summaryrefslogtreecommitdiffstats
path: root/include/linux/spinlock.h
diff options
context:
space:
mode:
authorPeter Zijlstra <peterz@infradead.org>2016-09-05 11:37:53 +0200
committerIngo Molnar <mingo@kernel.org>2017-08-10 12:29:02 +0200
commitd89e588ca4081615216cc25f2489b0281ac0bfe9 (patch)
tree9f3fd5958adb8b6a0a86065ca0c0603fc73c3c06 /include/linux/spinlock.h
parentff7a5fb0f1d510997a845e0d227f30831ff38d9d (diff)
downloadtalos-op-linux-d89e588ca4081615216cc25f2489b0281ac0bfe9.tar.gz
talos-op-linux-d89e588ca4081615216cc25f2489b0281ac0bfe9.zip
locking: Introduce smp_mb__after_spinlock()
Since its inception, our understanding of ACQUIRE, esp. as applied to spinlocks, has changed somewhat. Also, I wonder if, with a simple change, we cannot make it provide more. The problem with the comment is that the STORE done by spin_lock isn't itself ordered by the ACQUIRE, and therefore a later LOAD can pass over it and cross with any prior STORE, rendering the default WMB insufficient (pointed out by Alan). Now, this is only really a problem on PowerPC and ARM64, both of which already defined smp_mb__before_spinlock() as a smp_mb(). At the same time, we can get a much stronger construct if we place that same barrier _inside_ the spin_lock(). In that case we upgrade the RCpc spinlock to an RCsc. That would make all schedule() calls fully transitive against one another. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Alan Stern <stern@rowland.harvard.edu> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Paul McKenney <paulmck@linux.vnet.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'include/linux/spinlock.h')
-rw-r--r--include/linux/spinlock.h36
1 files changed, 36 insertions, 0 deletions
diff --git a/include/linux/spinlock.h b/include/linux/spinlock.h
index d9510e8522d4..840281095933 100644
--- a/include/linux/spinlock.h
+++ b/include/linux/spinlock.h
@@ -130,6 +130,42 @@ do { \
#define smp_mb__before_spinlock() smp_wmb()
#endif
+/*
+ * This barrier must provide two things:
+ *
+ * - it must guarantee a STORE before the spin_lock() is ordered against a
+ * LOAD after it, see the comments at its two usage sites.
+ *
+ * - it must ensure the critical section is RCsc.
+ *
+ * The latter is important for cases where we observe values written by other
+ * CPUs in spin-loops, without barriers, while being subject to scheduling.
+ *
+ * CPU0 CPU1 CPU2
+ *
+ * for (;;) {
+ * if (READ_ONCE(X))
+ * break;
+ * }
+ * X=1
+ * <sched-out>
+ * <sched-in>
+ * r = X;
+ *
+ * without transitivity it could be that CPU1 observes X!=0 breaks the loop,
+ * we get migrated and CPU2 sees X==0.
+ *
+ * Since most load-store architectures implement ACQUIRE with an smp_mb() after
+ * the LL/SC loop, they need no further barriers. Similarly all our TSO
+ * architectures imply an smp_mb() for each atomic instruction and equally don't
+ * need more.
+ *
+ * Architectures that can implement ACQUIRE better need to take care.
+ */
+#ifndef smp_mb__after_spinlock
+#define smp_mb__after_spinlock() do { } while (0)
+#endif
+
/**
* raw_spin_unlock_wait - wait until the spinlock gets unlocked
* @lock: the spinlock in question.
OpenPOWER on IntegriCloud