diff options
author | Davidlohr Bueso <davidlohr@hp.com> | 2014-07-30 13:41:55 -0700 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2014-08-13 10:32:03 +0200 |
commit | 214e0aed639ef40987bf6159fad303171a6de31e (patch) | |
tree | 9f4c2eb1497a7377de93d619c05cf6c82fcfa0cb /Documentation/rt-mutex.txt | |
parent | 7608a43d8f2e02f8b532f8e11481d7ecf8b5d3f9 (diff) | |
download | talos-op-linux-214e0aed639ef40987bf6159fad303171a6de31e.tar.gz talos-op-linux-214e0aed639ef40987bf6159fad303171a6de31e.zip |
locking/Documentation: Move locking related docs into Documentation/locking/
Specifically:
Documentation/locking/lockdep-design.txt
Documentation/locking/lockstat.txt
Documentation/locking/mutex-design.txt
Documentation/locking/rt-mutex-design.txt
Documentation/locking/rt-mutex.txt
Documentation/locking/spinlocks.txt
Documentation/locking/ww-mutex-design.txt
Signed-off-by: Davidlohr Bueso <davidlohr@hp.com>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Cc: jason.low2@hp.com
Cc: aswin@hp.com
Cc: Alexei Starovoitov <ast@plumgrid.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chris Mason <clm@fb.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: David Airlie <airlied@linux.ie>
Cc: Davidlohr Bueso <davidlohr@hp.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Jason Low <jason.low2@hp.com>
Cc: Josef Bacik <jbacik@fusionio.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Lubomir Rintel <lkundrak@v3.sk>
Cc: Masanari Iida <standby24x7@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: fengguang.wu@intel.com
Link: http://lkml.kernel.org/r/1406752916-3341-6-git-send-email-davidlohr@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'Documentation/rt-mutex.txt')
-rw-r--r-- | Documentation/rt-mutex.txt | 79 |
1 files changed, 0 insertions, 79 deletions
diff --git a/Documentation/rt-mutex.txt b/Documentation/rt-mutex.txt deleted file mode 100644 index 243393d882ee..000000000000 --- a/Documentation/rt-mutex.txt +++ /dev/null @@ -1,79 +0,0 @@ -RT-mutex subsystem with PI support ----------------------------------- - -RT-mutexes with priority inheritance are used to support PI-futexes, -which enable pthread_mutex_t priority inheritance attributes -(PTHREAD_PRIO_INHERIT). [See Documentation/pi-futex.txt for more details -about PI-futexes.] - -This technology was developed in the -rt tree and streamlined for -pthread_mutex support. - -Basic principles: ------------------ - -RT-mutexes extend the semantics of simple mutexes by the priority -inheritance protocol. - -A low priority owner of a rt-mutex inherits the priority of a higher -priority waiter until the rt-mutex is released. If the temporarily -boosted owner blocks on a rt-mutex itself it propagates the priority -boosting to the owner of the other rt_mutex it gets blocked on. The -priority boosting is immediately removed once the rt_mutex has been -unlocked. - -This approach allows us to shorten the block of high-prio tasks on -mutexes which protect shared resources. Priority inheritance is not a -magic bullet for poorly designed applications, but it allows -well-designed applications to use userspace locks in critical parts of -an high priority thread, without losing determinism. - -The enqueueing of the waiters into the rtmutex waiter list is done in -priority order. For same priorities FIFO order is chosen. For each -rtmutex, only the top priority waiter is enqueued into the owner's -priority waiters list. This list too queues in priority order. Whenever -the top priority waiter of a task changes (for example it timed out or -got a signal), the priority of the owner task is readjusted. [The -priority enqueueing is handled by "plists", see include/linux/plist.h -for more details.] - -RT-mutexes are optimized for fastpath operations and have no internal -locking overhead when locking an uncontended mutex or unlocking a mutex -without waiters. The optimized fastpath operations require cmpxchg -support. [If that is not available then the rt-mutex internal spinlock -is used] - -The state of the rt-mutex is tracked via the owner field of the rt-mutex -structure: - -rt_mutex->owner holds the task_struct pointer of the owner. Bit 0 and 1 -are used to keep track of the "owner is pending" and "rtmutex has -waiters" state. - - owner bit1 bit0 - NULL 0 0 mutex is free (fast acquire possible) - NULL 0 1 invalid state - NULL 1 0 Transitional state* - NULL 1 1 invalid state - taskpointer 0 0 mutex is held (fast release possible) - taskpointer 0 1 task is pending owner - taskpointer 1 0 mutex is held and has waiters - taskpointer 1 1 task is pending owner and mutex has waiters - -Pending-ownership handling is a performance optimization: -pending-ownership is assigned to the first (highest priority) waiter of -the mutex, when the mutex is released. The thread is woken up and once -it starts executing it can acquire the mutex. Until the mutex is taken -by it (bit 0 is cleared) a competing higher priority thread can "steal" -the mutex which puts the woken up thread back on the waiters list. - -The pending-ownership optimization is especially important for the -uninterrupted workflow of high-prio tasks which repeatedly -takes/releases locks that have lower-prio waiters. Without this -optimization the higher-prio thread would ping-pong to the lower-prio -task [because at unlock time we always assign a new owner]. - -(*) The "mutex has waiters" bit gets set to take the lock. If the lock -doesn't already have an owner, this bit is quickly cleared if there are -no waiters. So this is a transitional state to synchronize with looking -at the owner field of the mutex and the mutex owner releasing the lock. |