summaryrefslogtreecommitdiffstats
path: root/include/linux
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2018-08-15 17:39:07 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2018-08-15 17:39:07 -0700
commit54dbe75bbf1e189982516de179147208e90b5e45 (patch)
tree523ba6dd21d2f9257b73d95d289095b116da0f75 /include/linux
parentdafa5f6577a9eecd2941add553d1672c30b02364 (diff)
parent557ce95051c8eff67af48612ab350d8408aa0541 (diff)
downloadtalos-op-linux-54dbe75bbf1e189982516de179147208e90b5e45.tar.gz
talos-op-linux-54dbe75bbf1e189982516de179147208e90b5e45.zip
Merge tag 'drm-next-2018-08-15' of git://anongit.freedesktop.org/drm/drm
Pull drm updates from Dave Airlie: "This is the main drm pull request for 4.19. Rob has some new hardware support for new qualcomm hw that I'll send along separately. This has the display part of it, the remaining pull is for the acceleration engine. This also contains a wound-wait/wait-die mutex rework, Peter has acked it for merging via my tree. Otherwise mostly the usual level of activity. Summary: core: - Wound-wait/wait-die mutex rework - Add writeback connector type - Add "content type" property for HDMI - Move GEM bo to drm_framebuffer - Initial gpu scheduler documentation - GPU scheduler fixes for dying processes - Console deferred fbcon takeover support - Displayport support for CEC tunneling over AUX panel: - otm8009a panel driver fixes - Innolux TV123WAM and G070Y2-L01 panel driver - Ilitek ILI9881c panel driver - Rocktech RK070ER9427 LCD - EDT ETM0700G0EDH6 and EDT ETM0700G0BDH6 - DLC DLC0700YZG-1 - BOE HV070WSA-100 - newhaven, nhd-4.3-480272ef-atxl LCD - DataImage SCF0700C48GGU18 - Sharp LQ035Q7DB03 - p079zca: Refactor to support multiple panels tinydrm: - ILI9341 display panel New driver: - vkms - virtual kms driver to testing. i915: - Icelake: Display enablement DSI support IRQ support Powerwell support - GPU reset fixes and improvements - Full ppgtt support refactoring - PSR fixes and improvements - Execlist improvments - GuC related fixes amdgpu: - Initial amdgpu documentation - JPEG engine support on VCN - CIK uses powerplay by default - Move to using core PCIE functionality for gens/lanes - DC/Powerplay interface rework - Stutter mode support for RV - Vega12 Powerplay updates - GFXOFF fixes - GPUVM fault debugging - Vega12 GFXOFF - DC improvements - DC i2c/aux changes - UVD 7.2 fixes - Powerplay fixes for Polaris12, CZ/ST - command submission bo_list fixes amdkfd: - Raven support - Power management fixes udl: - Cleanups and fixes nouveau: - misc fixes and cleanups. msm: - DPU1 support display controller in sdm845 - GPU coredump support. vmwgfx: - Atomic modesetting validation fixes - Support for multisample surfaces armada: - Atomic modesetting support completed. exynos: - IPPv2 fixes - Move g2d to component framework - Suspend/resume support cleanups - Driver cleanups imx: - CSI configuration improvements - Driver cleanups - Use atomic suspend/resume helpers - ipu-v3 V4L2 XRGB32/XBGR32 support pl111: - Add Nomadik LCDC variant v3d: - GPU scheduler jobs management sun4i: - R40 display engine support - TCON TOP driver mediatek: - MT2712 SoC support rockchip: - vop fixes omapdrm: - Workaround for DRA7 errata i932 - Fix mm_list locking mali-dp: - Writeback implementation PM improvements - Internal error reporting debugfs tilcdc: - Single fix for deferred probing hdlcd: - Teardown fixes tda998x: - Converted to a bridge driver. etnaviv: - Misc fixes" * tag 'drm-next-2018-08-15' of git://anongit.freedesktop.org/drm/drm: (1506 commits) drm/amdgpu/sriov: give 8s for recover vram under RUNTIME drm/scheduler: fix param documentation drm/i2c: tda998x: correct PLL divider calculation drm/i2c: tda998x: get rid of private fill_modes function drm/i2c: tda998x: move mode_valid() to bridge drm/i2c: tda998x: register bridge outside of component helper drm/i2c: tda998x: cleanup from previous changes drm/i2c: tda998x: allocate tda998x_priv inside tda998x_create() drm/i2c: tda998x: convert to bridge driver drm/scheduler: fix timeout worker setup for out of order job completions drm/amd/display: display connected to dp-1 does not light up drm/amd/display: update clk for various HDMI color depths drm/amd/display: program display clock on cache match drm/amd/display: Add NULL check for enabling dp ss drm/amd/display: add vbios table check for enabling dp ss drm/amd/display: Don't share clk source between DP and HDMI drm/amd/display: Fix DP HBR2 Eye Diagram Pattern on Carrizo drm/amd/display: Use calculated disp_clk_khz value for dce110 drm/amd/display: Implement custom degamma lut on dcn drm/amd/display: Destroy aux_engines only once ...
Diffstat (limited to 'include/linux')
-rw-r--r--include/linux/ascii85.h38
-rw-r--r--include/linux/console.h5
-rw-r--r--include/linux/dma-buf.h21
-rw-r--r--include/linux/dma-fence.h32
-rw-r--r--include/linux/pci.h3
-rw-r--r--include/linux/ww_mutex.h45
6 files changed, 95 insertions, 49 deletions
diff --git a/include/linux/ascii85.h b/include/linux/ascii85.h
new file mode 100644
index 000000000000..4cc40201273e
--- /dev/null
+++ b/include/linux/ascii85.h
@@ -0,0 +1,38 @@
+/*
+ * SPDX-License-Identifier: GPL-2.0
+ *
+ * Copyright (c) 2008 Intel Corporation
+ * Copyright (c) 2018 The Linux Foundation. All rights reserved.
+ */
+
+#ifndef _ASCII85_H_
+#define _ASCII85_H_
+
+#include <linux/kernel.h>
+
+#define ASCII85_BUFSZ 6
+
+static inline long
+ascii85_encode_len(long len)
+{
+ return DIV_ROUND_UP(len, 4);
+}
+
+static inline const char *
+ascii85_encode(u32 in, char *out)
+{
+ int i;
+
+ if (in == 0)
+ return "z";
+
+ out[5] = '\0';
+ for (i = 5; i--; ) {
+ out[i] = '!' + in % 85;
+ in /= 85;
+ }
+
+ return out;
+}
+
+#endif
diff --git a/include/linux/console.h b/include/linux/console.h
index dfd6b0e97855..f59f3dbca65c 100644
--- a/include/linux/console.h
+++ b/include/linux/console.h
@@ -21,6 +21,7 @@ struct console_font_op;
struct console_font;
struct module;
struct tty_struct;
+struct notifier_block;
/*
* this is what the terminal answers to a ESC-Z or csi0c query.
@@ -220,4 +221,8 @@ static inline bool vgacon_text_force(void) { return false; }
extern void console_init(void);
+/* For deferred console takeover */
+void dummycon_register_output_notifier(struct notifier_block *nb);
+void dummycon_unregister_output_notifier(struct notifier_block *nb);
+
#endif /* _LINUX_CONSOLE_H */
diff --git a/include/linux/dma-buf.h b/include/linux/dma-buf.h
index 085db2fee2d7..58725f890b5b 100644
--- a/include/linux/dma-buf.h
+++ b/include/linux/dma-buf.h
@@ -39,12 +39,12 @@ struct dma_buf_attachment;
/**
* struct dma_buf_ops - operations possible on struct dma_buf
- * @map_atomic: maps a page from the buffer into kernel address
+ * @map_atomic: [optional] maps a page from the buffer into kernel address
* space, users may not block until the subsequent unmap call.
* This callback must not sleep.
* @unmap_atomic: [optional] unmaps a atomically mapped page from the buffer.
* This Callback must not sleep.
- * @map: maps a page from the buffer into kernel address space.
+ * @map: [optional] maps a page from the buffer into kernel address space.
* @unmap: [optional] unmaps a page from the buffer.
* @vmap: [optional] creates a virtual mapping for the buffer into kernel
* address space. Same restrictions as for vmap and friends apply.
@@ -55,11 +55,11 @@ struct dma_buf_ops {
* @attach:
*
* This is called from dma_buf_attach() to make sure that a given
- * &device can access the provided &dma_buf. Exporters which support
- * buffer objects in special locations like VRAM or device-specific
- * carveout areas should check whether the buffer could be move to
- * system memory (or directly accessed by the provided device), and
- * otherwise need to fail the attach operation.
+ * &dma_buf_attachment.dev can access the provided &dma_buf. Exporters
+ * which support buffer objects in special locations like VRAM or
+ * device-specific carveout areas should check whether the buffer could
+ * be move to system memory (or directly accessed by the provided
+ * device), and otherwise need to fail the attach operation.
*
* The exporter should also in general check whether the current
* allocation fullfills the DMA constraints of the new device. If this
@@ -77,8 +77,7 @@ struct dma_buf_ops {
* to signal that backing storage is already allocated and incompatible
* with the requirements of requesting device.
*/
- int (*attach)(struct dma_buf *, struct device *,
- struct dma_buf_attachment *);
+ int (*attach)(struct dma_buf *, struct dma_buf_attachment *);
/**
* @detach:
@@ -206,8 +205,6 @@ struct dma_buf_ops {
* to be restarted.
*/
int (*end_cpu_access)(struct dma_buf *, enum dma_data_direction);
- void *(*map_atomic)(struct dma_buf *, unsigned long);
- void (*unmap_atomic)(struct dma_buf *, unsigned long, void *);
void *(*map)(struct dma_buf *, unsigned long);
void (*unmap)(struct dma_buf *, unsigned long, void *);
@@ -395,8 +392,6 @@ int dma_buf_begin_cpu_access(struct dma_buf *dma_buf,
enum dma_data_direction dir);
int dma_buf_end_cpu_access(struct dma_buf *dma_buf,
enum dma_data_direction dir);
-void *dma_buf_kmap_atomic(struct dma_buf *, unsigned long);
-void dma_buf_kunmap_atomic(struct dma_buf *, unsigned long, void *);
void *dma_buf_kmap(struct dma_buf *, unsigned long);
void dma_buf_kunmap(struct dma_buf *, unsigned long, void *);
diff --git a/include/linux/dma-fence.h b/include/linux/dma-fence.h
index eb9b05aa5aea..02dba8cd033d 100644
--- a/include/linux/dma-fence.h
+++ b/include/linux/dma-fence.h
@@ -166,7 +166,8 @@ struct dma_fence_ops {
* released when the fence is signalled (through e.g. the interrupt
* handler).
*
- * This callback is mandatory.
+ * This callback is optional. If this callback is not present, then the
+ * driver must always have signaling enabled.
*/
bool (*enable_signaling)(struct dma_fence *fence);
@@ -190,11 +191,14 @@ struct dma_fence_ops {
/**
* @wait:
*
- * Custom wait implementation, or dma_fence_default_wait.
+ * Custom wait implementation, defaults to dma_fence_default_wait() if
+ * not set.
*
- * Must not be NULL, set to dma_fence_default_wait for default implementation.
- * the dma_fence_default_wait implementation should work for any fence, as long
- * as enable_signaling works correctly.
+ * The dma_fence_default_wait implementation should work for any fence, as long
+ * as @enable_signaling works correctly. This hook allows drivers to
+ * have an optimized version for the case where a process context is
+ * already available, e.g. if @enable_signaling for the general case
+ * needs to set up a worker thread.
*
* Must return -ERESTARTSYS if the wait is intr = true and the wait was
* interrupted, and remaining jiffies if fence has signaled, or 0 if wait
@@ -202,7 +206,7 @@ struct dma_fence_ops {
* which should be treated as if the fence is signaled. For example a hardware
* lockup could be reported like that.
*
- * This callback is mandatory.
+ * This callback is optional.
*/
signed long (*wait)(struct dma_fence *fence,
bool intr, signed long timeout);
@@ -218,17 +222,6 @@ struct dma_fence_ops {
void (*release)(struct dma_fence *fence);
/**
- * @fill_driver_data:
- *
- * Callback to fill in free-form debug info.
- *
- * Returns amount of bytes filled, or negative error on failure.
- *
- * This callback is optional.
- */
- int (*fill_driver_data)(struct dma_fence *fence, void *data, int size);
-
- /**
* @fence_value_str:
*
* Callback to fill in free-form debug info specific to this fence, like
@@ -242,8 +235,9 @@ struct dma_fence_ops {
* @timeline_value_str:
*
* Fills in the current value of the timeline as a string, like the
- * sequence number. This should match what @fill_driver_data prints for
- * the most recently signalled fence (assuming no delayed signalling).
+ * sequence number. Note that the specific fence passed to this function
+ * should not matter, drivers should only use it to look up the
+ * corresponding timeline structures.
*/
void (*timeline_value_str)(struct dma_fence *fence,
char *str, int size);
diff --git a/include/linux/pci.h b/include/linux/pci.h
index c133ccfa002e..5f13cdbc73cd 100644
--- a/include/linux/pci.h
+++ b/include/linux/pci.h
@@ -261,6 +261,9 @@ enum pci_bus_speed {
PCI_SPEED_UNKNOWN = 0xff,
};
+enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev);
+enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev);
+
struct pci_cap_saved_data {
u16 cap_nr;
bool cap_extended;
diff --git a/include/linux/ww_mutex.h b/include/linux/ww_mutex.h
index 39fda195bf78..3af7c0e03be5 100644
--- a/include/linux/ww_mutex.h
+++ b/include/linux/ww_mutex.h
@@ -6,8 +6,10 @@
*
* Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
*
- * Wound/wait implementation:
+ * Wait/Die implementation:
* Copyright (C) 2013 Canonical Ltd.
+ * Choice of algorithm:
+ * Copyright (C) 2018 WMWare Inc.
*
* This file contains the main data structure and API definitions.
*/
@@ -23,14 +25,17 @@ struct ww_class {
struct lock_class_key mutex_key;
const char *acquire_name;
const char *mutex_name;
+ unsigned int is_wait_die;
};
struct ww_acquire_ctx {
struct task_struct *task;
unsigned long stamp;
- unsigned acquired;
+ unsigned int acquired;
+ unsigned short wounded;
+ unsigned short is_wait_die;
#ifdef CONFIG_DEBUG_MUTEXES
- unsigned done_acquire;
+ unsigned int done_acquire;
struct ww_class *ww_class;
struct ww_mutex *contending_lock;
#endif
@@ -38,8 +43,8 @@ struct ww_acquire_ctx {
struct lockdep_map dep_map;
#endif
#ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
- unsigned deadlock_inject_interval;
- unsigned deadlock_inject_countdown;
+ unsigned int deadlock_inject_interval;
+ unsigned int deadlock_inject_countdown;
#endif
};
@@ -58,17 +63,21 @@ struct ww_mutex {
# define __WW_CLASS_MUTEX_INITIALIZER(lockname, class)
#endif
-#define __WW_CLASS_INITIALIZER(ww_class) \
+#define __WW_CLASS_INITIALIZER(ww_class, _is_wait_die) \
{ .stamp = ATOMIC_LONG_INIT(0) \
, .acquire_name = #ww_class "_acquire" \
- , .mutex_name = #ww_class "_mutex" }
+ , .mutex_name = #ww_class "_mutex" \
+ , .is_wait_die = _is_wait_die }
#define __WW_MUTEX_INITIALIZER(lockname, class) \
{ .base = __MUTEX_INITIALIZER(lockname.base) \
__WW_CLASS_MUTEX_INITIALIZER(lockname, class) }
+#define DEFINE_WD_CLASS(classname) \
+ struct ww_class classname = __WW_CLASS_INITIALIZER(classname, 1)
+
#define DEFINE_WW_CLASS(classname) \
- struct ww_class classname = __WW_CLASS_INITIALIZER(classname)
+ struct ww_class classname = __WW_CLASS_INITIALIZER(classname, 0)
#define DEFINE_WW_MUTEX(mutexname, ww_class) \
struct ww_mutex mutexname = __WW_MUTEX_INITIALIZER(mutexname, ww_class)
@@ -102,7 +111,7 @@ static inline void ww_mutex_init(struct ww_mutex *lock,
*
* Context-based w/w mutex acquiring can be done in any order whatsoever within
* a given lock class. Deadlocks will be detected and handled with the
- * wait/wound logic.
+ * wait/die logic.
*
* Mixing of context-based w/w mutex acquiring and single w/w mutex locking can
* result in undetected deadlocks and is so forbidden. Mixing different contexts
@@ -123,6 +132,8 @@ static inline void ww_acquire_init(struct ww_acquire_ctx *ctx,
ctx->task = current;
ctx->stamp = atomic_long_inc_return_relaxed(&ww_class->stamp);
ctx->acquired = 0;
+ ctx->wounded = false;
+ ctx->is_wait_die = ww_class->is_wait_die;
#ifdef CONFIG_DEBUG_MUTEXES
ctx->ww_class = ww_class;
ctx->done_acquire = 0;
@@ -195,13 +206,13 @@ static inline void ww_acquire_fini(struct ww_acquire_ctx *ctx)
* Lock the w/w mutex exclusively for this task.
*
* Deadlocks within a given w/w class of locks are detected and handled with the
- * wait/wound algorithm. If the lock isn't immediately avaiable this function
+ * wait/die algorithm. If the lock isn't immediately available this function
* will either sleep until it is (wait case). Or it selects the current context
- * for backing off by returning -EDEADLK (wound case). Trying to acquire the
+ * for backing off by returning -EDEADLK (die case). Trying to acquire the
* same lock with the same context twice is also detected and signalled by
* returning -EALREADY. Returns 0 if the mutex was successfully acquired.
*
- * In the wound case the caller must release all currently held w/w mutexes for
+ * In the die case the caller must release all currently held w/w mutexes for
* the given context and then wait for this contending lock to be available by
* calling ww_mutex_lock_slow. Alternatively callers can opt to not acquire this
* lock and proceed with trying to acquire further w/w mutexes (e.g. when
@@ -226,14 +237,14 @@ extern int /* __must_check */ ww_mutex_lock(struct ww_mutex *lock, struct ww_acq
* Lock the w/w mutex exclusively for this task.
*
* Deadlocks within a given w/w class of locks are detected and handled with the
- * wait/wound algorithm. If the lock isn't immediately avaiable this function
+ * wait/die algorithm. If the lock isn't immediately available this function
* will either sleep until it is (wait case). Or it selects the current context
- * for backing off by returning -EDEADLK (wound case). Trying to acquire the
+ * for backing off by returning -EDEADLK (die case). Trying to acquire the
* same lock with the same context twice is also detected and signalled by
* returning -EALREADY. Returns 0 if the mutex was successfully acquired. If a
* signal arrives while waiting for the lock then this function returns -EINTR.
*
- * In the wound case the caller must release all currently held w/w mutexes for
+ * In the die case the caller must release all currently held w/w mutexes for
* the given context and then wait for this contending lock to be available by
* calling ww_mutex_lock_slow_interruptible. Alternatively callers can opt to
* not acquire this lock and proceed with trying to acquire further w/w mutexes
@@ -256,7 +267,7 @@ extern int __must_check ww_mutex_lock_interruptible(struct ww_mutex *lock,
* @lock: the mutex to be acquired
* @ctx: w/w acquire context
*
- * Acquires a w/w mutex with the given context after a wound case. This function
+ * Acquires a w/w mutex with the given context after a die case. This function
* will sleep until the lock becomes available.
*
* The caller must have released all w/w mutexes already acquired with the
@@ -290,7 +301,7 @@ ww_mutex_lock_slow(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
* @lock: the mutex to be acquired
* @ctx: w/w acquire context
*
- * Acquires a w/w mutex with the given context after a wound case. This function
+ * Acquires a w/w mutex with the given context after a die case. This function
* will sleep until the lock becomes available and returns 0 when the lock has
* been acquired. If a signal arrives while waiting for the lock then this
* function returns -EINTR.
OpenPOWER on IntegriCloud