_symlink() will honour the mapping gfp flags, so once
+you've done inode_nohighmem() it's safe to use, but if you allocate and
+insert the page manually, make sure to use the right gfp flags.
+
+---
+
+**mandatory**
+
+->follow_link() is replaced with ->get_link(); same API, except that
+
+ * ->get_link() gets inode as a separate argument
+ * ->get_link() may be called in RCU mode - in that case NULL
+ dentry is passed
+
+---
+
+**mandatory**
+
+->get_link() gets struct delayed_call ``*done`` now, and should do
+set_delayed_call() where it used to set ``*cookie``.
+
+->put_link() is gone - just give the destructor to set_delayed_call()
+in ->get_link().
+
+---
+
+**mandatory**
+
+->getxattr() and xattr_handler.get() get dentry and inode passed separately.
+dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
+in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
+called before we attach dentry to inode.
+
+---
+
+**mandatory**
+
+symlinks are no longer the only inodes that do *not* have i_bdev/i_cdev/
+i_pipe/i_link union zeroed out at inode eviction. As the result, you can't
+assume that non-NULL value in ->i_nlink at ->destroy_inode() implies that
+it's a symlink. Checking ->i_mode is really needed now. In-tree we had
+to fix shmem_destroy_callback() that used to take that kind of shortcut;
+watch out, since that shortcut is no longer valid.
+
+---
+
+**mandatory**
+
+->i_mutex is replaced with ->i_rwsem now. inode_lock() et.al. work as
+they used to - they just take it exclusive. However, ->lookup() may be
+called with parent locked shared. Its instances must not
+
+ * use d_instantiate) and d_rehash() separately - use d_add() or
+ d_splice_alias() instead.
+ * use d_rehash() alone - call d_add(new_dentry, NULL) instead.
+ * in the unlikely case when (read-only) access to filesystem
+ data structures needs exclusion for some reason, arrange it
+ yourself. None of the in-tree filesystems needed that.
+ * rely on ->d_parent and ->d_name not changing after dentry has
+ been fed to d_add() or d_splice_alias(). Again, none of the
+ in-tree instances relied upon that.
+
+We are guaranteed that lookups of the same name in the same directory
+will not happen in parallel ("same" in the sense of your ->d_compare()).
+Lookups on different names in the same directory can and do happen in
+parallel now.
+
+---
+
+**recommended**
+
+->iterate_shared() is added; it's a parallel variant of ->iterate().
+Exclusion on struct file level is still provided (as well as that
+between it and lseek on the same struct file), but if your directory
+has been opened several times, you can get these called in parallel.
+Exclusion between that method and all directory-modifying ones is
+still provided, of course.
+
+Often enough ->iterate() can serve as ->iterate_shared() without any
+changes - it is a read-only operation, after all. If you have any
+per-inode or per-dentry in-core data structures modified by ->iterate(),
+you might need something to serialize the access to them. If you
+do dcache pre-seeding, you'll need to switch to d_alloc_parallel() for
+that; look for in-tree examples.
+
+Old method is only used if the new one is absent; eventually it will
+be removed. Switch while you still can; the old one won't stay.
+
+---
+
+**mandatory**
+
+->atomic_open() calls without O_CREAT may happen in parallel.
+
+---
+
+**mandatory**
+
+->setxattr() and xattr_handler.set() get dentry and inode passed separately.
+dentry might be yet to be attached to inode, so do _not_ use its ->d_inode
+in the instances. Rationale: !@#!@# security_d_instantiate() needs to be
+called before we attach dentry to inode and !@#!@##!@$!$#!@#$!@$!@$ smack
+->d_instantiate() uses not just ->getxattr() but ->setxattr() as well.
+
+---
+
+**mandatory**
+
+->d_compare() doesn't get parent as a separate argument anymore. If you
+used it for finding the struct super_block involved, dentry->d_sb will
+work just as well; if it's something more complicated, use dentry->d_parent.
+Just be careful not to assume that fetching it more than once will yield
+the same value - in RCU mode it could change under you.
+
+---
+
+**mandatory**
+
+->rename() has an added flags argument. Any flags not handled by the
+filesystem should result in EINVAL being returned.
+
+---
+
+
+**recommended**
+
+->readlink is optional for symlinks. Don't set, unless filesystem needs
+to fake something for readlink(2).
+
+---
+
+**mandatory**
+
+->getattr() is now passed a struct path rather than a vfsmount and
+dentry separately, and it now has request_mask and query_flags arguments
+to specify the fields and sync type requested by statx. Filesystems not
+supporting any statx-specific features may ignore the new arguments.
+
+---
+
+**mandatory**
+
+->atomic_open() calling conventions have changed. Gone is ``int *opened``,
+along with FILE_OPENED/FILE_CREATED. In place of those we have
+FMODE_OPENED/FMODE_CREATED, set in file->f_mode. Additionally, return
+value for 'called finish_no_open(), open it yourself' case has become
+0, not 1. Since finish_no_open() itself is returning 0 now, that part
+does not need any changes in ->atomic_open() instances.
+
+---
+
+**mandatory**
+
+alloc_file() has become static now; two wrappers are to be used instead.
+alloc_file_pseudo(inode, vfsmount, name, flags, ops) is for the cases
+when dentry needs to be created; that's the majority of old alloc_file()
+users. Calling conventions: on success a reference to new struct file
+is returned and callers reference to inode is subsumed by that. On
+failure, ERR_PTR() is returned and no caller's references are affected,
+so the caller needs to drop the inode reference it held.
+alloc_file_clone(file, flags, ops) does not affect any caller's references.
+On success you get a new struct file sharing the mount/dentry with the
+original, on failure - ERR_PTR().
+
+---
+
+**mandatory**
+
+->clone_file_range() and ->dedupe_file_range have been replaced with
+->remap_file_range(). See Documentation/filesystems/vfs.rst for more
+information.
+
+---
+
+**recommended**
+
+->lookup() instances doing an equivalent of::
+
+ if (IS_ERR(inode))
+ return ERR_CAST(inode);
+ return d_splice_alias(inode, dentry);
+
+don't need to bother with the check - d_splice_alias() will do the
+right thing when given ERR_PTR(...) as inode. Moreover, passing NULL
+inode to d_splice_alias() will also do the right thing (equivalent of
+d_add(dentry, NULL); return NULL;), so that kind of special cases
+also doesn't need a separate treatment.
+
+---
+
+**strongly recommended**
+
+take the RCU-delayed parts of ->destroy_inode() into a new method -
+->free_inode(). If ->destroy_inode() becomes empty - all the better,
+just get rid of it. Synchronous work (e.g. the stuff that can't
+be done from an RCU callback, or any WARN_ON() where we want the
+stack trace) *might* be movable to ->evict_inode(); however,
+that goes only for the things that are not needed to balance something
+done by ->alloc_inode(). IOW, if it's cleaning up the stuff that
+might have accumulated over the life of in-core inode, ->evict_inode()
+might be a fit.
+
+Rules for inode destruction:
+
+ * if ->destroy_inode() is non-NULL, it gets called
+ * if ->free_inode() is non-NULL, it gets scheduled by call_rcu()
+ * combination of NULL ->destroy_inode and NULL ->free_inode is
+ treated as NULL/free_inode_nonrcu, to preserve the compatibility.
+
+Note that the callback (be it via ->free_inode() or explicit call_rcu()
+in ->destroy_inode()) is *NOT* ordered wrt superblock destruction;
+as the matter of fact, the superblock and all associated structures
+might be already gone. The filesystem driver is guaranteed to be still
+there, but that's it. Freeing memory in the callback is fine; doing
+more than that is possible, but requires a lot of care and is best
+avoided.
+
+---
+
+**mandatory**
+
+DCACHE_RCUACCESS is gone; having an RCU delay on dentry freeing is the
+default. DCACHE_NORCU opts out, and only d_alloc_pseudo() has any
+business doing so.
+
+---
+
+**mandatory**
+
+d_alloc_pseudo() is internal-only; uses outside of alloc_file_pseudo() are
+very suspect (and won't work in modules). Such uses are very likely to
+be misspelled d_alloc_anon().
diff --git a/Documentation/filesystems/ubifs-authentication.md b/Documentation/filesystems/ubifs-authentication.rst
index 23e698167141..6a9584f6ff46 100644
--- a/Documentation/filesystems/ubifs-authentication.md
+++ b/Documentation/filesystems/ubifs-authentication.rst
@@ -1,8 +1,11 @@
-% UBIFS Authentication
-% sigma star gmbh
-% 2018
+:orphan:
-# Introduction
+.. UBIFS Authentication
+.. sigma star gmbh
+.. 2018
+
+Introduction
+============
UBIFS utilizes the fscrypt framework to provide confidentiality for file
contents and file names. This prevents attacks where an attacker is able to
@@ -33,7 +36,8 @@ existing features like key derivation can be utilized. It should however also
be possible to use UBIFS authentication without using encryption.
-## MTD, UBI & UBIFS
+MTD, UBI & UBIFS
+----------------
On Linux, the MTD (Memory Technology Devices) subsystem provides a uniform
interface to access raw flash devices. One of the more prominent subsystems that
@@ -47,7 +51,7 @@ UBIFS is a filesystem for raw flash which operates on top of UBI. Thus, wear
leveling and some flash specifics are left to UBI, while UBIFS focuses on
scalability, performance and recoverability.
-
+::
+------------+ +*******+ +-----------+ +-----+
| | * UBIFS * | UBI-BLOCK | | ... |
@@ -84,7 +88,8 @@ persisted onto the flash directly. More details on UBIFS can also be found in
[UBIFS-WP].
-### UBIFS Index & Tree Node Cache
+UBIFS Index & Tree Node Cache
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Basic on-flash UBIFS entities are called *nodes*. UBIFS knows different types
of nodes. Eg. data nodes (`struct ubifs_data_node`) which store chunks of file
@@ -118,17 +123,18 @@ on-flash filesystem structures like the index. On every commit, the TNC nodes
marked as dirty are written to the flash to update the persisted index.
-### Journal
+Journal
+~~~~~~~
To avoid wearing out the flash, the index is only persisted (*commited*) when
-certain conditions are met (eg. `fsync(2)`). The journal is used to record
+certain conditions are met (eg. ``fsync(2)``). The journal is used to record
any changes (in form of inode nodes, data nodes etc.) between commits
of the index. During mount, the journal is read from the flash and replayed
onto the TNC (which will be created on-demand from the on-flash index).
UBIFS reserves a bunch of LEBs just for the journal called *log area*. The
amount of log area LEBs is configured on filesystem creation (using
-`mkfs.ubifs`) and stored in the superblock node. The log area contains only
+``mkfs.ubifs``) and stored in the superblock node. The log area contains only
two types of nodes: *reference nodes* and *commit start nodes*. A commit start
node is written whenever an index commit is performed. Reference nodes are
written on every journal update. Each reference node points to the position of
@@ -152,6 +158,7 @@ done for the last referenced LEB of the journal. Only this can become corrupt
because of a power cut. If the recovery fails, UBIFS will not mount. An error
for every other LEB will directly cause UBIFS to fail the mount operation.
+::
| ---- LOG AREA ---- | ---------- MAIN AREA ------------ |
@@ -172,10 +179,11 @@ for every other LEB will directly cause UBIFS to fail the mount operation.
containing their buds
-### LEB Property Tree/Table
+LEB Property Tree/Table
+~~~~~~~~~~~~~~~~~~~~~~~
The LEB property tree is used to store per-LEB information. This includes the
-LEB type and amount of free and *dirty* (old, obsolete content) space [1] on
+LEB type and amount of free and *dirty* (old, obsolete content) space [1]_ on
the LEB. The type is important, because UBIFS never mixes index nodes with data
nodes on a single LEB and thus each LEB has a specific purpose. This again is
useful for free space calculations. See [UBIFS-WP] for more details.
@@ -185,19 +193,21 @@ index. Due to its smaller size it is always written as one chunk on every
commit. Thus, saving the LPT is an atomic operation.
-[1] Since LEBs can only be appended and never overwritten, there is a
-difference between free space ie. the remaining space left on the LEB to be
-written to without erasing it and previously written content that is obsolete
-but can't be overwritten without erasing the full LEB.
+.. [1] Since LEBs can only be appended and never overwritten, there is a
+ difference between free space ie. the remaining space left on the LEB to be
+ written to without erasing it and previously written content that is obsolete
+ but can't be overwritten without erasing the full LEB.
-# UBIFS Authentication
+UBIFS Authentication
+====================
This chapter introduces UBIFS authentication which enables UBIFS to verify
the authenticity and integrity of metadata and file contents stored on flash.
-## Threat Model
+Threat Model
+------------
UBIFS authentication enables detection of offline data modification. While it
does not prevent it, it enables (trusted) code to check the integrity and
@@ -224,7 +234,8 @@ Additional measures like secure boot and trusted boot have to be taken to
ensure that only trusted code is executed on a device.
-## Authentication
+Authentication
+--------------
To be able to fully trust data read from flash, all UBIFS data structures
stored on flash are authenticated. That is:
@@ -236,7 +247,8 @@ stored on flash are authenticated. That is:
- The LPT which stores UBI LEB metadata which UBIFS uses for free space accounting
-### Index Authentication
+Index Authentication
+~~~~~~~~~~~~~~~~~~~~
Through UBIFS' concept of a wandering tree, it already takes care of only
updating and persisting changed parts from leaf node up to the root node
@@ -260,6 +272,7 @@ include a hash. All other types of nodes will remain unchanged. This reduces
the storage overhead which is precious for users of UBIFS (ie. embedded
devices).
+::
+---------------+
| Master Node |
@@ -303,7 +316,8 @@ hashes to index nodes does not change this since each hash will be persisted
atomically together with its respective node.
-### Journal Authentication
+Journal Authentication
+~~~~~~~~~~~~~~~~~~~~~~
The journal is authenticated too. Since the journal is continuously written
it is necessary to also add authentication information frequently to the
@@ -316,7 +330,7 @@ of the hash chain. That way a journal can be authenticated up to the last
authentication node. The tail of the journal which may not have a authentication
node cannot be authenticated and is skipped during journal replay.
-We get this picture for journal authentication:
+We get this picture for journal authentication::
,,,,,,,,
,......,...........................................
@@ -352,7 +366,8 @@ the superblock struct. The superblock node is stored in LEB 0 and is only
modified on feature flag or similar changes, but never on file changes.
-### LPT Authentication
+LPT Authentication
+~~~~~~~~~~~~~~~~~~
The location of the LPT root node on the flash is stored in the UBIFS master
node. Since the LPT is written and read atomically on every commit, there is
@@ -363,7 +378,8 @@ be verified by verifying the authenticity of the master node and comparing the
LTP hash stored there with the hash computed from the read on-flash LPT.
-## Key Management
+Key Management
+--------------
For simplicity, UBIFS authentication uses a single key to compute the HMACs
of superblock, master, commit start and reference nodes. This key has to be
@@ -399,7 +415,8 @@ approach is similar to the approach proposed for fscrypt encryption policy v2
[FSCRYPT-POLICY2].
-# Future Extensions
+Future Extensions
+=================
In certain cases where a vendor wants to provide an authenticated filesystem
image to customers, it should be possible to do so without sharing the secret
@@ -411,7 +428,8 @@ to the way the IMA/EVM subsystem deals with such situations. The HMAC key
will then have to be provided beforehand in the normal way.
-# References
+References
+==========
[CRYPTSETUP2] http://www.saout.de/pipermail/dm-crypt/2017-November/005745.html
diff --git a/Documentation/filesystems/ufs.txt b/Documentation/filesystems/ufs.txt
deleted file mode 100644
index 7a602adeca2b..000000000000
--- a/Documentation/filesystems/ufs.txt
+++ /dev/null
@@ -1,60 +0,0 @@
-USING UFS
-=========
-
-mount -t ufs -o ufstype=type_of_ufs device dir
-
-
-UFS OPTIONS
-===========
-
-ufstype=type_of_ufs
- UFS is a file system widely used in different operating systems.
- The problem are differences among implementations. Features of
- some implementations are undocumented, so its hard to recognize
- type of ufs automatically. That's why user must specify type of
- ufs manually by mount option ufstype. Possible values are:
-
- old old format of ufs
- default value, supported as read-only
-
- 44bsd used in FreeBSD, NetBSD, OpenBSD
- supported as read-write
-
- ufs2 used in FreeBSD 5.x
- supported as read-write
-
- 5xbsd synonym for ufs2
-
- sun used in SunOS (Solaris)
- supported as read-write
-
- sunx86 used in SunOS for Intel (Solarisx86)
- supported as read-write
-
- hp used in HP-UX
- supported as read-only
-
- nextstep
- used in NextStep
- supported as read-only
-
- nextstep-cd
- used for NextStep CDROMs (block_size == 2048)
- supported as read-only
-
- openstep
- used in OpenStep
- supported as read-only
-
-
-POSSIBLE PROBLEMS
-=================
-
-See next section, if you have any.
-
-
-BUG REPORTS
-===========
-
-Any ufs bug report you can send to daniel.pirkl@email.cz or
-to dushistov@mail.ru (do not send partition tables bug reports).
diff --git a/Documentation/filesystems/vfat.rst b/Documentation/filesystems/vfat.rst
new file mode 100644
index 000000000000..e85d74e91295
--- /dev/null
+++ b/Documentation/filesystems/vfat.rst
@@ -0,0 +1,387 @@
+====
+VFAT
+====
+
+USING VFAT
+==========
+
+To use the vfat filesystem, use the filesystem type 'vfat'. i.e.::
+
+ mount -t vfat /dev/fd0 /mnt
+
+
+No special partition formatter is required,
+'mkdosfs' will work fine if you want to format from within Linux.
+
+VFAT MOUNT OPTIONS
+==================
+
+**uid=###**
+ Set the owner of all files on this filesystem.
+ The default is the uid of current process.
+
+**gid=###**
+ Set the group of all files on this filesystem.
+ The default is the gid of current process.
+
+**umask=###**
+ The permission mask (for files and directories, see *umask(1)*).
+ The default is the umask of current process.
+
+**dmask=###**
+ The permission mask for the directory.
+ The default is the umask of current process.
+
+**fmask=###**
+ The permission mask for files.
+ The default is the umask of current process.
+
+**allow_utime=###**
+ This option controls the permission check of mtime/atime.
+
+ **-20**: If current process is in group of file's group ID,
+ you can change timestamp.
+
+ **-2**: Other users can change timestamp.
+
+ The default is set from dmask option. If the directory is
+ writable, utime(2) is also allowed. i.e. ~dmask & 022.
+
+ Normally utime(2) checks current process is owner of
+ the file, or it has CAP_FOWNER capability. But FAT
+ filesystem doesn't have uid/gid on disk, so normal
+ check is too unflexible. With this option you can
+ relax it.
+
+**codepage=###**
+ Sets the codepage number for converting to shortname
+ characters on FAT filesystem.
+ By default, FAT_DEFAULT_CODEPAGE setting is used.
+
+**iocharset=<name>**
+ Character set to use for converting between the
+ encoding is used for user visible filename and 16 bit
+ Unicode characters. Long filenames are stored on disk
+ in Unicode format, but Unix for the most part doesn't
+ know how to deal with Unicode.
+ By default, FAT_DEFAULT_IOCHARSET setting is used.
+
+ There is also an option of doing UTF-8 translations
+ with the utf8 option.
+
+.. note:: ``iocharset=utf8`` is not recommended. If unsure, you should consider
+ the utf8 option instead.
+
+**utf8=<bool>**
+ UTF-8 is the filesystem safe version of Unicode that
+ is used by the console. It can be enabled or disabled
+ for the filesystem with this option.
+ If 'uni_xlate' gets set, UTF-8 gets disabled.
+ By default, FAT_DEFAULT_UTF8 setting is used.
+
+**uni_xlate=<bool>**
+ Translate unhandled Unicode characters to special
+ escaped sequences. This would let you backup and
+ restore filenames that are created with any Unicode
+ characters. Until Linux supports Unicode for real,
+ this gives you an alternative. Without this option,
+ a '?' is used when no translation is possible. The
+ escape character is ':' because it is otherwise
+ illegal on the vfat filesystem. The escape sequence
+ that gets used is ':' and the four digits of hexadecimal
+ unicode.
+
+**nonumtail=<bool>**
+ When creating 8.3 aliases, normally the alias will
+ end in '~1' or tilde followed by some number. If this
+ option is set, then if the filename is
+ "longfilename.txt" and "longfile.txt" does not
+ currently exist in the directory, longfile.txt will
+ be the short alias instead of longfi~1.txt.
+
+**usefree**
+ Use the "free clusters" value stored on FSINFO. It will
+ be used to determine number of free clusters without
+ scanning disk. But it's not used by default, because
+ recent Windows don't update it correctly in some
+ case. If you are sure the "free clusters" on FSINFO is
+ correct, by this option you can avoid scanning disk.
+
+**quiet**
+ Stops printing certain warning messages.
+
+**check=s|r|n**
+ Case sensitivity checking setting.
+
+ **s**: strict, case sensitive
+
+ **r**: relaxed, case insensitive
+
+ **n**: normal, default setting, currently case insensitive
+
+**nocase**
+ This was deprecated for vfat. Use ``shortname=win95`` instead.
+
+**shortname=lower|win95|winnt|mixed**
+ Shortname display/create setting.
+
+ **lower**: convert to lowercase for display,
+ emulate the Windows 95 rule for create.
+
+ **win95**: emulate the Windows 95 rule for display/create.
+
+ **winnt**: emulate the Windows NT rule for display/create.
+
+ **mixed**: emulate the Windows NT rule for display,
+ emulate the Windows 95 rule for create.
+
+ Default setting is `mixed`.
+
+**tz=UTC**
+ Interpret timestamps as UTC rather than local time.
+ This option disables the conversion of timestamps
+ between local time (as used by Windows on FAT) and UTC
+ (which Linux uses internally). This is particularly
+ useful when mounting devices (like digital cameras)
+ that are set to UTC in order to avoid the pitfalls of
+ local time.
+
+**time_offset=minutes**
+ Set offset for conversion of timestamps from local time
+ used by FAT to UTC. I.e. <minutes> minutes will be subtracted
+ from each timestamp to convert it to UTC used internally by
+ Linux. This is useful when time zone set in ``sys_tz`` is
+ not the time zone used by the filesystem. Note that this
+ option still does not provide correct time stamps in all
+ cases in presence of DST - time stamps in a different DST
+ setting will be off by one hour.
+
+**showexec**
+ If set, the execute permission bits of the file will be
+ allowed only if the extension part of the name is .EXE,
+ .COM, or .BAT. Not set by default.
+
+**debug**
+ Can be set, but unused by the current implementation.
+
+**sys_immutable**
+ If set, ATTR_SYS attribute on FAT is handled as
+ IMMUTABLE flag on Linux. Not set by default.
+
+**flush**
+ If set, the filesystem will try to flush to disk more
+ early than normal. Not set by default.
+
+**rodir**
+ FAT has the ATTR_RO (read-only) attribute. On Windows,
+ the ATTR_RO of the directory will just be ignored,
+ and is used only by applications as a flag (e.g. it's set
+ for the customized folder).
+
+ If you want to use ATTR_RO as read-only flag even for
+ the directory, set this option.
+
+**errors=panic|continue|remount-ro**
+ specify FAT behavior on critical errors: panic, continue
+ without doing anything or remount the partition in
+ read-only mode (default behavior).
+
+**discard**
+ If set, issues discard/TRIM commands to the block
+ device when blocks are freed. This is useful for SSD devices
+ and sparse/thinly-provisoned LUNs.
+
+**nfs=stale_rw|nostale_ro**
+ Enable this only if you want to export the FAT filesystem
+ over NFS.
+
+ **stale_rw**: This option maintains an index (cache) of directory
+ *inodes* by *i_logstart* which is used by the nfs-related code to
+ improve look-ups. Full file operations (read/write) over NFS is
+ supported but with cache eviction at NFS server, this could
+ result in ESTALE issues.
+
+ **nostale_ro**: This option bases the *inode* number and filehandle
+ on the on-disk location of a file in the MS-DOS directory entry.
+ This ensures that ESTALE will not be returned after a file is
+ evicted from the inode cache. However, it means that operations
+ such as rename, create and unlink could cause filehandles that
+ previously pointed at one file to point at a different file,
+ potentially causing data corruption. For this reason, this
+ option also mounts the filesystem readonly.
+
+ To maintain backward compatibility, ``'-o nfs'`` is also accepted,
+ defaulting to "stale_rw".
+
+**dos1xfloppy <bool>: 0,1,yes,no,true,false**
+ If set, use a fallback default BIOS Parameter Block
+ configuration, determined by backing device size. These static
+ parameters match defaults assumed by DOS 1.x for 160 kiB,
+ 180 kiB, 320 kiB, and 360 kiB floppies and floppy images.
+
+
+
+LIMITATION
+==========
+
+The fallocated region of file is discarded at umount/evict time
+when using fallocate with FALLOC_FL_KEEP_SIZE.
+So, User should assume that fallocated region can be discarded at
+last close if there is memory pressure resulting in eviction of
+the inode from the memory. As a result, for any dependency on
+the fallocated region, user should make sure to recheck fallocate
+after reopening the file.
+
+TODO
+====
+Need to get rid of the raw scanning stuff. Instead, always use
+a get next directory entry approach. The only thing left that uses
+raw scanning is the directory renaming code.
+
+
+POSSIBLE PROBLEMS
+=================
+
+- vfat_valid_longname does not properly checked reserved names.
+- When a volume name is the same as a directory name in the root
+ directory of the filesystem, the directory name sometimes shows
+ up as an empty file.
+- autoconv option does not work correctly.
+
+
+TEST SUITE
+==========
+If you plan to make any modifications to the vfat filesystem, please
+get the test suite that comes with the vfat distribution at
+
+`<http://web.archive.org/web/*/http://bmrc.berkeley.edu/people/chaffee/vfat.html>`_
+
+This tests quite a few parts of the vfat filesystem and additional
+tests for new features or untested features would be appreciated.
+
+NOTES ON THE STRUCTURE OF THE VFAT FILESYSTEM
+=============================================
+This documentation was provided by Galen C. Hunt gchunt@cs.rochester.edu and
+lightly annotated by Gordon Chaffee.
+
+This document presents a very rough, technical overview of my
+knowledge of the extended FAT file system used in Windows NT 3.5 and
+Windows 95. I don't guarantee that any of the following is correct,
+but it appears to be so.
+
+The extended FAT file system is almost identical to the FAT
+file system used in DOS versions up to and including *6.223410239847*
+:-). The significant change has been the addition of long file names.
+These names support up to 255 characters including spaces and lower
+case characters as opposed to the traditional 8.3 short names.
+
+Here is the description of the traditional FAT entry in the current
+Windows 95 filesystem::
+
+ struct directory { // Short 8.3 names
+ unsigned char name[8]; // file name
+ unsigned char ext[3]; // file extension
+ unsigned char attr; // attribute byte
+ unsigned char lcase; // Case for base and extension
+ unsigned char ctime_ms; // Creation time, milliseconds
+ unsigned char ctime[2]; // Creation time
+ unsigned char cdate[2]; // Creation date
+ unsigned char adate[2]; // Last access date
+ unsigned char reserved[2]; // reserved values (ignored)
+ unsigned char time[2]; // time stamp
+ unsigned char date[2]; // date stamp
+ unsigned char start[2]; // starting cluster number
+ unsigned char size[4]; // size of the file
+ };
+
+
+The lcase field specifies if the base and/or the extension of an 8.3
+name should be capitalized. This field does not seem to be used by
+Windows 95 but it is used by Windows NT. The case of filenames is not
+completely compatible from Windows NT to Windows 95. It is not completely
+compatible in the reverse direction, however. Filenames that fit in
+the 8.3 namespace and are written on Windows NT to be lowercase will
+show up as uppercase on Windows 95.
+
+.. note:: Note that the ``start`` and ``size`` values are actually little
+ endian integer values. The descriptions of the fields in this
+ structure are public knowledge and can be found elsewhere.
+
+With the extended FAT system, Microsoft has inserted extra
+directory entries for any files with extended names. (Any name which
+legally fits within the old 8.3 encoding scheme does not have extra
+entries.) I call these extra entries slots. Basically, a slot is a
+specially formatted directory entry which holds up to 13 characters of
+a file's extended name. Think of slots as additional labeling for the
+directory entry of the file to which they correspond. Microsoft
+prefers to refer to the 8.3 entry for a file as its alias and the
+extended slot directory entries as the file name.
+
+The C structure for a slot directory entry follows::
+
+ struct slot { // Up to 13 characters of a long name
+ unsigned char id; // sequence number for slot
+ unsigned char name0_4[10]; // first 5 characters in name
+ unsigned char attr; // attribute byte
+ unsigned char reserved; // always 0
+ unsigned char alias_checksum; // checksum for 8.3 alias
+ unsigned char name5_10[12]; // 6 more characters in name
+ unsigned char start[2]; // starting cluster number
+ unsigned char name11_12[4]; // last 2 characters in name
+ };
+
+
+If the layout of the slots looks a little odd, it's only
+because of Microsoft's efforts to maintain compatibility with old
+software. The slots must be disguised to prevent old software from
+panicking. To this end, a number of measures are taken:
+
+ 1) The attribute byte for a slot directory entry is always set
+ to 0x0f. This corresponds to an old directory entry with
+ attributes of "hidden", "system", "read-only", and "volume
+ label". Most old software will ignore any directory
+ entries with the "volume label" bit set. Real volume label
+ entries don't have the other three bits set.
+
+ 2) The starting cluster is always set to 0, an impossible
+ value for a DOS file.
+
+Because the extended FAT system is backward compatible, it is
+possible for old software to modify directory entries. Measures must
+be taken to ensure the validity of slots. An extended FAT system can
+verify that a slot does in fact belong to an 8.3 directory entry by
+the following:
+
+ 1) Positioning. Slots for a file always immediately proceed
+ their corresponding 8.3 directory entry. In addition, each
+ slot has an id which marks its order in the extended file
+ name. Here is a very abbreviated view of an 8.3 directory
+ entry and its corresponding long name slots for the file
+ "My Big File.Extension which is long"::
+
+ <proceeding files...>
+ <slot #3, id = 0x43, characters = "h is long">
+ <slot #2, id = 0x02, characters = "xtension whic">
+ <slot #1, id = 0x01, characters = "My Big File.E">
+ <directory entry, name = "MYBIGFIL.EXT">
+
+
+ .. note:: Note that the slots are stored from last to first. Slots
+ are numbered from 1 to N. The Nth slot is ``or'ed`` with
+ 0x40 to mark it as the last one.
+
+ 2) Checksum. Each slot has an alias_checksum value. The
+ checksum is calculated from the 8.3 name using the
+ following algorithm::
+
+ for (sum = i = 0; i < 11; i++) {
+ sum = (((sum&1)<<7)|((sum&0xfe)>>1)) + name[i]
+ }
+
+
+ 3) If there is free space in the final slot, a Unicode ``NULL (0x0000)``
+ is stored after the final character. After that, all unused
+ characters in the final slot are set to Unicode 0xFFFF.
+
+Finally, note that the extended name is stored in Unicode. Each Unicode
+character takes either two or four bytes, UTF-16LE encoded.
diff --git a/Documentation/filesystems/vfat.txt b/Documentation/filesystems/vfat.txt
deleted file mode 100644
index 91031298beb1..000000000000
--- a/Documentation/filesystems/vfat.txt
+++ /dev/null
@@ -1,347 +0,0 @@
-USING VFAT
-----------------------------------------------------------------------
-To use the vfat filesystem, use the filesystem type 'vfat'. i.e.
- mount -t vfat /dev/fd0 /mnt
-
-No special partition formatter is required. mkdosfs will work fine
-if you want to format from within Linux.
-
-VFAT MOUNT OPTIONS
-----------------------------------------------------------------------
-uid=### -- Set the owner of all files on this filesystem.
- The default is the uid of current process.
-
-gid=### -- Set the group of all files on this filesystem.
- The default is the gid of current process.
-
-umask=### -- The permission mask (for files and directories, see umask(1)).
- The default is the umask of current process.
-
-dmask=### -- The permission mask for the directory.
- The default is the umask of current process.
-
-fmask=### -- The permission mask for files.
- The default is the umask of current process.
-
-allow_utime=### -- This option controls the permission check of mtime/atime.
-
- 20 - If current process is in group of file's group ID,
- you can change timestamp.
- 2 - Other users can change timestamp.
-
- The default is set from `dmask' option. (If the directory is
- writable, utime(2) is also allowed. I.e. ~dmask & 022)
-
- Normally utime(2) checks current process is owner of
- the file, or it has CAP_FOWNER capability. But FAT
- filesystem doesn't have uid/gid on disk, so normal
- check is too unflexible. With this option you can
- relax it.
-
-codepage=### -- Sets the codepage number for converting to shortname
- characters on FAT filesystem.
- By default, FAT_DEFAULT_CODEPAGE setting is used.
-
-iocharset=<name> -- Character set to use for converting between the
- encoding is used for user visible filename and 16 bit
- Unicode characters. Long filenames are stored on disk
- in Unicode format, but Unix for the most part doesn't
- know how to deal with Unicode.
- By default, FAT_DEFAULT_IOCHARSET setting is used.
-
- There is also an option of doing UTF-8 translations
- with the utf8 option.
-
- NOTE: "iocharset=utf8" is not recommended. If unsure,
- you should consider the following option instead.
-
-utf8=<bool> -- UTF-8 is the filesystem safe version of Unicode that
- is used by the console. It can be enabled or disabled
- for the filesystem with this option.
- If 'uni_xlate' gets set, UTF-8 gets disabled.
- By default, FAT_DEFAULT_UTF8 setting is used.
-
-uni_xlate=<bool> -- Translate unhandled Unicode characters to special
- escaped sequences. This would let you backup and
- restore filenames that are created with any Unicode
- characters. Until Linux supports Unicode for real,
- this gives you an alternative. Without this option,
- a '?' is used when no translation is possible. The
- escape character is ':' because it is otherwise
- illegal on the vfat filesystem. The escape sequence
- that gets used is ':' and the four digits of hexadecimal
- unicode.
-
-nonumtail=<bool> -- When creating 8.3 aliases, normally the alias will
- end in '~1' or tilde followed by some number. If this
- option is set, then if the filename is
- "longfilename.txt" and "longfile.txt" does not
- currently exist in the directory, 'longfile.txt' will
- be the short alias instead of 'longfi~1.txt'.
-
-usefree -- Use the "free clusters" value stored on FSINFO. It'll
- be used to determine number of free clusters without
- scanning disk. But it's not used by default, because
- recent Windows don't update it correctly in some
- case. If you are sure the "free clusters" on FSINFO is
- correct, by this option you can avoid scanning disk.
-
-quiet -- Stops printing certain warning messages.
-
-check=s|r|n -- Case sensitivity checking setting.
- s: strict, case sensitive
- r: relaxed, case insensitive
- n: normal, default setting, currently case insensitive
-
-nocase -- This was deprecated for vfat. Use shortname=win95 instead.
-
-shortname=lower|win95|winnt|mixed
- -- Shortname display/create setting.
- lower: convert to lowercase for display,
- emulate the Windows 95 rule for create.
- win95: emulate the Windows 95 rule for display/create.
- winnt: emulate the Windows NT rule for display/create.
- mixed: emulate the Windows NT rule for display,
- emulate the Windows 95 rule for create.
- Default setting is `mixed'.
-
-tz=UTC -- Interpret timestamps as UTC rather than local time.
- This option disables the conversion of timestamps
- between local time (as used by Windows on FAT) and UTC
- (which Linux uses internally). This is particularly
- useful when mounting devices (like digital cameras)
- that are set to UTC in order to avoid the pitfalls of
- local time.
-time_offset=minutes
- -- Set offset for conversion of timestamps from local time
- used by FAT to UTC. I.e. <minutes> minutes will be subtracted
- from each timestamp to convert it to UTC used internally by
- Linux. This is useful when time zone set in sys_tz is
- not the time zone used by the filesystem. Note that this
- option still does not provide correct time stamps in all
- cases in presence of DST - time stamps in a different DST
- setting will be off by one hour.
-
-showexec -- If set, the execute permission bits of the file will be
- allowed only if the extension part of the name is .EXE,
- .COM, or .BAT. Not set by default.
-
-debug -- Can be set, but unused by the current implementation.
-
-sys_immutable -- If set, ATTR_SYS attribute on FAT is handled as
- IMMUTABLE flag on Linux. Not set by default.
-
-flush -- If set, the filesystem will try to flush to disk more
- early than normal. Not set by default.
-
-rodir -- FAT has the ATTR_RO (read-only) attribute. On Windows,
- the ATTR_RO of the directory will just be ignored,
- and is used only by applications as a flag (e.g. it's set
- for the customized folder).
-
- If you want to use ATTR_RO as read-only flag even for
- the directory, set this option.
-
-errors=panic|continue|remount-ro
- -- specify FAT behavior on critical errors: panic, continue
- without doing anything or remount the partition in
- read-only mode (default behavior).
-
-discard -- If set, issues discard/TRIM commands to the block
- device when blocks are freed. This is useful for SSD devices
- and sparse/thinly-provisoned LUNs.
-
-nfs=stale_rw|nostale_ro
- Enable this only if you want to export the FAT filesystem
- over NFS.
-
- stale_rw: This option maintains an index (cache) of directory
- inodes by i_logstart which is used by the nfs-related code to
- improve look-ups. Full file operations (read/write) over NFS is
- supported but with cache eviction at NFS server, this could
- result in ESTALE issues.
-
- nostale_ro: This option bases the inode number and filehandle
- on the on-disk location of a file in the MS-DOS directory entry.
- This ensures that ESTALE will not be returned after a file is
- evicted from the inode cache. However, it means that operations
- such as rename, create and unlink could cause filehandles that
- previously pointed at one file to point at a different file,
- potentially causing data corruption. For this reason, this
- option also mounts the filesystem readonly.
-
- To maintain backward compatibility, '-o nfs' is also accepted,
- defaulting to stale_rw
-
-dos1xfloppy -- If set, use a fallback default BIOS Parameter Block
- configuration, determined by backing device size. These static
- parameters match defaults assumed by DOS 1.x for 160 kiB,
- 180 kiB, 320 kiB, and 360 kiB floppies and floppy images.
-
-
-<bool>: 0,1,yes,no,true,false
-
-LIMITATION
----------------------------------------------------------------------
-* The fallocated region of file is discarded at umount/evict time
- when using fallocate with FALLOC_FL_KEEP_SIZE.
- So, User should assume that fallocated region can be discarded at
- last close if there is memory pressure resulting in eviction of
- the inode from the memory. As a result, for any dependency on
- the fallocated region, user should make sure to recheck fallocate
- after reopening the file.
-
-TODO
-----------------------------------------------------------------------
-* Need to get rid of the raw scanning stuff. Instead, always use
- a get next directory entry approach. The only thing left that uses
- raw scanning is the directory renaming code.
-
-
-POSSIBLE PROBLEMS
-----------------------------------------------------------------------
-* vfat_valid_longname does not properly checked reserved names.
-* When a volume name is the same as a directory name in the root
- directory of the filesystem, the directory name sometimes shows
- up as an empty file.
-* autoconv option does not work correctly.
-
-BUG REPORTS
-----------------------------------------------------------------------
-If you have trouble with the VFAT filesystem, mail bug reports to
-chaffee@bmrc.cs.berkeley.edu. Please specify the filename
-and the operation that gave you trouble.
-
-TEST SUITE
-----------------------------------------------------------------------
-If you plan to make any modifications to the vfat filesystem, please
-get the test suite that comes with the vfat distribution at
-
- http://web.archive.org/web/*/http://bmrc.berkeley.edu/
- people/chaffee/vfat.html
-
-This tests quite a few parts of the vfat filesystem and additional
-tests for new features or untested features would be appreciated.
-
-NOTES ON THE STRUCTURE OF THE VFAT FILESYSTEM
-----------------------------------------------------------------------
-(This documentation was provided by Galen C. Hunt <gchunt@cs.rochester.edu>
- and lightly annotated by Gordon Chaffee).
-
-This document presents a very rough, technical overview of my
-knowledge of the extended FAT file system used in Windows NT 3.5 and
-Windows 95. I don't guarantee that any of the following is correct,
-but it appears to be so.
-
-The extended FAT file system is almost identical to the FAT
-file system used in DOS versions up to and including 6.223410239847
-:-). The significant change has been the addition of long file names.
-These names support up to 255 characters including spaces and lower
-case characters as opposed to the traditional 8.3 short names.
-
-Here is the description of the traditional FAT entry in the current
-Windows 95 filesystem:
-
- struct directory { // Short 8.3 names
- unsigned char name[8]; // file name
- unsigned char ext[3]; // file extension
- unsigned char attr; // attribute byte
- unsigned char lcase; // Case for base and extension
- unsigned char ctime_ms; // Creation time, milliseconds
- unsigned char ctime[2]; // Creation time
- unsigned char cdate[2]; // Creation date
- unsigned char adate[2]; // Last access date
- unsigned char reserved[2]; // reserved values (ignored)
- unsigned char time[2]; // time stamp
- unsigned char date[2]; // date stamp
- unsigned char start[2]; // starting cluster number
- unsigned char size[4]; // size of the file
- };
-
-The lcase field specifies if the base and/or the extension of an 8.3
-name should be capitalized. This field does not seem to be used by
-Windows 95 but it is used by Windows NT. The case of filenames is not
-completely compatible from Windows NT to Windows 95. It is not completely
-compatible in the reverse direction, however. Filenames that fit in
-the 8.3 namespace and are written on Windows NT to be lowercase will
-show up as uppercase on Windows 95.
-
-Note that the "start" and "size" values are actually little
-endian integer values. The descriptions of the fields in this
-structure are public knowledge and can be found elsewhere.
-
-With the extended FAT system, Microsoft has inserted extra
-directory entries for any files with extended names. (Any name which
-legally fits within the old 8.3 encoding scheme does not have extra
-entries.) I call these extra entries slots. Basically, a slot is a
-specially formatted directory entry which holds up to 13 characters of
-a file's extended name. Think of slots as additional labeling for the
-directory entry of the file to which they correspond. Microsoft
-prefers to refer to the 8.3 entry for a file as its alias and the
-extended slot directory entries as the file name.
-
-The C structure for a slot directory entry follows:
-
- struct slot { // Up to 13 characters of a long name
- unsigned char id; // sequence number for slot
- unsigned char name0_4[10]; // first 5 characters in name
- unsigned char attr; // attribute byte
- unsigned char reserved; // always 0
- unsigned char alias_checksum; // checksum for 8.3 alias
- unsigned char name5_10[12]; // 6 more characters in name
- unsigned char start[2]; // starting cluster number
- unsigned char name11_12[4]; // last 2 characters in name
- };
-
-If the layout of the slots looks a little odd, it's only
-because of Microsoft's efforts to maintain compatibility with old
-software. The slots must be disguised to prevent old software from
-panicking. To this end, a number of measures are taken:
-
- 1) The attribute byte for a slot directory entry is always set
- to 0x0f. This corresponds to an old directory entry with
- attributes of "hidden", "system", "read-only", and "volume
- label". Most old software will ignore any directory
- entries with the "volume label" bit set. Real volume label
- entries don't have the other three bits set.
-
- 2) The starting cluster is always set to 0, an impossible
- value for a DOS file.
-
-Because the extended FAT system is backward compatible, it is
-possible for old software to modify directory entries. Measures must
-be taken to ensure the validity of slots. An extended FAT system can
-verify that a slot does in fact belong to an 8.3 directory entry by
-the following:
-
- 1) Positioning. Slots for a file always immediately proceed
- their corresponding 8.3 directory entry. In addition, each
- slot has an id which marks its order in the extended file
- name. Here is a very abbreviated view of an 8.3 directory
- entry and its corresponding long name slots for the file
- "My Big File.Extension which is long":
-
- <proceeding files...>
- <slot #3, id = 0x43, characters = "h is long">
- <slot #2, id = 0x02, characters = "xtension whic">
- <slot #1, id = 0x01, characters = "My Big File.E">
- <directory entry, name = "MYBIGFIL.EXT">
-
- Note that the slots are stored from last to first. Slots
- are numbered from 1 to N. The Nth slot is or'ed with 0x40
- to mark it as the last one.
-
- 2) Checksum. Each slot has an "alias_checksum" value. The
- checksum is calculated from the 8.3 name using the
- following algorithm:
-
- for (sum = i = 0; i < 11; i++) {
- sum = (((sum&1)<<7)|((sum&0xfe)>>1)) + name[i]
- }
-
- 3) If there is free space in the final slot, a Unicode NULL (0x0000)
- is stored after the final character. After that, all unused
- characters in the final slot are set to Unicode 0xFFFF.
-
-Finally, note that the extended name is stored in Unicode. Each Unicode
-character takes either two or four bytes, UTF-16LE encoded.
diff --git a/Documentation/filesystems/vfs.rst b/Documentation/filesystems/vfs.rst
index 0f85ab21c2ca..7d4d09dd5e6d 100644
--- a/Documentation/filesystems/vfs.rst
+++ b/Documentation/filesystems/vfs.rst
@@ -20,7 +20,7 @@ kernel which allows different filesystem implementations to coexist.
VFS system calls open(2), stat(2), read(2), write(2), chmod(2) and so on
are called from a process context. Filesystem locking is described in
-the document Documentation/filesystems/Locking.
+the document Documentation/filesystems/locking.rst.
Directory Entry Cache (dcache)
diff --git a/Documentation/filesystems/virtiofs.rst b/Documentation/filesystems/virtiofs.rst
new file mode 100644
index 000000000000..4f338e3cb3f7
--- /dev/null
+++ b/Documentation/filesystems/virtiofs.rst
@@ -0,0 +1,60 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+===================================================
+virtiofs: virtio-fs host<->guest shared file system
+===================================================
+
+- Copyright (C) 2019 Red Hat, Inc.
+
+Introduction
+============
+The virtiofs file system for Linux implements a driver for the paravirtualized
+VIRTIO "virtio-fs" device for guest<->host file system sharing. It allows a
+guest to mount a directory that has been exported on the host.
+
+Guests often require access to files residing on the host or remote systems.
+Use cases include making files available to new guests during installation,
+booting from a root file system located on the host, persistent storage for
+stateless or ephemeral guests, and sharing a directory between guests.
+
+Although it is possible to use existing network file systems for some of these
+tasks, they require configuration steps that are hard to automate and they
+expose the storage network to the guest. The virtio-fs device was designed to
+solve these problems by providing file system access without networking.
+
+Furthermore the virtio-fs device takes advantage of the co-location of the
+guest and host to increase performance and provide semantics that are not
+possible with network file systems.
+
+Usage
+=====
+Mount file system with tag ``myfs`` on ``/mnt``:
+
+.. code-block:: sh
+
+ guest# mount -t virtiofs myfs /mnt
+
+Please see https://virtio-fs.gitlab.io/ for details on how to configure QEMU
+and the virtiofsd daemon.
+
+Internals
+=========
+Since the virtio-fs device uses the FUSE protocol for file system requests, the
+virtiofs file system for Linux is integrated closely with the FUSE file system
+client. The guest acts as the FUSE client while the host acts as the FUSE
+server. The /dev/fuse interface between the kernel and userspace is replaced
+with the virtio-fs device interface.
+
+FUSE requests are placed into a virtqueue and processed by the host. The
+response portion of the buffer is filled in by the host and the guest handles
+the request completion.
+
+Mapping /dev/fuse to virtqueues requires solving differences in semantics
+between /dev/fuse and virtqueues. Each time the /dev/fuse device is read, the
+FUSE client may choose which request to transfer, making it possible to
+prioritize certain requests over others. Virtqueues have queue semantics and
+it is not possible to change the order of requests that have been enqueued.
+This is especially important if the virtqueue becomes full since it is then
+impossible to add high priority requests. In order to address this difference,
+the virtio-fs device uses a "hiprio" virtqueue specifically for requests that
+have priority over normal requests.
diff --git a/Documentation/filesystems/zonefs.txt b/Documentation/filesystems/zonefs.txt
new file mode 100644
index 000000000000..935bf22031ca
--- /dev/null
+++ b/Documentation/filesystems/zonefs.txt
@@ -0,0 +1,404 @@
+ZoneFS - Zone filesystem for Zoned block devices
+
+Introduction
+============
+
+zonefs is a very simple file system exposing each zone of a zoned block device
+as a file. Unlike a regular POSIX-compliant file system with native zoned block
+device support (e.g. f2fs), zonefs does not hide the sequential write
+constraint of zoned block devices to the user. Files representing sequential
+write zones of the device must be written sequentially starting from the end
+of the file (append only writes).
+
+As such, zonefs is in essence closer to a raw block device access interface
+than to a full-featured POSIX file system. The goal of zonefs is to simplify
+the implementation of zoned block device support in applications by replacing
+raw block device file accesses with a richer file API, avoiding relying on
+direct block device file ioctls which may be more obscure to developers. One
+example of this approach is the implementation of LSM (log-structured merge)
+tree structures (such as used in RocksDB and LevelDB) on zoned block devices
+by allowing SSTables to be stored in a zone file similarly to a regular file
+system rather than as a range of sectors of the entire disk. The introduction
+of the higher level construct "one file is one zone" can help reducing the
+amount of changes needed in the application as well as introducing support for
+different application programming languages.
+
+Zoned block devices
+-------------------
+
+Zoned storage devices belong to a class of storage devices with an address
+space that is divided into zones. A zone is a group of consecutive LBAs and all
+zones are contiguous (there are no LBA gaps). Zones may have different types.
+* Conventional zones: there are no access constraints to LBAs belonging to
+ conventional zones. Any read or write access can be executed, similarly to a
+ regular block device.
+* Sequential zones: these zones accept random reads but must be written
+ sequentially. Each sequential zone has a write pointer maintained by the
+ device that keeps track of the mandatory start LBA position of the next write
+ to the device. As a result of this write constraint, LBAs in a sequential zone
+ cannot be overwritten. Sequential zones must first be erased using a special
+ command (zone reset) before rewriting.
+
+Zoned storage devices can be implemented using various recording and media
+technologies. The most common form of zoned storage today uses the SCSI Zoned
+Block Commands (ZBC) and Zoned ATA Commands (ZAC) interfaces on Shingled
+Magnetic Recording (SMR) HDDs.
+
+Solid State Disks (SSD) storage devices can also implement a zoned interface
+to, for instance, reduce internal write amplification due to garbage collection.
+The NVMe Zoned NameSpace (ZNS) is a technical proposal of the NVMe standard
+committee aiming at adding a zoned storage interface to the NVMe protocol.
+
+Zonefs Overview
+===============
+
+Zonefs exposes the zones of a zoned block device as files. The files
+representing zones are grouped by zone type, which are themselves represented
+by sub-directories. This file structure is built entirely using zone information
+provided by the device and so does not require any complex on-disk metadata
+structure.
+
+On-disk metadata
+----------------
+
+zonefs on-disk metadata is reduced to an immutable super block which
+persistently stores a magic number and optional feature flags and values. On
+mount, zonefs uses blkdev_report_zones() to obtain the device zone configuration
+and populates the mount point with a static file tree solely based on this
+information. File sizes come from the device zone type and write pointer
+position managed by the device itself.
+
+The super block is always written on disk at sector 0. The first zone of the
+device storing the super block is never exposed as a zone file by zonefs. If
+the zone containing the super block is a sequential zone, the mkzonefs format
+tool always "finishes" the zone, that is, it transitions the zone to a full
+state to make it read-only, preventing any data write.
+
+Zone type sub-directories
+-------------------------
+
+Files representing zones of the same type are grouped together under the same
+sub-directory automatically created on mount.
+
+For conventional zones, the sub-directory "cnv" is used. This directory is
+however created if and only if the device has usable conventional zones. If
+the device only has a single conventional zone at sector 0, the zone will not
+be exposed as a file as it will be used to store the zonefs super block. For
+such devices, the "cnv" sub-directory will not be created.
+
+For sequential write zones, the sub-directory "seq" is used.
+
+These two directories are the only directories that exist in zonefs. Users
+cannot create other directories and cannot rename nor delete the "cnv" and
+"seq" sub-directories.
+
+The size of the directories indicated by the st_size field of struct stat,
+obtained with the stat() or fstat() system calls, indicates the number of files
+existing under the directory.
+
+Zone files
+----------
+
+Zone files are named using the number of the zone they represent within the set
+of zones of a particular type. That is, both the "cnv" and "seq" directories
+contain files named "0", "1", "2", ... The file numbers also represent
+increasing zone start sector on the device.
+
+All read and write operations to zone files are not allowed beyond the file
+maximum size, that is, beyond the zone size. Any access exceeding the zone
+size is failed with the -EFBIG error.
+
+Creating, deleting, renaming or modifying any attribute of files and
+sub-directories is not allowed.
+
+The number of blocks of a file as reported by stat() and fstat() indicates the
+size of the file zone, or in other words, the maximum file size.
+
+Conventional zone files
+-----------------------
+
+The size of conventional zone files is fixed to the size of the zone they
+represent. Conventional zone files cannot be truncated.
+
+These files can be randomly read and written using any type of I/O operation:
+buffered I/Os, direct I/Os, memory mapped I/Os (mmap), etc. There are no I/O
+constraint for these files beyond the file size limit mentioned above.
+
+Sequential zone files
+---------------------
+
+The size of sequential zone files grouped in the "seq" sub-directory represents
+the file's zone write pointer position relative to the zone start sector.
+
+Sequential zone files can only be written sequentially, starting from the file
+end, that is, write operations can only be append writes. Zonefs makes no
+attempt at accepting random writes and will fail any write request that has a
+start offset not corresponding to the end of the file, or to the end of the last
+write issued and still in-flight (for asynchrnous I/O operations).
+
+Since dirty page writeback by the page cache does not guarantee a sequential
+write pattern, zonefs prevents buffered writes and writeable shared mappings
+on sequential files. Only direct I/O writes are accepted for these files.
+zonefs relies on the sequential delivery of write I/O requests to the device
+implemented by the block layer elevator. An elevator implementing the sequential
+write feature for zoned block device (ELEVATOR_F_ZBD_SEQ_WRITE elevator feature)
+must be used. This type of elevator (e.g. mq-deadline) is the set by default
+for zoned block devices on device initialization.
+
+There are no restrictions on the type of I/O used for read operations in
+sequential zone files. Buffered I/Os, direct I/Os and shared read mappings are
+all accepted.
+
+Truncating sequential zone files is allowed only down to 0, in which case, the
+zone is reset to rewind the file zone write pointer position to the start of
+the zone, or up to the zone size, in which case the file's zone is transitioned
+to the FULL state (finish zone operation).
+
+Format options
+--------------
+
+Several optional features of zonefs can be enabled at format time.
+* Conventional zone aggregation: ranges of contiguous conventional zones can be
+ aggregated into a single larger file instead of the default one file per zone.
+* File ownership: The owner UID and GID of zone files is by default 0 (root)
+ but can be changed to any valid UID/GID.
+* File access permissions: the default 640 access permissions can be changed.
+
+IO error handling
+-----------------
+
+Zoned block devices may fail I/O requests for reasons similar to regular block
+devices, e.g. due to bad sectors. However, in addition to such known I/O
+failure pattern, the standards governing zoned block devices behavior define
+additional conditions that result in I/O errors.
+
+* A zone may transition to the read-only condition (BLK_ZONE_COND_READONLY):
+ While the data already written in the zone is still readable, the zone can
+ no longer be written. No user action on the zone (zone management command or
+ read/write access) can change the zone condition back to a normal read/write
+ state. While the reasons for the device to transition a zone to read-only
+ state are not defined by the standards, a typical cause for such transition
+ would be a defective write head on an HDD (all zones under this head are
+ changed to read-only).
+
+* A zone may transition to the offline condition (BLK_ZONE_COND_OFFLINE):
+ An offline zone cannot be read nor written. No user action can transition an
+ offline zone back to an operational good state. Similarly to zone read-only
+ transitions, the reasons for a drive to transition a zone to the offline
+ condition are undefined. A typical cause would be a defective read-write head
+ on an HDD causing all zones on the platter under the broken head to be
+ inaccessible.
+
+* Unaligned write errors: These errors result from the host issuing write
+ requests with a start sector that does not correspond to a zone write pointer
+ position when the write request is executed by the device. Even though zonefs
+ enforces sequential file write for sequential zones, unaligned write errors
+ may still happen in the case of a partial failure of a very large direct I/O
+ operation split into multiple BIOs/requests or asynchronous I/O operations.
+ If one of the write request within the set of sequential write requests
+ issued to the device fails, all write requests after queued after it will
+ become unaligned and fail.
+
+* Delayed write errors: similarly to regular block devices, if the device side
+ write cache is enabled, write errors may occur in ranges of previously
+ completed writes when the device write cache is flushed, e.g. on fsync().
+ Similarly to the previous immediate unaligned write error case, delayed write
+ errors can propagate through a stream of cached sequential data for a zone
+ causing all data to be dropped after the sector that caused the error.
+
+All I/O errors detected by zonefs are notified to the user with an error code
+return for the system call that trigered or detected the error. The recovery
+actions taken by zonefs in response to I/O errors depend on the I/O type (read
+vs write) and on the reason for the error (bad sector, unaligned writes or zone
+condition change).
+
+* For read I/O errors, zonefs does not execute any particular recovery action,
+ but only if the file zone is still in a good condition and there is no
+ inconsistency between the file inode size and its zone write pointer position.
+ If a problem is detected, I/O error recovery is executed (see below table).
+
+* For write I/O errors, zonefs I/O error recovery is always executed.
+
+* A zone condition change to read-only or offline also always triggers zonefs
+ I/O error recovery.
+
+Zonefs minimal I/O error recovery may change a file size and a file access
+permissions.
+
+* File size changes:
+ Immediate or delayed write errors in a sequential zone file may cause the file
+ inode size to be inconsistent with the amount of data successfully written in
+ the file zone. For instance, the partial failure of a multi-BIO large write
+ operation will cause the zone write pointer to advance partially, even though
+ the entire write operation will be reported as failed to the user. In such
+ case, the file inode size must be advanced to reflect the zone write pointer
+ change and eventually allow the user to restart writing at the end of the
+ file.
+ A file size may also be reduced to reflect a delayed write error detected on
+ fsync(): in this case, the amount of data effectively written in the zone may
+ be less than originally indicated by the file inode size. After such I/O
+ error, zonefs always fixes a file inode size to reflect the amount of data
+ persistently stored in the file zone.
+
+* Access permission changes:
+ A zone condition change to read-only is indicated with a change in the file
+ access permissions to render the file read-only. This disables changes to the
+ file attributes and data modification. For offline zones, all permissions
+ (read and write) to the file are disabled.
+
+Further action taken by zonefs I/O error recovery can be controlled by the user
+with the "errors=xxx" mount option. The table below summarizes the result of
+zonefs I/O error processing depending on the mount option and on the zone
+conditions.
+
+ +--------------+-----------+-----------------------------------------+
+ | | | Post error state |
+ | "errors=xxx" | device | access permissions |
+ | mount | zone | file file device zone |
+ | option | condition | size read write read write |
+ +--------------+-----------+-----------------------------------------+
+ | | good | fixed yes no yes yes |
+ | remount-ro | read-only | fixed yes no yes no |
+ | (default) | offline | 0 no no no no |
+ +--------------+-----------+-----------------------------------------+
+ | | good | fixed yes no yes yes |
+ | zone-ro | read-only | fixed yes no yes no |
+ | | offline | 0 no no no no |
+ +--------------+-----------+-----------------------------------------+
+ | | good | 0 no no yes yes |
+ | zone-offline | read-only | 0 no no yes no |
+ | | offline | 0 no no no no |
+ +--------------+-----------+-----------------------------------------+
+ | | good | fixed yes yes yes yes |
+ | repair | read-only | fixed yes no yes no |
+ | | offline | 0 no no no no |
+ +--------------+-----------+-----------------------------------------+
+
+Further notes:
+* The "errors=remount-ro" mount option is the default behavior of zonefs I/O
+ error processing if no errors mount option is specified.
+* With the "errors=remount-ro" mount option, the change of the file access
+ permissions to read-only applies to all files. The file system is remounted
+ read-only.
+* Access permission and file size changes due to the device transitioning zones
+ to the offline condition are permanent. Remounting or reformating the device
+ with mkfs.zonefs (mkzonefs) will not change back offline zone files to a good
+ state.
+* File access permission changes to read-only due to the device transitioning
+ zones to the read-only condition are permanent. Remounting or reformating
+ the device will not re-enable file write access.
+* File access permission changes implied by the remount-ro, zone-ro and
+ zone-offline mount options are temporary for zones in a good condition.
+ Unmounting and remounting the file system will restore the previous default
+ (format time values) access rights to the files affected.
+* The repair mount option triggers only the minimal set of I/O error recovery
+ actions, that is, file size fixes for zones in a good condition. Zones
+ indicated as being read-only or offline by the device still imply changes to
+ the zone file access permissions as noted in the table above.
+
+Mount options
+-------------
+
+zonefs define the "errors=<behavior>" mount option to allow the user to specify
+zonefs behavior in response to I/O errors, inode size inconsistencies or zone
+condition chages. The defined behaviors are as follow:
+* remount-ro (default)
+* zone-ro
+* zone-offline
+* repair
+
+The I/O error actions defined for each behavior is detailed in the previous
+section.
+
+Zonefs User Space Tools
+=======================
+
+The mkzonefs tool is used to format zoned block devices for use with zonefs.
+This tool is available on Github at:
+
+https://github.com/damien-lemoal/zonefs-tools
+
+zonefs-tools also includes a test suite which can be run against any zoned
+block device, including null_blk block device created with zoned mode.
+
+Examples
+--------
+
+The following formats a 15TB host-managed SMR HDD with 256 MB zones
+with the conventional zones aggregation feature enabled.
+
+# mkzonefs -o aggr_cnv /dev/sdX
+# mount -t zonefs /dev/sdX /mnt
+# ls -l /mnt/
+total 0
+dr-xr-xr-x 2 root root 1 Nov 25 13:23 cnv
+dr-xr-xr-x 2 root root 55356 Nov 25 13:23 seq
+
+The size of the zone files sub-directories indicate the number of files
+existing for each type of zones. In this example, there is only one
+conventional zone file (all conventional zones are aggregated under a single
+file).
+
+# ls -l /mnt/cnv
+total 137101312
+-rw-r----- 1 root root 140391743488 Nov 25 13:23 0
+
+This aggregated conventional zone file can be used as a regular file.
+
+# mkfs.ext4 /mnt/cnv/0
+# mount -o loop /mnt/cnv/0 /data
+
+The "seq" sub-directory grouping files for sequential write zones has in this
+example 55356 zones.
+
+# ls -lv /mnt/seq
+total 14511243264
+-rw-r----- 1 root root 0 Nov 25 13:23 0
+-rw-r----- 1 root root 0 Nov 25 13:23 1
+-rw-r----- 1 root root 0 Nov 25 13:23 2
+...
+-rw-r----- 1 root root 0 Nov 25 13:23 55354
+-rw-r----- 1 root root 0 Nov 25 13:23 55355
+
+For sequential write zone files, the file size changes as data is appended at
+the end of the file, similarly to any regular file system.
+
+# dd if=/dev/zero of=/mnt/seq/0 bs=4096 count=1 conv=notrunc oflag=direct
+1+0 records in
+1+0 records out
+4096 bytes (4.1 kB, 4.0 KiB) copied, 0.00044121 s, 9.3 MB/s
+
+# ls -l /mnt/seq/0
+-rw-r----- 1 root root 4096 Nov 25 13:23 /mnt/seq/0
+
+The written file can be truncated to the zone size, preventing any further
+write operation.
+
+# truncate -s 268435456 /mnt/seq/0
+# ls -l /mnt/seq/0
+-rw-r----- 1 root root 268435456 Nov 25 13:49 /mnt/seq/0
+
+Truncation to 0 size allows freeing the file zone storage space and restart
+append-writes to the file.
+
+# truncate -s 0 /mnt/seq/0
+# ls -l /mnt/seq/0
+-rw-r----- 1 root root 0 Nov 25 13:49 /mnt/seq/0
+
+Since files are statically mapped to zones on the disk, the number of blocks of
+a file as reported by stat() and fstat() indicates the size of the file zone.
+
+# stat /mnt/seq/0
+ File: /mnt/seq/0
+ Size: 0 Blocks: 524288 IO Block: 4096 regular empty file
+Device: 870h/2160d Inode: 50431 Links: 1
+Access: (0640/-rw-r-----) Uid: ( 0/ root) Gid: ( 0/ root)
+Access: 2019-11-25 13:23:57.048971997 +0900
+Modify: 2019-11-25 13:52:25.553805765 +0900
+Change: 2019-11-25 13:52:25.553805765 +0900
+ Birth: -
+
+The number of blocks of the file ("Blocks") in units of 512B blocks gives the
+maximum file size of 524288 * 512 B = 256 MB, corresponding to the device zone
+size in this example. Of note is that the "IO block" field always indicates the
+minimum I/O size for writes and corresponds to the device physical sector size.
OpenPOWER on IntegriCloud