summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorSean Christopherson <sean.j.christopherson@intel.com>2018-12-03 13:53:18 -0800
committerPaolo Bonzini <pbonzini@redhat.com>2018-12-14 17:59:46 +0100
commit55d2375e58a61be072431dd3d3c8a320f4a4a01b (patch)
tree7fe79f9170b7abae17e86dde50fdd3011f712126
parent7c97fcb3b68cd4d48a071bc1929c753d255dea47 (diff)
downloadtalos-op-linux-55d2375e58a61be072431dd3d3c8a320f4a4a01b.tar.gz
talos-op-linux-55d2375e58a61be072431dd3d3c8a320f4a4a01b.zip
KVM: nVMX: Move nested code to dedicated files
From a functional perspective, this is (supposed to be) a straight copy-paste of code. Code was moved piecemeal to nested.c as not all code that could/should be moved was obviously nested-only. The nested code was then re-ordered as needed to compile, i.e. stats may not show this is being a "pure" move despite there not being any intended changes in functionality. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-rw-r--r--arch/x86/kvm/Makefile2
-rw-r--r--arch/x86/kvm/vmx/nested.c5674
-rw-r--r--arch/x86/kvm/vmx/nested.h282
-rw-r--r--arch/x86/kvm/vmx/vmx.c5922
4 files changed, 5959 insertions, 5921 deletions
diff --git a/arch/x86/kvm/Makefile b/arch/x86/kvm/Makefile
index 7f3f50aaa203..83dc7d6a0294 100644
--- a/arch/x86/kvm/Makefile
+++ b/arch/x86/kvm/Makefile
@@ -16,7 +16,7 @@ kvm-y += x86.o mmu.o emulate.o i8259.o irq.o lapic.o \
i8254.o ioapic.o irq_comm.o cpuid.o pmu.o mtrr.o \
hyperv.o page_track.o debugfs.o
-kvm-intel-y += vmx/vmx.o vmx/pmu_intel.o vmx/vmcs12.o vmx/evmcs.o
+kvm-intel-y += vmx/vmx.o vmx/pmu_intel.o vmx/vmcs12.o vmx/evmcs.o vmx/nested.o
kvm-amd-y += svm.o pmu_amd.o
obj-$(CONFIG_KVM) += kvm.o
diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c
new file mode 100644
index 000000000000..70e6d604c2a0
--- /dev/null
+++ b/arch/x86/kvm/vmx/nested.c
@@ -0,0 +1,5674 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/frame.h>
+#include <linux/percpu.h>
+
+#include <asm/debugreg.h>
+#include <asm/mmu_context.h>
+
+#include "cpuid.h"
+#include "hyperv.h"
+#include "mmu.h"
+#include "nested.h"
+#include "trace.h"
+#include "x86.h"
+
+static bool __read_mostly enable_shadow_vmcs = 1;
+module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
+
+static bool __read_mostly nested_early_check = 0;
+module_param(nested_early_check, bool, S_IRUGO);
+
+extern const ulong vmx_early_consistency_check_return;
+
+/*
+ * Hyper-V requires all of these, so mark them as supported even though
+ * they are just treated the same as all-context.
+ */
+#define VMX_VPID_EXTENT_SUPPORTED_MASK \
+ (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
+ VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
+ VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
+ VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
+
+#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
+
+enum {
+ VMX_VMREAD_BITMAP,
+ VMX_VMWRITE_BITMAP,
+ VMX_BITMAP_NR
+};
+static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
+
+#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
+#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
+
+static u16 shadow_read_only_fields[] = {
+#define SHADOW_FIELD_RO(x) x,
+#include "vmcs_shadow_fields.h"
+};
+static int max_shadow_read_only_fields =
+ ARRAY_SIZE(shadow_read_only_fields);
+
+static u16 shadow_read_write_fields[] = {
+#define SHADOW_FIELD_RW(x) x,
+#include "vmcs_shadow_fields.h"
+};
+static int max_shadow_read_write_fields =
+ ARRAY_SIZE(shadow_read_write_fields);
+
+void init_vmcs_shadow_fields(void)
+{
+ int i, j;
+
+ memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
+ memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
+
+ for (i = j = 0; i < max_shadow_read_only_fields; i++) {
+ u16 field = shadow_read_only_fields[i];
+
+ if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+ (i + 1 == max_shadow_read_only_fields ||
+ shadow_read_only_fields[i + 1] != field + 1))
+ pr_err("Missing field from shadow_read_only_field %x\n",
+ field + 1);
+
+ clear_bit(field, vmx_vmread_bitmap);
+#ifdef CONFIG_X86_64
+ if (field & 1)
+ continue;
+#endif
+ if (j < i)
+ shadow_read_only_fields[j] = field;
+ j++;
+ }
+ max_shadow_read_only_fields = j;
+
+ for (i = j = 0; i < max_shadow_read_write_fields; i++) {
+ u16 field = shadow_read_write_fields[i];
+
+ if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+ (i + 1 == max_shadow_read_write_fields ||
+ shadow_read_write_fields[i + 1] != field + 1))
+ pr_err("Missing field from shadow_read_write_field %x\n",
+ field + 1);
+
+ /*
+ * PML and the preemption timer can be emulated, but the
+ * processor cannot vmwrite to fields that don't exist
+ * on bare metal.
+ */
+ switch (field) {
+ case GUEST_PML_INDEX:
+ if (!cpu_has_vmx_pml())
+ continue;
+ break;
+ case VMX_PREEMPTION_TIMER_VALUE:
+ if (!cpu_has_vmx_preemption_timer())
+ continue;
+ break;
+ case GUEST_INTR_STATUS:
+ if (!cpu_has_vmx_apicv())
+ continue;
+ break;
+ default:
+ break;
+ }
+
+ clear_bit(field, vmx_vmwrite_bitmap);
+ clear_bit(field, vmx_vmread_bitmap);
+#ifdef CONFIG_X86_64
+ if (field & 1)
+ continue;
+#endif
+ if (j < i)
+ shadow_read_write_fields[j] = field;
+ j++;
+ }
+ max_shadow_read_write_fields = j;
+}
+
+/*
+ * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
+ * set the success or error code of an emulated VMX instruction (as specified
+ * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
+ * instruction.
+ */
+static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_CF);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
+ u32 vm_instruction_error)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * failValid writes the error number to the current VMCS, which
+ * can't be done if there isn't a current VMCS.
+ */
+ if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
+ return nested_vmx_failInvalid(vcpu);
+
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_ZF);
+ get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
+ /*
+ * We don't need to force a shadow sync because
+ * VM_INSTRUCTION_ERROR is not shadowed
+ */
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
+{
+ /* TODO: not to reset guest simply here. */
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
+}
+
+static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
+{
+ vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
+ vmcs_write64(VMCS_LINK_POINTER, -1ull);
+}
+
+static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx->nested.hv_evmcs)
+ return;
+
+ kunmap(vmx->nested.hv_evmcs_page);
+ kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
+ vmx->nested.hv_evmcs_vmptr = -1ull;
+ vmx->nested.hv_evmcs_page = NULL;
+ vmx->nested.hv_evmcs = NULL;
+}
+
+/*
+ * Free whatever needs to be freed from vmx->nested when L1 goes down, or
+ * just stops using VMX.
+ */
+static void free_nested(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
+ return;
+
+ vmx->nested.vmxon = false;
+ vmx->nested.smm.vmxon = false;
+ free_vpid(vmx->nested.vpid02);
+ vmx->nested.posted_intr_nv = -1;
+ vmx->nested.current_vmptr = -1ull;
+ if (enable_shadow_vmcs) {
+ vmx_disable_shadow_vmcs(vmx);
+ vmcs_clear(vmx->vmcs01.shadow_vmcs);
+ free_vmcs(vmx->vmcs01.shadow_vmcs);
+ vmx->vmcs01.shadow_vmcs = NULL;
+ }
+ kfree(vmx->nested.cached_vmcs12);
+ kfree(vmx->nested.cached_shadow_vmcs12);
+ /* Unpin physical memory we referred to in the vmcs02 */
+ if (vmx->nested.apic_access_page) {
+ kvm_release_page_dirty(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = NULL;
+ }
+ if (vmx->nested.virtual_apic_page) {
+ kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+ vmx->nested.virtual_apic_page = NULL;
+ }
+ if (vmx->nested.pi_desc_page) {
+ kunmap(vmx->nested.pi_desc_page);
+ kvm_release_page_dirty(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc_page = NULL;
+ vmx->nested.pi_desc = NULL;
+ }
+
+ kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+
+ nested_release_evmcs(vcpu);
+
+ free_loaded_vmcs(&vmx->nested.vmcs02);
+}
+
+static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int cpu;
+
+ if (vmx->loaded_vmcs == vmcs)
+ return;
+
+ cpu = get_cpu();
+ vmx_vcpu_put(vcpu);
+ vmx->loaded_vmcs = vmcs;
+ vmx_vcpu_load(vcpu, cpu);
+ put_cpu();
+
+ vm_entry_controls_reset_shadow(vmx);
+ vm_exit_controls_reset_shadow(vmx);
+ vmx_segment_cache_clear(vmx);
+}
+
+/*
+ * Ensure that the current vmcs of the logical processor is the
+ * vmcs01 of the vcpu before calling free_nested().
+ */
+void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
+{
+ vcpu_load(vcpu);
+ vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
+ free_nested(vcpu);
+ vcpu_put(vcpu);
+}
+
+static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 exit_reason;
+ unsigned long exit_qualification = vcpu->arch.exit_qualification;
+
+ if (vmx->nested.pml_full) {
+ exit_reason = EXIT_REASON_PML_FULL;
+ vmx->nested.pml_full = false;
+ exit_qualification &= INTR_INFO_UNBLOCK_NMI;
+ } else if (fault->error_code & PFERR_RSVD_MASK)
+ exit_reason = EXIT_REASON_EPT_MISCONFIG;
+ else
+ exit_reason = EXIT_REASON_EPT_VIOLATION;
+
+ nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
+ vmcs12->guest_physical_address = fault->address;
+}
+
+static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+ WARN_ON(mmu_is_nested(vcpu));
+
+ vcpu->arch.mmu = &vcpu->arch.guest_mmu;
+ kvm_init_shadow_ept_mmu(vcpu,
+ to_vmx(vcpu)->nested.msrs.ept_caps &
+ VMX_EPT_EXECUTE_ONLY_BIT,
+ nested_ept_ad_enabled(vcpu),
+ nested_ept_get_cr3(vcpu));
+ vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
+ vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
+ vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
+ vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
+
+ vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
+}
+
+static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.mmu = &vcpu->arch.root_mmu;
+ vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
+}
+
+static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
+ u16 error_code)
+{
+ bool inequality, bit;
+
+ bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
+ inequality =
+ (error_code & vmcs12->page_fault_error_code_mask) !=
+ vmcs12->page_fault_error_code_match;
+ return inequality ^ bit;
+}
+
+
+/*
+ * KVM wants to inject page-faults which it got to the guest. This function
+ * checks whether in a nested guest, we need to inject them to L1 or L2.
+ */
+static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned int nr = vcpu->arch.exception.nr;
+ bool has_payload = vcpu->arch.exception.has_payload;
+ unsigned long payload = vcpu->arch.exception.payload;
+
+ if (nr == PF_VECTOR) {
+ if (vcpu->arch.exception.nested_apf) {
+ *exit_qual = vcpu->arch.apf.nested_apf_token;
+ return 1;
+ }
+ if (nested_vmx_is_page_fault_vmexit(vmcs12,
+ vcpu->arch.exception.error_code)) {
+ *exit_qual = has_payload ? payload : vcpu->arch.cr2;
+ return 1;
+ }
+ } else if (vmcs12->exception_bitmap & (1u << nr)) {
+ if (nr == DB_VECTOR) {
+ if (!has_payload) {
+ payload = vcpu->arch.dr6;
+ payload &= ~(DR6_FIXED_1 | DR6_BT);
+ payload ^= DR6_RTM;
+ }
+ *exit_qual = payload;
+ } else
+ *exit_qual = 0;
+ return 1;
+ }
+
+ return 0;
+}
+
+
+static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ WARN_ON(!is_guest_mode(vcpu));
+
+ if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
+ !to_vmx(vcpu)->nested.nested_run_pending) {
+ vmcs12->vm_exit_intr_error_code = fault->error_code;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+ PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
+ INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
+ fault->address);
+ } else {
+ kvm_inject_page_fault(vcpu, fault);
+ }
+}
+
+static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
+{
+ return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
+}
+
+static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
+ !page_address_valid(vcpu, vmcs12->io_bitmap_b))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
+ return -EINVAL;
+
+ return 0;
+}
+
+/*
+ * Check if MSR is intercepted for L01 MSR bitmap.
+ */
+static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
+{
+ unsigned long *msr_bitmap;
+ int f = sizeof(unsigned long);
+
+ if (!cpu_has_vmx_msr_bitmap())
+ return true;
+
+ msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
+
+ if (msr <= 0x1fff) {
+ return !!test_bit(msr, msr_bitmap + 0x800 / f);
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+ }
+
+ return true;
+}
+
+/*
+ * If a msr is allowed by L0, we should check whether it is allowed by L1.
+ * The corresponding bit will be cleared unless both of L0 and L1 allow it.
+ */
+static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
+ unsigned long *msr_bitmap_nested,
+ u32 msr, int type)
+{
+ int f = sizeof(unsigned long);
+
+ /*
+ * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+ * have the write-low and read-high bitmap offsets the wrong way round.
+ * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+ */
+ if (msr <= 0x1fff) {
+ if (type & MSR_TYPE_R &&
+ !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
+ /* read-low */
+ __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
+
+ if (type & MSR_TYPE_W &&
+ !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
+ /* write-low */
+ __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
+
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ if (type & MSR_TYPE_R &&
+ !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
+ /* read-high */
+ __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
+
+ if (type & MSR_TYPE_W &&
+ !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
+ /* write-high */
+ __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
+
+ }
+}
+
+/*
+ * Merge L0's and L1's MSR bitmap, return false to indicate that
+ * we do not use the hardware.
+ */
+static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ int msr;
+ struct page *page;
+ unsigned long *msr_bitmap_l1;
+ unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
+ /*
+ * pred_cmd & spec_ctrl are trying to verify two things:
+ *
+ * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
+ * ensures that we do not accidentally generate an L02 MSR bitmap
+ * from the L12 MSR bitmap that is too permissive.
+ * 2. That L1 or L2s have actually used the MSR. This avoids
+ * unnecessarily merging of the bitmap if the MSR is unused. This
+ * works properly because we only update the L01 MSR bitmap lazily.
+ * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
+ * updated to reflect this when L1 (or its L2s) actually write to
+ * the MSR.
+ */
+ bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
+ bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
+
+ /* Nothing to do if the MSR bitmap is not in use. */
+ if (!cpu_has_vmx_msr_bitmap() ||
+ !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+ return false;
+
+ if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+ !pred_cmd && !spec_ctrl)
+ return false;
+
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
+ if (is_error_page(page))
+ return false;
+
+ msr_bitmap_l1 = (unsigned long *)kmap(page);
+ if (nested_cpu_has_apic_reg_virt(vmcs12)) {
+ /*
+ * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
+ * just lets the processor take the value from the virtual-APIC page;
+ * take those 256 bits directly from the L1 bitmap.
+ */
+ for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+ unsigned word = msr / BITS_PER_LONG;
+ msr_bitmap_l0[word] = msr_bitmap_l1[word];
+ msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
+ }
+ } else {
+ for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+ unsigned word = msr / BITS_PER_LONG;
+ msr_bitmap_l0[word] = ~0;
+ msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
+ }
+ }
+
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ X2APIC_MSR(APIC_TASKPRI),
+ MSR_TYPE_W);
+
+ if (nested_cpu_has_vid(vmcs12)) {
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ X2APIC_MSR(APIC_EOI),
+ MSR_TYPE_W);
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ X2APIC_MSR(APIC_SELF_IPI),
+ MSR_TYPE_W);
+ }
+
+ if (spec_ctrl)
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_SPEC_CTRL,
+ MSR_TYPE_R | MSR_TYPE_W);
+
+ if (pred_cmd)
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_PRED_CMD,
+ MSR_TYPE_W);
+
+ kunmap(page);
+ kvm_release_page_clean(page);
+
+ return true;
+}
+
+static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct vmcs12 *shadow;
+ struct page *page;
+
+ if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+ vmcs12->vmcs_link_pointer == -1ull)
+ return;
+
+ shadow = get_shadow_vmcs12(vcpu);
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+
+ memcpy(shadow, kmap(page), VMCS12_SIZE);
+
+ kunmap(page);
+ kvm_release_page_clean(page);
+}
+
+static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+ vmcs12->vmcs_link_pointer == -1ull)
+ return;
+
+ kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
+ get_shadow_vmcs12(vcpu), VMCS12_SIZE);
+}
+
+/*
+ * In nested virtualization, check if L1 has set
+ * VM_EXIT_ACK_INTR_ON_EXIT
+ */
+static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
+{
+ return get_vmcs12(vcpu)->vm_exit_controls &
+ VM_EXIT_ACK_INTR_ON_EXIT;
+}
+
+static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
+{
+ return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
+}
+
+static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
+ !page_address_valid(vcpu, vmcs12->apic_access_addr))
+ return -EINVAL;
+ else
+ return 0;
+}
+
+static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+ !nested_cpu_has_apic_reg_virt(vmcs12) &&
+ !nested_cpu_has_vid(vmcs12) &&
+ !nested_cpu_has_posted_intr(vmcs12))
+ return 0;
+
+ /*
+ * If virtualize x2apic mode is enabled,
+ * virtualize apic access must be disabled.
+ */
+ if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+ nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ return -EINVAL;
+
+ /*
+ * If virtual interrupt delivery is enabled,
+ * we must exit on external interrupts.
+ */
+ if (nested_cpu_has_vid(vmcs12) &&
+ !nested_exit_on_intr(vcpu))
+ return -EINVAL;
+
+ /*
+ * bits 15:8 should be zero in posted_intr_nv,
+ * the descriptor address has been already checked
+ * in nested_get_vmcs12_pages.
+ *
+ * bits 5:0 of posted_intr_desc_addr should be zero.
+ */
+ if (nested_cpu_has_posted_intr(vmcs12) &&
+ (!nested_cpu_has_vid(vmcs12) ||
+ !nested_exit_intr_ack_set(vcpu) ||
+ (vmcs12->posted_intr_nv & 0xff00) ||
+ (vmcs12->posted_intr_desc_addr & 0x3f) ||
+ (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
+ return -EINVAL;
+
+ /* tpr shadow is needed by all apicv features. */
+ if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
+ unsigned long count_field,
+ unsigned long addr_field)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ int maxphyaddr;
+ u64 count, addr;
+
+ if (vmcs12_read_any(vmcs12, count_field, &count) ||
+ vmcs12_read_any(vmcs12, addr_field, &addr)) {
+ WARN_ON(1);
+ return -EINVAL;
+ }
+ if (count == 0)
+ return 0;
+ maxphyaddr = cpuid_maxphyaddr(vcpu);
+ if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
+ (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
+ pr_debug_ratelimited(
+ "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
+ addr_field, maxphyaddr, count, addr);
+ return -EINVAL;
+ }
+ return 0;
+}
+
+static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (vmcs12->vm_exit_msr_load_count == 0 &&
+ vmcs12->vm_exit_msr_store_count == 0 &&
+ vmcs12->vm_entry_msr_load_count == 0)
+ return 0; /* Fast path */
+ if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
+ VM_EXIT_MSR_LOAD_ADDR) ||
+ nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
+ VM_EXIT_MSR_STORE_ADDR) ||
+ nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
+ VM_ENTRY_MSR_LOAD_ADDR))
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has_pml(vmcs12))
+ return 0;
+
+ if (!nested_cpu_has_ept(vmcs12) ||
+ !page_address_valid(vcpu, vmcs12->pml_address))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
+ !nested_cpu_has_ept(vmcs12))
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
+ !nested_cpu_has_ept(vmcs12))
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has_shadow_vmcs(vmcs12))
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
+ !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
+ struct vmx_msr_entry *e)
+{
+ /* x2APIC MSR accesses are not allowed */
+ if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
+ return -EINVAL;
+ if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
+ e->index == MSR_IA32_UCODE_REV)
+ return -EINVAL;
+ if (e->reserved != 0)
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
+ struct vmx_msr_entry *e)
+{
+ if (e->index == MSR_FS_BASE ||
+ e->index == MSR_GS_BASE ||
+ e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
+ nested_vmx_msr_check_common(vcpu, e))
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
+ struct vmx_msr_entry *e)
+{
+ if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
+ nested_vmx_msr_check_common(vcpu, e))
+ return -EINVAL;
+ return 0;
+}
+
+/*
+ * Load guest's/host's msr at nested entry/exit.
+ * return 0 for success, entry index for failure.
+ */
+static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+ u32 i;
+ struct vmx_msr_entry e;
+ struct msr_data msr;
+
+ msr.host_initiated = false;
+ for (i = 0; i < count; i++) {
+ if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
+ &e, sizeof(e))) {
+ pr_debug_ratelimited(
+ "%s cannot read MSR entry (%u, 0x%08llx)\n",
+ __func__, i, gpa + i * sizeof(e));
+ goto fail;
+ }
+ if (nested_vmx_load_msr_check(vcpu, &e)) {
+ pr_debug_ratelimited(
+ "%s check failed (%u, 0x%x, 0x%x)\n",
+ __func__, i, e.index, e.reserved);
+ goto fail;
+ }
+ msr.index = e.index;
+ msr.data = e.value;
+ if (kvm_set_msr(vcpu, &msr)) {
+ pr_debug_ratelimited(
+ "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+ __func__, i, e.index, e.value);
+ goto fail;
+ }
+ }
+ return 0;
+fail:
+ return i + 1;
+}
+
+static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+ u32 i;
+ struct vmx_msr_entry e;
+
+ for (i = 0; i < count; i++) {
+ struct msr_data msr_info;
+ if (kvm_vcpu_read_guest(vcpu,
+ gpa + i * sizeof(e),
+ &e, 2 * sizeof(u32))) {
+ pr_debug_ratelimited(
+ "%s cannot read MSR entry (%u, 0x%08llx)\n",
+ __func__, i, gpa + i * sizeof(e));
+ return -EINVAL;
+ }
+ if (nested_vmx_store_msr_check(vcpu, &e)) {
+ pr_debug_ratelimited(
+ "%s check failed (%u, 0x%x, 0x%x)\n",
+ __func__, i, e.index, e.reserved);
+ return -EINVAL;
+ }
+ msr_info.host_initiated = false;
+ msr_info.index = e.index;
+ if (kvm_get_msr(vcpu, &msr_info)) {
+ pr_debug_ratelimited(
+ "%s cannot read MSR (%u, 0x%x)\n",
+ __func__, i, e.index);
+ return -EINVAL;
+ }
+ if (kvm_vcpu_write_guest(vcpu,
+ gpa + i * sizeof(e) +
+ offsetof(struct vmx_msr_entry, value),
+ &msr_info.data, sizeof(msr_info.data))) {
+ pr_debug_ratelimited(
+ "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+ __func__, i, e.index, msr_info.data);
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ unsigned long invalid_mask;
+
+ invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
+ return (val & invalid_mask) == 0;
+}
+
+/*
+ * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
+ * emulating VM entry into a guest with EPT enabled.
+ * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+ * is assigned to entry_failure_code on failure.
+ */
+static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
+ u32 *entry_failure_code)
+{
+ if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
+ if (!nested_cr3_valid(vcpu, cr3)) {
+ *entry_failure_code = ENTRY_FAIL_DEFAULT;
+ return 1;
+ }
+
+ /*
+ * If PAE paging and EPT are both on, CR3 is not used by the CPU and
+ * must not be dereferenced.
+ */
+ if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
+ !nested_ept) {
+ if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
+ *entry_failure_code = ENTRY_FAIL_PDPTE;
+ return 1;
+ }
+ }
+ }
+
+ if (!nested_ept)
+ kvm_mmu_new_cr3(vcpu, cr3, false);
+
+ vcpu->arch.cr3 = cr3;
+ __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+
+ kvm_init_mmu(vcpu, false);
+
+ return 0;
+}
+
+/*
+ * Returns if KVM is able to config CPU to tag TLB entries
+ * populated by L2 differently than TLB entries populated
+ * by L1.
+ *
+ * If L1 uses EPT, then TLB entries are tagged with different EPTP.
+ *
+ * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
+ * with different VPID (L1 entries are tagged with vmx->vpid
+ * while L2 entries are tagged with vmx->nested.vpid02).
+ */
+static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ return nested_cpu_has_ept(vmcs12) ||
+ (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
+}
+
+static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
+}
+
+
+static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
+{
+ return fixed_bits_valid(control, low, high);
+}
+
+static inline u64 vmx_control_msr(u32 low, u32 high)
+{
+ return low | ((u64)high << 32);
+}
+
+static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
+{
+ superset &= mask;
+ subset &= mask;
+
+ return (superset | subset) == superset;
+}
+
+static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
+{
+ const u64 feature_and_reserved =
+ /* feature (except bit 48; see below) */
+ BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
+ /* reserved */
+ BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
+ u64 vmx_basic = vmx->nested.msrs.basic;
+
+ if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
+ return -EINVAL;
+
+ /*
+ * KVM does not emulate a version of VMX that constrains physical
+ * addresses of VMX structures (e.g. VMCS) to 32-bits.
+ */
+ if (data & BIT_ULL(48))
+ return -EINVAL;
+
+ if (vmx_basic_vmcs_revision_id(vmx_basic) !=
+ vmx_basic_vmcs_revision_id(data))
+ return -EINVAL;
+
+ if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
+ return -EINVAL;
+
+ vmx->nested.msrs.basic = data;
+ return 0;
+}
+
+static int
+vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+{
+ u64 supported;
+ u32 *lowp, *highp;
+
+ switch (msr_index) {
+ case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+ lowp = &vmx->nested.msrs.pinbased_ctls_low;
+ highp = &vmx->nested.msrs.pinbased_ctls_high;
+ break;
+ case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+ lowp = &vmx->nested.msrs.procbased_ctls_low;
+ highp = &vmx->nested.msrs.procbased_ctls_high;
+ break;
+ case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+ lowp = &vmx->nested.msrs.exit_ctls_low;
+ highp = &vmx->nested.msrs.exit_ctls_high;
+ break;
+ case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+ lowp = &vmx->nested.msrs.entry_ctls_low;
+ highp = &vmx->nested.msrs.entry_ctls_high;
+ break;
+ case MSR_IA32_VMX_PROCBASED_CTLS2:
+ lowp = &vmx->nested.msrs.secondary_ctls_low;
+ highp = &vmx->nested.msrs.secondary_ctls_high;
+ break;
+ default:
+ BUG();
+ }
+
+ supported = vmx_control_msr(*lowp, *highp);
+
+ /* Check must-be-1 bits are still 1. */
+ if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
+ return -EINVAL;
+
+ /* Check must-be-0 bits are still 0. */
+ if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
+ return -EINVAL;
+
+ *lowp = data;
+ *highp = data >> 32;
+ return 0;
+}
+
+static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
+{
+ const u64 feature_and_reserved_bits =
+ /* feature */
+ BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
+ BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
+ /* reserved */
+ GENMASK_ULL(13, 9) | BIT_ULL(31);
+ u64 vmx_misc;
+
+ vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
+ vmx->nested.msrs.misc_high);
+
+ if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
+ return -EINVAL;
+
+ if ((vmx->nested.msrs.pinbased_ctls_high &
+ PIN_BASED_VMX_PREEMPTION_TIMER) &&
+ vmx_misc_preemption_timer_rate(data) !=
+ vmx_misc_preemption_timer_rate(vmx_misc))
+ return -EINVAL;
+
+ if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
+ return -EINVAL;
+
+ if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
+ return -EINVAL;
+
+ if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
+ return -EINVAL;
+
+ vmx->nested.msrs.misc_low = data;
+ vmx->nested.msrs.misc_high = data >> 32;
+
+ /*
+ * If L1 has read-only VM-exit information fields, use the
+ * less permissive vmx_vmwrite_bitmap to specify write
+ * permissions for the shadow VMCS.
+ */
+ if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+ vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
+
+ return 0;
+}
+
+static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
+{
+ u64 vmx_ept_vpid_cap;
+
+ vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
+ vmx->nested.msrs.vpid_caps);
+
+ /* Every bit is either reserved or a feature bit. */
+ if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
+ return -EINVAL;
+
+ vmx->nested.msrs.ept_caps = data;
+ vmx->nested.msrs.vpid_caps = data >> 32;
+ return 0;
+}
+
+static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+{
+ u64 *msr;
+
+ switch (msr_index) {
+ case MSR_IA32_VMX_CR0_FIXED0:
+ msr = &vmx->nested.msrs.cr0_fixed0;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED0:
+ msr = &vmx->nested.msrs.cr4_fixed0;
+ break;
+ default:
+ BUG();
+ }
+
+ /*
+ * 1 bits (which indicates bits which "must-be-1" during VMX operation)
+ * must be 1 in the restored value.
+ */
+ if (!is_bitwise_subset(data, *msr, -1ULL))
+ return -EINVAL;
+
+ *msr = data;
+ return 0;
+}
+
+/*
+ * Called when userspace is restoring VMX MSRs.
+ *
+ * Returns 0 on success, non-0 otherwise.
+ */
+int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * Don't allow changes to the VMX capability MSRs while the vCPU
+ * is in VMX operation.
+ */
+ if (vmx->nested.vmxon)
+ return -EBUSY;
+
+ switch (msr_index) {
+ case MSR_IA32_VMX_BASIC:
+ return vmx_restore_vmx_basic(vmx, data);
+ case MSR_IA32_VMX_PINBASED_CTLS:
+ case MSR_IA32_VMX_PROCBASED_CTLS:
+ case MSR_IA32_VMX_EXIT_CTLS:
+ case MSR_IA32_VMX_ENTRY_CTLS:
+ /*
+ * The "non-true" VMX capability MSRs are generated from the
+ * "true" MSRs, so we do not support restoring them directly.
+ *
+ * If userspace wants to emulate VMX_BASIC[55]=0, userspace
+ * should restore the "true" MSRs with the must-be-1 bits
+ * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
+ * DEFAULT SETTINGS".
+ */
+ return -EINVAL;
+ case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+ case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+ case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+ case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+ case MSR_IA32_VMX_PROCBASED_CTLS2:
+ return vmx_restore_control_msr(vmx, msr_index, data);
+ case MSR_IA32_VMX_MISC:
+ return vmx_restore_vmx_misc(vmx, data);
+ case MSR_IA32_VMX_CR0_FIXED0:
+ case MSR_IA32_VMX_CR4_FIXED0:
+ return vmx_restore_fixed0_msr(vmx, msr_index, data);
+ case MSR_IA32_VMX_CR0_FIXED1:
+ case MSR_IA32_VMX_CR4_FIXED1:
+ /*
+ * These MSRs are generated based on the vCPU's CPUID, so we
+ * do not support restoring them directly.
+ */
+ return -EINVAL;
+ case MSR_IA32_VMX_EPT_VPID_CAP:
+ return vmx_restore_vmx_ept_vpid_cap(vmx, data);
+ case MSR_IA32_VMX_VMCS_ENUM:
+ vmx->nested.msrs.vmcs_enum = data;
+ return 0;
+ default:
+ /*
+ * The rest of the VMX capability MSRs do not support restore.
+ */
+ return -EINVAL;
+ }
+}
+
+/* Returns 0 on success, non-0 otherwise. */
+int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
+{
+ switch (msr_index) {
+ case MSR_IA32_VMX_BASIC:
+ *pdata = msrs->basic;
+ break;
+ case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+ case MSR_IA32_VMX_PINBASED_CTLS:
+ *pdata = vmx_control_msr(
+ msrs->pinbased_ctls_low,
+ msrs->pinbased_ctls_high);
+ if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
+ *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ break;
+ case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+ case MSR_IA32_VMX_PROCBASED_CTLS:
+ *pdata = vmx_control_msr(
+ msrs->procbased_ctls_low,
+ msrs->procbased_ctls_high);
+ if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
+ *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ break;
+ case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+ case MSR_IA32_VMX_EXIT_CTLS:
+ *pdata = vmx_control_msr(
+ msrs->exit_ctls_low,
+ msrs->exit_ctls_high);
+ if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
+ *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+ break;
+ case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+ case MSR_IA32_VMX_ENTRY_CTLS:
+ *pdata = vmx_control_msr(
+ msrs->entry_ctls_low,
+ msrs->entry_ctls_high);
+ if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
+ *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+ break;
+ case MSR_IA32_VMX_MISC:
+ *pdata = vmx_control_msr(
+ msrs->misc_low,
+ msrs->misc_high);
+ break;
+ case MSR_IA32_VMX_CR0_FIXED0:
+ *pdata = msrs->cr0_fixed0;
+ break;
+ case MSR_IA32_VMX_CR0_FIXED1:
+ *pdata = msrs->cr0_fixed1;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED0:
+ *pdata = msrs->cr4_fixed0;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED1:
+ *pdata = msrs->cr4_fixed1;
+ break;
+ case MSR_IA32_VMX_VMCS_ENUM:
+ *pdata = msrs->vmcs_enum;
+ break;
+ case MSR_IA32_VMX_PROCBASED_CTLS2:
+ *pdata = vmx_control_msr(
+ msrs->secondary_ctls_low,
+ msrs->secondary_ctls_high);
+ break;
+ case MSR_IA32_VMX_EPT_VPID_CAP:
+ *pdata = msrs->ept_caps |
+ ((u64)msrs->vpid_caps << 32);
+ break;
+ case MSR_IA32_VMX_VMFUNC:
+ *pdata = msrs->vmfunc_controls;
+ break;
+ default:
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Copy the writable VMCS shadow fields back to the VMCS12, in case
+ * they have been modified by the L1 guest. Note that the "read-only"
+ * VM-exit information fields are actually writable if the vCPU is
+ * configured to support "VMWRITE to any supported field in the VMCS."
+ */
+static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
+{
+ const u16 *fields[] = {
+ shadow_read_write_fields,
+ shadow_read_only_fields
+ };
+ const int max_fields[] = {
+ max_shadow_read_write_fields,
+ max_shadow_read_only_fields
+ };
+ int i, q;
+ unsigned long field;
+ u64 field_value;
+ struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+
+ preempt_disable();
+
+ vmcs_load(shadow_vmcs);
+
+ for (q = 0; q < ARRAY_SIZE(fields); q++) {
+ for (i = 0; i < max_fields[q]; i++) {
+ field = fields[q][i];
+ field_value = __vmcs_readl(field);
+ vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
+ }
+ /*
+ * Skip the VM-exit information fields if they are read-only.
+ */
+ if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+ break;
+ }
+
+ vmcs_clear(shadow_vmcs);
+ vmcs_load(vmx->loaded_vmcs->vmcs);
+
+ preempt_enable();
+}
+
+static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
+{
+ const u16 *fields[] = {
+ shadow_read_write_fields,
+ shadow_read_only_fields
+ };
+ const int max_fields[] = {
+ max_shadow_read_write_fields,
+ max_shadow_read_only_fields
+ };
+ int i, q;
+ unsigned long field;
+ u64 field_value = 0;
+ struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+
+ vmcs_load(shadow_vmcs);
+
+ for (q = 0; q < ARRAY_SIZE(fields); q++) {
+ for (i = 0; i < max_fields[q]; i++) {
+ field = fields[q][i];
+ vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
+ __vmcs_writel(field, field_value);
+ }
+ }
+
+ vmcs_clear(shadow_vmcs);
+ vmcs_load(vmx->loaded_vmcs->vmcs);
+}
+
+static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
+{
+ struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+ struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+
+ /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
+ vmcs12->tpr_threshold = evmcs->tpr_threshold;
+ vmcs12->guest_rip = evmcs->guest_rip;
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
+ vmcs12->guest_rsp = evmcs->guest_rsp;
+ vmcs12->guest_rflags = evmcs->guest_rflags;
+ vmcs12->guest_interruptibility_info =
+ evmcs->guest_interruptibility_info;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+ vmcs12->cpu_based_vm_exec_control =
+ evmcs->cpu_based_vm_exec_control;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+ vmcs12->exception_bitmap = evmcs->exception_bitmap;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
+ vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
+ vmcs12->vm_entry_intr_info_field =
+ evmcs->vm_entry_intr_info_field;
+ vmcs12->vm_entry_exception_error_code =
+ evmcs->vm_entry_exception_error_code;
+ vmcs12->vm_entry_instruction_len =
+ evmcs->vm_entry_instruction_len;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+ vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
+ vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
+ vmcs12->host_cr0 = evmcs->host_cr0;
+ vmcs12->host_cr3 = evmcs->host_cr3;
+ vmcs12->host_cr4 = evmcs->host_cr4;
+ vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
+ vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
+ vmcs12->host_rip = evmcs->host_rip;
+ vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
+ vmcs12->host_es_selector = evmcs->host_es_selector;
+ vmcs12->host_cs_selector = evmcs->host_cs_selector;
+ vmcs12->host_ss_selector = evmcs->host_ss_selector;
+ vmcs12->host_ds_selector = evmcs->host_ds_selector;
+ vmcs12->host_fs_selector = evmcs->host_fs_selector;
+ vmcs12->host_gs_selector = evmcs->host_gs_selector;
+ vmcs12->host_tr_selector = evmcs->host_tr_selector;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+ vmcs12->pin_based_vm_exec_control =
+ evmcs->pin_based_vm_exec_control;
+ vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
+ vmcs12->secondary_vm_exec_control =
+ evmcs->secondary_vm_exec_control;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
+ vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
+ vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
+ vmcs12->msr_bitmap = evmcs->msr_bitmap;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
+ vmcs12->guest_es_base = evmcs->guest_es_base;
+ vmcs12->guest_cs_base = evmcs->guest_cs_base;
+ vmcs12->guest_ss_base = evmcs->guest_ss_base;
+ vmcs12->guest_ds_base = evmcs->guest_ds_base;
+ vmcs12->guest_fs_base = evmcs->guest_fs_base;
+ vmcs12->guest_gs_base = evmcs->guest_gs_base;
+ vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
+ vmcs12->guest_tr_base = evmcs->guest_tr_base;
+ vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
+ vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
+ vmcs12->guest_es_limit = evmcs->guest_es_limit;
+ vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
+ vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
+ vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
+ vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
+ vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
+ vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
+ vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
+ vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
+ vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
+ vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
+ vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
+ vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
+ vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
+ vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
+ vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
+ vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
+ vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
+ vmcs12->guest_es_selector = evmcs->guest_es_selector;
+ vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
+ vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
+ vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
+ vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
+ vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
+ vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
+ vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
+ vmcs12->tsc_offset = evmcs->tsc_offset;
+ vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
+ vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
+ vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
+ vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
+ vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
+ vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
+ vmcs12->guest_cr0 = evmcs->guest_cr0;
+ vmcs12->guest_cr3 = evmcs->guest_cr3;
+ vmcs12->guest_cr4 = evmcs->guest_cr4;
+ vmcs12->guest_dr7 = evmcs->guest_dr7;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
+ vmcs12->host_fs_base = evmcs->host_fs_base;
+ vmcs12->host_gs_base = evmcs->host_gs_base;
+ vmcs12->host_tr_base = evmcs->host_tr_base;
+ vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
+ vmcs12->host_idtr_base = evmcs->host_idtr_base;
+ vmcs12->host_rsp = evmcs->host_rsp;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
+ vmcs12->ept_pointer = evmcs->ept_pointer;
+ vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
+ vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
+ vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
+ vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
+ vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
+ vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
+ vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
+ vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
+ vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
+ vmcs12->guest_pending_dbg_exceptions =
+ evmcs->guest_pending_dbg_exceptions;
+ vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
+ vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
+ vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
+ vmcs12->guest_activity_state = evmcs->guest_activity_state;
+ vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
+ }
+
+ /*
+ * Not used?
+ * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
+ * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
+ * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
+ * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
+ * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
+ * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
+ * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
+ * vmcs12->page_fault_error_code_mask =
+ * evmcs->page_fault_error_code_mask;
+ * vmcs12->page_fault_error_code_match =
+ * evmcs->page_fault_error_code_match;
+ * vmcs12->cr3_target_count = evmcs->cr3_target_count;
+ * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
+ * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
+ * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
+ */
+
+ /*
+ * Read only fields:
+ * vmcs12->guest_physical_address = evmcs->guest_physical_address;
+ * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
+ * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
+ * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
+ * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
+ * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
+ * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
+ * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
+ * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
+ * vmcs12->exit_qualification = evmcs->exit_qualification;
+ * vmcs12->guest_linear_address = evmcs->guest_linear_address;
+ *
+ * Not present in struct vmcs12:
+ * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
+ * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
+ * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
+ * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
+ */
+
+ return 0;
+}
+
+static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
+{
+ struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+ struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+
+ /*
+ * Should not be changed by KVM:
+ *
+ * evmcs->host_es_selector = vmcs12->host_es_selector;
+ * evmcs->host_cs_selector = vmcs12->host_cs_selector;
+ * evmcs->host_ss_selector = vmcs12->host_ss_selector;
+ * evmcs->host_ds_selector = vmcs12->host_ds_selector;
+ * evmcs->host_fs_selector = vmcs12->host_fs_selector;
+ * evmcs->host_gs_selector = vmcs12->host_gs_selector;
+ * evmcs->host_tr_selector = vmcs12->host_tr_selector;
+ * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
+ * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
+ * evmcs->host_cr0 = vmcs12->host_cr0;
+ * evmcs->host_cr3 = vmcs12->host_cr3;
+ * evmcs->host_cr4 = vmcs12->host_cr4;
+ * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
+ * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
+ * evmcs->host_rip = vmcs12->host_rip;
+ * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
+ * evmcs->host_fs_base = vmcs12->host_fs_base;
+ * evmcs->host_gs_base = vmcs12->host_gs_base;
+ * evmcs->host_tr_base = vmcs12->host_tr_base;
+ * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
+ * evmcs->host_idtr_base = vmcs12->host_idtr_base;
+ * evmcs->host_rsp = vmcs12->host_rsp;
+ * sync_vmcs12() doesn't read these:
+ * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
+ * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
+ * evmcs->msr_bitmap = vmcs12->msr_bitmap;
+ * evmcs->ept_pointer = vmcs12->ept_pointer;
+ * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
+ * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
+ * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
+ * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
+ * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
+ * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
+ * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
+ * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
+ * evmcs->tpr_threshold = vmcs12->tpr_threshold;
+ * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
+ * evmcs->exception_bitmap = vmcs12->exception_bitmap;
+ * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
+ * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
+ * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
+ * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
+ * evmcs->page_fault_error_code_mask =
+ * vmcs12->page_fault_error_code_mask;
+ * evmcs->page_fault_error_code_match =
+ * vmcs12->page_fault_error_code_match;
+ * evmcs->cr3_target_count = vmcs12->cr3_target_count;
+ * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
+ * evmcs->tsc_offset = vmcs12->tsc_offset;
+ * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
+ * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
+ * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
+ * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
+ * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
+ * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
+ * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
+ * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
+ *
+ * Not present in struct vmcs12:
+ * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
+ * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
+ * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
+ * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
+ */
+
+ evmcs->guest_es_selector = vmcs12->guest_es_selector;
+ evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
+ evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
+ evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
+ evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
+ evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
+ evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
+ evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
+
+ evmcs->guest_es_limit = vmcs12->guest_es_limit;
+ evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
+ evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
+ evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
+ evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
+ evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
+ evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
+ evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
+ evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
+ evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
+
+ evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
+ evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
+ evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
+ evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
+ evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
+ evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
+ evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
+ evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
+
+ evmcs->guest_es_base = vmcs12->guest_es_base;
+ evmcs->guest_cs_base = vmcs12->guest_cs_base;
+ evmcs->guest_ss_base = vmcs12->guest_ss_base;
+ evmcs->guest_ds_base = vmcs12->guest_ds_base;
+ evmcs->guest_fs_base = vmcs12->guest_fs_base;
+ evmcs->guest_gs_base = vmcs12->guest_gs_base;
+ evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
+ evmcs->guest_tr_base = vmcs12->guest_tr_base;
+ evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
+ evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
+
+ evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
+ evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
+
+ evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
+ evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
+ evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
+ evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
+
+ evmcs->guest_pending_dbg_exceptions =
+ vmcs12->guest_pending_dbg_exceptions;
+ evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
+ evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
+
+ evmcs->guest_activity_state = vmcs12->guest_activity_state;
+ evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
+
+ evmcs->guest_cr0 = vmcs12->guest_cr0;
+ evmcs->guest_cr3 = vmcs12->guest_cr3;
+ evmcs->guest_cr4 = vmcs12->guest_cr4;
+ evmcs->guest_dr7 = vmcs12->guest_dr7;
+
+ evmcs->guest_physical_address = vmcs12->guest_physical_address;
+
+ evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
+ evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
+ evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
+ evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
+ evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
+ evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
+ evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
+ evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
+
+ evmcs->exit_qualification = vmcs12->exit_qualification;
+
+ evmcs->guest_linear_address = vmcs12->guest_linear_address;
+ evmcs->guest_rsp = vmcs12->guest_rsp;
+ evmcs->guest_rflags = vmcs12->guest_rflags;
+
+ evmcs->guest_interruptibility_info =
+ vmcs12->guest_interruptibility_info;
+ evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
+ evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
+ evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
+ evmcs->vm_entry_exception_error_code =
+ vmcs12->vm_entry_exception_error_code;
+ evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
+
+ evmcs->guest_rip = vmcs12->guest_rip;
+
+ evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
+
+ return 0;
+}
+
+/*
+ * This is an equivalent of the nested hypervisor executing the vmptrld
+ * instruction.
+ */
+static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
+ bool from_launch)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct hv_vp_assist_page assist_page;
+
+ if (likely(!vmx->nested.enlightened_vmcs_enabled))
+ return 1;
+
+ if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
+ return 1;
+
+ if (unlikely(!assist_page.enlighten_vmentry))
+ return 1;
+
+ if (unlikely(assist_page.current_nested_vmcs !=
+ vmx->nested.hv_evmcs_vmptr)) {
+
+ if (!vmx->nested.hv_evmcs)
+ vmx->nested.current_vmptr = -1ull;
+
+ nested_release_evmcs(vcpu);
+
+ vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
+ vcpu, assist_page.current_nested_vmcs);
+
+ if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
+ return 0;
+
+ vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
+
+ /*
+ * Currently, KVM only supports eVMCS version 1
+ * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
+ * value to first u32 field of eVMCS which should specify eVMCS
+ * VersionNumber.
+ *
+ * Guest should be aware of supported eVMCS versions by host by
+ * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
+ * expected to set this CPUID leaf according to the value
+ * returned in vmcs_version from nested_enable_evmcs().
+ *
+ * However, it turns out that Microsoft Hyper-V fails to comply
+ * to their own invented interface: When Hyper-V use eVMCS, it
+ * just sets first u32 field of eVMCS to revision_id specified
+ * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
+ * which is one of the supported versions specified in
+ * CPUID.0x4000000A.EAX[0:15].
+ *
+ * To overcome Hyper-V bug, we accept here either a supported
+ * eVMCS version or VMCS12 revision_id as valid values for first
+ * u32 field of eVMCS.
+ */
+ if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
+ (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
+ nested_release_evmcs(vcpu);
+ return 0;
+ }
+
+ vmx->nested.dirty_vmcs12 = true;
+ /*
+ * As we keep L2 state for one guest only 'hv_clean_fields' mask
+ * can't be used when we switch between them. Reset it here for
+ * simplicity.
+ */
+ vmx->nested.hv_evmcs->hv_clean_fields &=
+ ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+ vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
+
+ /*
+ * Unlike normal vmcs12, enlightened vmcs12 is not fully
+ * reloaded from guest's memory (read only fields, fields not
+ * present in struct hv_enlightened_vmcs, ...). Make sure there
+ * are no leftovers.
+ */
+ if (from_launch) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ memset(vmcs12, 0, sizeof(*vmcs12));
+ vmcs12->hdr.revision_id = VMCS12_REVISION;
+ }
+
+ }
+ return 1;
+}
+
+void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * hv_evmcs may end up being not mapped after migration (when
+ * L2 was running), map it here to make sure vmcs12 changes are
+ * properly reflected.
+ */
+ if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
+ nested_vmx_handle_enlightened_vmptrld(vcpu, false);
+
+ if (vmx->nested.hv_evmcs) {
+ copy_vmcs12_to_enlightened(vmx);
+ /* All fields are clean */
+ vmx->nested.hv_evmcs->hv_clean_fields |=
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+ } else {
+ copy_vmcs12_to_shadow(vmx);
+ }
+
+ vmx->nested.need_vmcs12_sync = false;
+}
+
+static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
+{
+ struct vcpu_vmx *vmx =
+ container_of(timer, struct vcpu_vmx, nested.preemption_timer);
+
+ vmx->nested.preemption_timer_expired = true;
+ kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
+ kvm_vcpu_kick(&vmx->vcpu);
+
+ return HRTIMER_NORESTART;
+}
+
+static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
+{
+ u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * A timer value of zero is architecturally guaranteed to cause
+ * a VMExit prior to executing any instructions in the guest.
+ */
+ if (preemption_timeout == 0) {
+ vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
+ return;
+ }
+
+ if (vcpu->arch.virtual_tsc_khz == 0)
+ return;
+
+ preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+ preemption_timeout *= 1000000;
+ do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
+ hrtimer_start(&vmx->nested.preemption_timer,
+ ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
+}
+
+static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+ if (vmx->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
+ return vmcs12->guest_ia32_efer;
+ else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
+ return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
+ else
+ return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
+}
+
+static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
+{
+ /*
+ * If vmcs02 hasn't been initialized, set the constant vmcs02 state
+ * according to L0's settings (vmcs12 is irrelevant here). Host
+ * fields that come from L0 and are not constant, e.g. HOST_CR3,
+ * will be set as needed prior to VMLAUNCH/VMRESUME.
+ */
+ if (vmx->nested.vmcs02_initialized)
+ return;
+ vmx->nested.vmcs02_initialized = true;
+
+ /*
+ * We don't care what the EPTP value is we just need to guarantee
+ * it's valid so we don't get a false positive when doing early
+ * consistency checks.
+ */
+ if (enable_ept && nested_early_check)
+ vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
+
+ /* All VMFUNCs are currently emulated through L0 vmexits. */
+ if (cpu_has_vmx_vmfunc())
+ vmcs_write64(VM_FUNCTION_CONTROL, 0);
+
+ if (cpu_has_vmx_posted_intr())
+ vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
+
+ if (enable_pml)
+ vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+
+ /*
+ * Set the MSR load/store lists to match L0's settings. Only the
+ * addresses are constant (for vmcs02), the counts can change based
+ * on L2's behavior, e.g. switching to/from long mode.
+ */
+ vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+ vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+ vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+
+ vmx_set_constant_host_state(vmx);
+}
+
+static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
+ struct vmcs12 *vmcs12)
+{
+ prepare_vmcs02_constant_state(vmx);
+
+ vmcs_write64(VMCS_LINK_POINTER, -1ull);
+
+ if (enable_vpid) {
+ if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
+ else
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+ }
+}
+
+static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+ u32 exec_control, vmcs12_exec_ctrl;
+ u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
+
+ if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
+ prepare_vmcs02_early_full(vmx, vmcs12);
+
+ /*
+ * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
+ * entry, but only if the current (host) sp changed from the value
+ * we wrote last (vmx->host_rsp). This cache is no longer relevant
+ * if we switch vmcs, and rather than hold a separate cache per vmcs,
+ * here we just force the write to happen on entry. host_rsp will
+ * also be written unconditionally by nested_vmx_check_vmentry_hw()
+ * if we are doing early consistency checks via hardware.
+ */
+ vmx->host_rsp = 0;
+
+ /*
+ * PIN CONTROLS
+ */
+ exec_control = vmcs12->pin_based_vm_exec_control;
+
+ /* Preemption timer setting is computed directly in vmx_vcpu_run. */
+ exec_control |= vmcs_config.pin_based_exec_ctrl;
+ exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+ vmx->loaded_vmcs->hv_timer_armed = false;
+
+ /* Posted interrupts setting is only taken from vmcs12. */
+ if (nested_cpu_has_posted_intr(vmcs12)) {
+ vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
+ vmx->nested.pi_pending = false;
+ } else {
+ exec_control &= ~PIN_BASED_POSTED_INTR;
+ }
+ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
+
+ /*
+ * EXEC CONTROLS
+ */
+ exec_control = vmx_exec_control(vmx); /* L0's desires */
+ exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+ exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+ exec_control &= ~CPU_BASED_TPR_SHADOW;
+ exec_control |= vmcs12->cpu_based_vm_exec_control;
+
+ /*
+ * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
+ * nested_get_vmcs12_pages can't fix it up, the illegal value
+ * will result in a VM entry failure.
+ */
+ if (exec_control & CPU_BASED_TPR_SHADOW) {
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
+ vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
+ } else {
+#ifdef CONFIG_X86_64
+ exec_control |= CPU_BASED_CR8_LOAD_EXITING |
+ CPU_BASED_CR8_STORE_EXITING;
+#endif
+ }
+
+ /*
+ * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
+ * for I/O port accesses.
+ */
+ exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
+ exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+
+ /*
+ * SECONDARY EXEC CONTROLS
+ */
+ if (cpu_has_secondary_exec_ctrls()) {
+ exec_control = vmx->secondary_exec_control;
+
+ /* Take the following fields only from vmcs12 */
+ exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_ENABLE_INVPCID |
+ SECONDARY_EXEC_RDTSCP |
+ SECONDARY_EXEC_XSAVES |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_ENABLE_VMFUNC);
+ if (nested_cpu_has(vmcs12,
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
+ vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
+ ~SECONDARY_EXEC_ENABLE_PML;
+ exec_control |= vmcs12_exec_ctrl;
+ }
+
+ /* VMCS shadowing for L2 is emulated for now */
+ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+
+ if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+ vmcs_write16(GUEST_INTR_STATUS,
+ vmcs12->guest_intr_status);
+
+ /*
+ * Write an illegal value to APIC_ACCESS_ADDR. Later,
+ * nested_get_vmcs12_pages will either fix it up or
+ * remove the VM execution control.
+ */
+ if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
+ vmcs_write64(APIC_ACCESS_ADDR, -1ull);
+
+ if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
+ vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+ }
+
+ /*
+ * ENTRY CONTROLS
+ *
+ * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
+ * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
+ * on the related bits (if supported by the CPU) in the hope that
+ * we can avoid VMWrites during vmx_set_efer().
+ */
+ exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
+ ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
+ if (cpu_has_load_ia32_efer()) {
+ if (guest_efer & EFER_LMA)
+ exec_control |= VM_ENTRY_IA32E_MODE;
+ if (guest_efer != host_efer)
+ exec_control |= VM_ENTRY_LOAD_IA32_EFER;
+ }
+ vm_entry_controls_init(vmx, exec_control);
+
+ /*
+ * EXIT CONTROLS
+ *
+ * L2->L1 exit controls are emulated - the hardware exit is to L0 so
+ * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
+ * bits may be modified by vmx_set_efer() in prepare_vmcs02().
+ */
+ exec_control = vmx_vmexit_ctrl();
+ if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
+ exec_control |= VM_EXIT_LOAD_IA32_EFER;
+ vm_exit_controls_init(vmx, exec_control);
+
+ /*
+ * Conceptually we want to copy the PML address and index from
+ * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
+ * since we always flush the log on each vmexit and never change
+ * the PML address (once set), this happens to be equivalent to
+ * simply resetting the index in vmcs02.
+ */
+ if (enable_pml)
+ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+
+ /*
+ * Interrupt/Exception Fields
+ */
+ if (vmx->nested.nested_run_pending) {
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+ vmcs12->vm_entry_intr_info_field);
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+ vmcs12->vm_entry_exception_error_code);
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmcs12->vm_entry_instruction_len);
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+ vmcs12->guest_interruptibility_info);
+ vmx->loaded_vmcs->nmi_known_unmasked =
+ !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
+ } else {
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+ }
+}
+
+static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+ struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+
+ if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+ vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
+ vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
+ vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
+ vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
+ vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
+ vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
+ vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
+ vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
+ vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
+ vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
+ vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
+ vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
+ vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
+ vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
+ vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
+ vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
+ vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
+ vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
+ vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
+ vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
+ vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
+ vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
+ vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
+ vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
+ vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
+ vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
+ vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
+ vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
+ vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
+ vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
+ vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
+ vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
+ vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
+ vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
+ }
+
+ if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
+ vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
+ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+ vmcs12->guest_pending_dbg_exceptions);
+ vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
+ vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+
+ /*
+ * L1 may access the L2's PDPTR, so save them to construct
+ * vmcs12
+ */
+ if (enable_ept) {
+ vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
+ vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
+ vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
+ vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
+ }
+ }
+
+ if (nested_cpu_has_xsaves(vmcs12))
+ vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
+
+ /*
+ * Whether page-faults are trapped is determined by a combination of
+ * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
+ * If enable_ept, L0 doesn't care about page faults and we should
+ * set all of these to L1's desires. However, if !enable_ept, L0 does
+ * care about (at least some) page faults, and because it is not easy
+ * (if at all possible?) to merge L0 and L1's desires, we simply ask
+ * to exit on each and every L2 page fault. This is done by setting
+ * MASK=MATCH=0 and (see below) EB.PF=1.
+ * Note that below we don't need special code to set EB.PF beyond the
+ * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
+ * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
+ * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+ */
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
+ enable_ept ? vmcs12->page_fault_error_code_mask : 0);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
+ enable_ept ? vmcs12->page_fault_error_code_match : 0);
+
+ if (cpu_has_vmx_apicv()) {
+ vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
+ vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
+ vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
+ vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
+ }
+
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+
+ set_cr4_guest_host_mask(vmx);
+
+ if (kvm_mpx_supported()) {
+ if (vmx->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+ vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
+ else
+ vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
+ }
+}
+
+/*
+ * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
+ * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
+ * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
+ * guest in a way that will both be appropriate to L1's requests, and our
+ * needs. In addition to modifying the active vmcs (which is vmcs02), this
+ * function also has additional necessary side-effects, like setting various
+ * vcpu->arch fields.
+ * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+ * is assigned to entry_failure_code on failure.
+ */
+static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+ u32 *entry_failure_code)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+
+ if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
+ prepare_vmcs02_full(vmx, vmcs12);
+ vmx->nested.dirty_vmcs12 = false;
+ }
+
+ /*
+ * First, the fields that are shadowed. This must be kept in sync
+ * with vmcs_shadow_fields.h.
+ */
+ if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+ vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
+ vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
+ }
+
+ if (vmx->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
+ kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+ } else {
+ kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
+ }
+ vmx_set_rflags(vcpu, vmcs12->guest_rflags);
+
+ vmx->nested.preemption_timer_expired = false;
+ if (nested_cpu_has_preemption_timer(vmcs12))
+ vmx_start_preemption_timer(vcpu);
+
+ /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
+ * bitwise-or of what L1 wants to trap for L2, and what we want to
+ * trap. Note that CR0.TS also needs updating - we do this later.
+ */
+ update_exception_bitmap(vcpu);
+ vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+
+ if (vmx->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
+ vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
+ vcpu->arch.pat = vmcs12->guest_ia32_pat;
+ } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+ vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+ }
+
+ vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+
+ if (kvm_has_tsc_control)
+ decache_tsc_multiplier(vmx);
+
+ if (enable_vpid) {
+ /*
+ * There is no direct mapping between vpid02 and vpid12, the
+ * vpid02 is per-vCPU for L0 and reused while the value of
+ * vpid12 is changed w/ one invvpid during nested vmentry.
+ * The vpid12 is allocated by L1 for L2, so it will not
+ * influence global bitmap(for vpid01 and vpid02 allocation)
+ * even if spawn a lot of nested vCPUs.
+ */
+ if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
+ if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
+ vmx->nested.last_vpid = vmcs12->virtual_processor_id;
+ __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
+ }
+ } else {
+ /*
+ * If L1 use EPT, then L0 needs to execute INVEPT on
+ * EPTP02 instead of EPTP01. Therefore, delay TLB
+ * flush until vmcs02->eptp is fully updated by
+ * KVM_REQ_LOAD_CR3. Note that this assumes
+ * KVM_REQ_TLB_FLUSH is evaluated after
+ * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
+ */
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ }
+ }
+
+ if (nested_cpu_has_ept(vmcs12))
+ nested_ept_init_mmu_context(vcpu);
+ else if (nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ vmx_flush_tlb(vcpu, true);
+
+ /*
+ * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
+ * bits which we consider mandatory enabled.
+ * The CR0_READ_SHADOW is what L2 should have expected to read given
+ * the specifications by L1; It's not enough to take
+ * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
+ * have more bits than L1 expected.
+ */
+ vmx_set_cr0(vcpu, vmcs12->guest_cr0);
+ vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+
+ vmx_set_cr4(vcpu, vmcs12->guest_cr4);
+ vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
+
+ vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
+ /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
+ vmx_set_efer(vcpu, vcpu->arch.efer);
+
+ /*
+ * Guest state is invalid and unrestricted guest is disabled,
+ * which means L1 attempted VMEntry to L2 with invalid state.
+ * Fail the VMEntry.
+ */
+ if (vmx->emulation_required) {
+ *entry_failure_code = ENTRY_FAIL_DEFAULT;
+ return 1;
+ }
+
+ /* Shadow page tables on either EPT or shadow page tables. */
+ if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
+ entry_failure_code))
+ return 1;
+
+ if (!enable_ept)
+ vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
+
+ kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
+ kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
+ return 0;
+}
+
+static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has_nmi_exiting(vmcs12) &&
+ nested_cpu_has_virtual_nmis(vmcs12))
+ return -EINVAL;
+
+ if (!nested_cpu_has_virtual_nmis(vmcs12) &&
+ nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
+ return -EINVAL;
+
+ return 0;
+}
+
+static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+ /* Check for memory type validity */
+ switch (address & VMX_EPTP_MT_MASK) {
+ case VMX_EPTP_MT_UC:
+ if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
+ return false;
+ break;
+ case VMX_EPTP_MT_WB:
+ if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ /* only 4 levels page-walk length are valid */
+ if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
+ return false;
+
+ /* Reserved bits should not be set */
+ if (address >> maxphyaddr || ((address >> 7) & 0x1f))
+ return false;
+
+ /* AD, if set, should be supported */
+ if (address & VMX_EPTP_AD_ENABLE_BIT) {
+ if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
+ return false;
+ }
+
+ return true;
+}
+
+static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ bool ia32e;
+
+ if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
+ vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (!nested_cpu_has_preemption_timer(vmcs12) &&
+ nested_cpu_has_save_preemption_timer(vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_pml_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
+ vmx->nested.msrs.procbased_ctls_low,
+ vmx->nested.msrs.procbased_ctls_high) ||
+ (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+ !vmx_control_verify(vmcs12->secondary_vm_exec_control,
+ vmx->nested.msrs.secondary_ctls_low,
+ vmx->nested.msrs.secondary_ctls_high)) ||
+ !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
+ vmx->nested.msrs.pinbased_ctls_low,
+ vmx->nested.msrs.pinbased_ctls_high) ||
+ !vmx_control_verify(vmcs12->vm_exit_controls,
+ vmx->nested.msrs.exit_ctls_low,
+ vmx->nested.msrs.exit_ctls_high) ||
+ !vmx_control_verify(vmcs12->vm_entry_controls,
+ vmx->nested.msrs.entry_ctls_low,
+ vmx->nested.msrs.entry_ctls_high))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_vmx_check_nmi_controls(vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_cpu_has_vmfunc(vmcs12)) {
+ if (vmcs12->vm_function_control &
+ ~vmx->nested.msrs.vmfunc_controls)
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_cpu_has_eptp_switching(vmcs12)) {
+ if (!nested_cpu_has_ept(vmcs12) ||
+ !page_address_valid(vcpu, vmcs12->eptp_list_address))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+ }
+ }
+
+ if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
+ !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
+ !nested_cr3_valid(vcpu, vmcs12->host_cr3))
+ return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
+
+ /*
+ * If the load IA32_EFER VM-exit control is 1, bits reserved in the
+ * IA32_EFER MSR must be 0 in the field for that register. In addition,
+ * the values of the LMA and LME bits in the field must each be that of
+ * the host address-space size VM-exit control.
+ */
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
+ ia32e = (vmcs12->vm_exit_controls &
+ VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
+ if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
+ ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
+ ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
+ return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
+ }
+
+ /*
+ * From the Intel SDM, volume 3:
+ * Fields relevant to VM-entry event injection must be set properly.
+ * These fields are the VM-entry interruption-information field, the
+ * VM-entry exception error code, and the VM-entry instruction length.
+ */
+ if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
+ u32 intr_info = vmcs12->vm_entry_intr_info_field;
+ u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
+ u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
+ bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
+ bool should_have_error_code;
+ bool urg = nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_UNRESTRICTED_GUEST);
+ bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
+
+ /* VM-entry interruption-info field: interruption type */
+ if (intr_type == INTR_TYPE_RESERVED ||
+ (intr_type == INTR_TYPE_OTHER_EVENT &&
+ !nested_cpu_supports_monitor_trap_flag(vcpu)))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ /* VM-entry interruption-info field: vector */
+ if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
+ (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
+ (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ /* VM-entry interruption-info field: deliver error code */
+ should_have_error_code =
+ intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
+ x86_exception_has_error_code(vector);
+ if (has_error_code != should_have_error_code)
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ /* VM-entry exception error code */
+ if (has_error_code &&
+ vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ /* VM-entry interruption-info field: reserved bits */
+ if (intr_info & INTR_INFO_RESVD_BITS_MASK)
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ /* VM-entry instruction length */
+ switch (intr_type) {
+ case INTR_TYPE_SOFT_EXCEPTION:
+ case INTR_TYPE_SOFT_INTR:
+ case INTR_TYPE_PRIV_SW_EXCEPTION:
+ if ((vmcs12->vm_entry_instruction_len > 15) ||
+ (vmcs12->vm_entry_instruction_len == 0 &&
+ !nested_cpu_has_zero_length_injection(vcpu)))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+ }
+ }
+
+ if (nested_cpu_has_ept(vmcs12) &&
+ !valid_ept_address(vcpu, vmcs12->ept_pointer))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ return 0;
+}
+
+static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ int r;
+ struct page *page;
+ struct vmcs12 *shadow;
+
+ if (vmcs12->vmcs_link_pointer == -1ull)
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
+ return -EINVAL;
+
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+ if (is_error_page(page))
+ return -EINVAL;
+
+ r = 0;
+ shadow = kmap(page);
+ if (shadow->hdr.revision_id != VMCS12_REVISION ||
+ shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
+ r = -EINVAL;
+ kunmap(page);
+ kvm_release_page_clean(page);
+ return r;
+}
+
+static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+ u32 *exit_qual)
+{
+ bool ia32e;
+
+ *exit_qual = ENTRY_FAIL_DEFAULT;
+
+ if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
+ !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
+ return 1;
+
+ if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
+ *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
+ return 1;
+ }
+
+ /*
+ * If the load IA32_EFER VM-entry control is 1, the following checks
+ * are performed on the field for the IA32_EFER MSR:
+ * - Bits reserved in the IA32_EFER MSR must be 0.
+ * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
+ * the IA-32e mode guest VM-exit control. It must also be identical
+ * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
+ * CR0.PG) is 1.
+ */
+ if (to_vmx(vcpu)->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
+ ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
+ if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
+ ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
+ ((vmcs12->guest_cr0 & X86_CR0_PG) &&
+ ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
+ return 1;
+ }
+
+ if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
+ (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
+ (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
+ return 1;
+
+ return 0;
+}
+
+static int __noclone nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long cr3, cr4;
+
+ if (!nested_early_check)
+ return 0;
+
+ if (vmx->msr_autoload.host.nr)
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+ if (vmx->msr_autoload.guest.nr)
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+
+ preempt_disable();
+
+ vmx_prepare_switch_to_guest(vcpu);
+
+ /*
+ * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
+ * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
+ * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
+ * there is no need to preserve other bits or save/restore the field.
+ */
+ vmcs_writel(GUEST_RFLAGS, 0);
+
+ vmcs_writel(HOST_RIP, vmx_early_consistency_check_return);
+
+ cr3 = __get_current_cr3_fast();
+ if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+ vmcs_writel(HOST_CR3, cr3);
+ vmx->loaded_vmcs->host_state.cr3 = cr3;
+ }
+
+ cr4 = cr4_read_shadow();
+ if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+ vmcs_writel(HOST_CR4, cr4);
+ vmx->loaded_vmcs->host_state.cr4 = cr4;
+ }
+
+ vmx->__launched = vmx->loaded_vmcs->launched;
+
+ asm(
+ /* Set HOST_RSP */
+ __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
+ "mov %%" _ASM_SP ", %c[host_rsp](%0)\n\t"
+
+ /* Check if vmlaunch or vmresume is needed */
+ "cmpl $0, %c[launched](%0)\n\t"
+ "jne 1f\n\t"
+ __ex("vmlaunch") "\n\t"
+ "jmp 2f\n\t"
+ "1: " __ex("vmresume") "\n\t"
+ "2: "
+ /* Set vmx->fail accordingly */
+ "setbe %c[fail](%0)\n\t"
+
+ ".pushsection .rodata\n\t"
+ ".global vmx_early_consistency_check_return\n\t"
+ "vmx_early_consistency_check_return: " _ASM_PTR " 2b\n\t"
+ ".popsection"
+ :
+ : "c"(vmx), "d"((unsigned long)HOST_RSP),
+ [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+ [fail]"i"(offsetof(struct vcpu_vmx, fail)),
+ [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp))
+ : "rax", "cc", "memory"
+ );
+
+ vmcs_writel(HOST_RIP, vmx_return);
+
+ preempt_enable();
+
+ if (vmx->msr_autoload.host.nr)
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+ if (vmx->msr_autoload.guest.nr)
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+
+ if (vmx->fail) {
+ WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+ VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ vmx->fail = 0;
+ return 1;
+ }
+
+ /*
+ * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
+ */
+ local_irq_enable();
+ if (hw_breakpoint_active())
+ set_debugreg(__this_cpu_read(cpu_dr7), 7);
+
+ /*
+ * A non-failing VMEntry means we somehow entered guest mode with
+ * an illegal RIP, and that's just the tip of the iceberg. There
+ * is no telling what memory has been modified or what state has
+ * been exposed to unknown code. Hitting this all but guarantees
+ * a (very critical) hardware issue.
+ */
+ WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
+ VMX_EXIT_REASONS_FAILED_VMENTRY));
+
+ return 0;
+}
+STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
+
+
+static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12);
+
+static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct page *page;
+ u64 hpa;
+
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+ /*
+ * Translate L1 physical address to host physical
+ * address for vmcs02. Keep the page pinned, so this
+ * physical address remains valid. We keep a reference
+ * to it so we can release it later.
+ */
+ if (vmx->nested.apic_access_page) { /* shouldn't happen */
+ kvm_release_page_dirty(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = NULL;
+ }
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
+ /*
+ * If translation failed, no matter: This feature asks
+ * to exit when accessing the given address, and if it
+ * can never be accessed, this feature won't do
+ * anything anyway.
+ */
+ if (!is_error_page(page)) {
+ vmx->nested.apic_access_page = page;
+ hpa = page_to_phys(vmx->nested.apic_access_page);
+ vmcs_write64(APIC_ACCESS_ADDR, hpa);
+ } else {
+ vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+ }
+ }
+
+ if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+ if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
+ kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+ vmx->nested.virtual_apic_page = NULL;
+ }
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
+
+ /*
+ * If translation failed, VM entry will fail because
+ * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
+ * Failing the vm entry is _not_ what the processor
+ * does but it's basically the only possibility we
+ * have. We could still enter the guest if CR8 load
+ * exits are enabled, CR8 store exits are enabled, and
+ * virtualize APIC access is disabled; in this case
+ * the processor would never use the TPR shadow and we
+ * could simply clear the bit from the execution
+ * control. But such a configuration is useless, so
+ * let's keep the code simple.
+ */
+ if (!is_error_page(page)) {
+ vmx->nested.virtual_apic_page = page;
+ hpa = page_to_phys(vmx->nested.virtual_apic_page);
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
+ }
+ }
+
+ if (nested_cpu_has_posted_intr(vmcs12)) {
+ if (vmx->nested.pi_desc_page) { /* shouldn't happen */
+ kunmap(vmx->nested.pi_desc_page);
+ kvm_release_page_dirty(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc_page = NULL;
+ }
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
+ if (is_error_page(page))
+ return;
+ vmx->nested.pi_desc_page = page;
+ vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc =
+ (struct pi_desc *)((void *)vmx->nested.pi_desc +
+ (unsigned long)(vmcs12->posted_intr_desc_addr &
+ (PAGE_SIZE - 1)));
+ vmcs_write64(POSTED_INTR_DESC_ADDR,
+ page_to_phys(vmx->nested.pi_desc_page) +
+ (unsigned long)(vmcs12->posted_intr_desc_addr &
+ (PAGE_SIZE - 1)));
+ }
+ if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
+ vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_USE_MSR_BITMAPS);
+ else
+ vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_USE_MSR_BITMAPS);
+}
+
+/*
+ * Intel's VMX Instruction Reference specifies a common set of prerequisites
+ * for running VMX instructions (except VMXON, whose prerequisites are
+ * slightly different). It also specifies what exception to inject otherwise.
+ * Note that many of these exceptions have priority over VM exits, so they
+ * don't have to be checked again here.
+ */
+static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
+{
+ if (!to_vmx(vcpu)->nested.vmxon) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 0;
+ }
+
+ if (vmx_get_cpl(vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 0;
+ }
+
+ return 1;
+}
+
+static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
+{
+ u8 rvi = vmx_get_rvi();
+ u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
+
+ return ((rvi & 0xf0) > (vppr & 0xf0));
+}
+
+static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12);
+
+/*
+ * If from_vmentry is false, this is being called from state restore (either RSM
+ * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
++ *
++ * Returns:
++ * 0 - success, i.e. proceed with actual VMEnter
++ * 1 - consistency check VMExit
++ * -1 - consistency check VMFail
+ */
+int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ bool evaluate_pending_interrupts;
+ u32 exit_reason = EXIT_REASON_INVALID_STATE;
+ u32 exit_qual;
+
+ evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+ (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
+ if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
+ evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
+
+ if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
+ vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+ if (kvm_mpx_supported() &&
+ !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+ vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+
+ vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
+
+ prepare_vmcs02_early(vmx, vmcs12);
+
+ if (from_vmentry) {
+ nested_get_vmcs12_pages(vcpu);
+
+ if (nested_vmx_check_vmentry_hw(vcpu)) {
+ vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+ return -1;
+ }
+
+ if (check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+ goto vmentry_fail_vmexit;
+ }
+
+ enter_guest_mode(vcpu);
+ if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+ vcpu->arch.tsc_offset += vmcs12->tsc_offset;
+
+ if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
+ goto vmentry_fail_vmexit_guest_mode;
+
+ if (from_vmentry) {
+ exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
+ exit_qual = nested_vmx_load_msr(vcpu,
+ vmcs12->vm_entry_msr_load_addr,
+ vmcs12->vm_entry_msr_load_count);
+ if (exit_qual)
+ goto vmentry_fail_vmexit_guest_mode;
+ } else {
+ /*
+ * The MMU is not initialized to point at the right entities yet and
+ * "get pages" would need to read data from the guest (i.e. we will
+ * need to perform gpa to hpa translation). Request a call
+ * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
+ * have already been set at vmentry time and should not be reset.
+ */
+ kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
+ }
+
+ /*
+ * If L1 had a pending IRQ/NMI until it executed
+ * VMLAUNCH/VMRESUME which wasn't delivered because it was
+ * disallowed (e.g. interrupts disabled), L0 needs to
+ * evaluate if this pending event should cause an exit from L2
+ * to L1 or delivered directly to L2 (e.g. In case L1 don't
+ * intercept EXTERNAL_INTERRUPT).
+ *
+ * Usually this would be handled by the processor noticing an
+ * IRQ/NMI window request, or checking RVI during evaluation of
+ * pending virtual interrupts. However, this setting was done
+ * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
+ * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
+ */
+ if (unlikely(evaluate_pending_interrupts))
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ /*
+ * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
+ * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
+ * returned as far as L1 is concerned. It will only return (and set
+ * the success flag) when L2 exits (see nested_vmx_vmexit()).
+ */
+ return 0;
+
+ /*
+ * A failed consistency check that leads to a VMExit during L1's
+ * VMEnter to L2 is a variation of a normal VMexit, as explained in
+ * 26.7 "VM-entry failures during or after loading guest state".
+ */
+vmentry_fail_vmexit_guest_mode:
+ if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+ vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+ leave_guest_mode(vcpu);
+
+vmentry_fail_vmexit:
+ vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+
+ if (!from_vmentry)
+ return 1;
+
+ load_vmcs12_host_state(vcpu, vmcs12);
+ vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
+ vmcs12->exit_qualification = exit_qual;
+ if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
+ vmx->nested.need_vmcs12_sync = true;
+ return 1;
+}
+
+/*
+ * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
+ * for running an L2 nested guest.
+ */
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+{
+ struct vmcs12 *vmcs12;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
+ int ret;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
+ return 1;
+
+ if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+
+ vmcs12 = get_vmcs12(vcpu);
+
+ /*
+ * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
+ * that there *is* a valid VMCS pointer, RFLAGS.CF is set
+ * rather than RFLAGS.ZF, and no error number is stored to the
+ * VM-instruction error field.
+ */
+ if (vmcs12->hdr.shadow_vmcs)
+ return nested_vmx_failInvalid(vcpu);
+
+ if (vmx->nested.hv_evmcs) {
+ copy_enlightened_to_vmcs12(vmx);
+ /* Enlightened VMCS doesn't have launch state */
+ vmcs12->launch_state = !launch;
+ } else if (enable_shadow_vmcs) {
+ copy_shadow_to_vmcs12(vmx);
+ }
+
+ /*
+ * The nested entry process starts with enforcing various prerequisites
+ * on vmcs12 as required by the Intel SDM, and act appropriately when
+ * they fail: As the SDM explains, some conditions should cause the
+ * instruction to fail, while others will cause the instruction to seem
+ * to succeed, but return an EXIT_REASON_INVALID_STATE.
+ * To speed up the normal (success) code path, we should avoid checking
+ * for misconfigurations which will anyway be caught by the processor
+ * when using the merged vmcs02.
+ */
+ if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
+
+ if (vmcs12->launch_state == launch)
+ return nested_vmx_failValid(vcpu,
+ launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
+ : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
+
+ ret = check_vmentry_prereqs(vcpu, vmcs12);
+ if (ret)
+ return nested_vmx_failValid(vcpu, ret);
+
+ /*
+ * We're finally done with prerequisite checking, and can start with
+ * the nested entry.
+ */
+ vmx->nested.nested_run_pending = 1;
+ ret = nested_vmx_enter_non_root_mode(vcpu, true);
+ vmx->nested.nested_run_pending = !ret;
+ if (ret > 0)
+ return 1;
+ else if (ret)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+
+ /* Hide L1D cache contents from the nested guest. */
+ vmx->vcpu.arch.l1tf_flush_l1d = true;
+
+ /*
+ * Must happen outside of nested_vmx_enter_non_root_mode() as it will
+ * also be used as part of restoring nVMX state for
+ * snapshot restore (migration).
+ *
+ * In this flow, it is assumed that vmcs12 cache was
+ * trasferred as part of captured nVMX state and should
+ * therefore not be read from guest memory (which may not
+ * exist on destination host yet).
+ */
+ nested_cache_shadow_vmcs12(vcpu, vmcs12);
+
+ /*
+ * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
+ * by event injection, halt vcpu.
+ */
+ if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
+ !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK)) {
+ vmx->nested.nested_run_pending = 0;
+ return kvm_vcpu_halt(vcpu);
+ }
+ return 1;
+}
+
+/*
+ * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
+ * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
+ * This function returns the new value we should put in vmcs12.guest_cr0.
+ * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
+ * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
+ * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
+ * didn't trap the bit, because if L1 did, so would L0).
+ * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
+ * been modified by L2, and L1 knows it. So just leave the old value of
+ * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
+ * isn't relevant, because if L0 traps this bit it can set it to anything.
+ * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
+ * changed these bits, and therefore they need to be updated, but L0
+ * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
+ * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
+ */
+static inline unsigned long
+vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ return
+ /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
+ /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
+ /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
+ vcpu->arch.cr0_guest_owned_bits));
+}
+
+static inline unsigned long
+vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ return
+ /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
+ /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
+ /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
+ vcpu->arch.cr4_guest_owned_bits));
+}
+
+static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ u32 idt_vectoring;
+ unsigned int nr;
+
+ if (vcpu->arch.exception.injected) {
+ nr = vcpu->arch.exception.nr;
+ idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+ if (kvm_exception_is_soft(nr)) {
+ vmcs12->vm_exit_instruction_len =
+ vcpu->arch.event_exit_inst_len;
+ idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
+ } else
+ idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
+
+ if (vcpu->arch.exception.has_error_code) {
+ idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
+ vmcs12->idt_vectoring_error_code =
+ vcpu->arch.exception.error_code;
+ }
+
+ vmcs12->idt_vectoring_info_field = idt_vectoring;
+ } else if (vcpu->arch.nmi_injected) {
+ vmcs12->idt_vectoring_info_field =
+ INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
+ } else if (vcpu->arch.interrupt.injected) {
+ nr = vcpu->arch.interrupt.nr;
+ idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+ if (vcpu->arch.interrupt.soft) {
+ idt_vectoring |= INTR_TYPE_SOFT_INTR;
+ vmcs12->vm_entry_instruction_len =
+ vcpu->arch.event_exit_inst_len;
+ } else
+ idt_vectoring |= INTR_TYPE_EXT_INTR;
+
+ vmcs12->idt_vectoring_info_field = idt_vectoring;
+ }
+}
+
+
+static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ gfn_t gfn;
+
+ /*
+ * Don't need to mark the APIC access page dirty; it is never
+ * written to by the CPU during APIC virtualization.
+ */
+
+ if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+ gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
+ kvm_vcpu_mark_page_dirty(vcpu, gfn);
+ }
+
+ if (nested_cpu_has_posted_intr(vmcs12)) {
+ gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
+ kvm_vcpu_mark_page_dirty(vcpu, gfn);
+ }
+}
+
+static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int max_irr;
+ void *vapic_page;
+ u16 status;
+
+ if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
+ return;
+
+ vmx->nested.pi_pending = false;
+ if (!pi_test_and_clear_on(vmx->nested.pi_desc))
+ return;
+
+ max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
+ if (max_irr != 256) {
+ vapic_page = kmap(vmx->nested.virtual_apic_page);
+ __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
+ vapic_page, &max_irr);
+ kunmap(vmx->nested.virtual_apic_page);
+
+ status = vmcs_read16(GUEST_INTR_STATUS);
+ if ((u8)max_irr > ((u8)status & 0xff)) {
+ status &= ~0xff;
+ status |= (u8)max_irr;
+ vmcs_write16(GUEST_INTR_STATUS, status);
+ }
+ }
+
+ nested_mark_vmcs12_pages_dirty(vcpu);
+}
+
+static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
+ unsigned long exit_qual)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned int nr = vcpu->arch.exception.nr;
+ u32 intr_info = nr | INTR_INFO_VALID_MASK;
+
+ if (vcpu->arch.exception.has_error_code) {
+ vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
+ intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+ }
+
+ if (kvm_exception_is_soft(nr))
+ intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+ else
+ intr_info |= INTR_TYPE_HARD_EXCEPTION;
+
+ if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
+ vmx_get_nmi_mask(vcpu))
+ intr_info |= INTR_INFO_UNBLOCK_NMI;
+
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
+}
+
+static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long exit_qual;
+ bool block_nested_events =
+ vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
+
+ if (vcpu->arch.exception.pending &&
+ nested_vmx_check_exception(vcpu, &exit_qual)) {
+ if (block_nested_events)
+ return -EBUSY;
+ nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
+ return 0;
+ }
+
+ if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
+ vmx->nested.preemption_timer_expired) {
+ if (block_nested_events)
+ return -EBUSY;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
+ return 0;
+ }
+
+ if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
+ if (block_nested_events)
+ return -EBUSY;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+ NMI_VECTOR | INTR_TYPE_NMI_INTR |
+ INTR_INFO_VALID_MASK, 0);
+ /*
+ * The NMI-triggered VM exit counts as injection:
+ * clear this one and block further NMIs.
+ */
+ vcpu->arch.nmi_pending = 0;
+ vmx_set_nmi_mask(vcpu, true);
+ return 0;
+ }
+
+ if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
+ nested_exit_on_intr(vcpu)) {
+ if (block_nested_events)
+ return -EBUSY;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
+ return 0;
+ }
+
+ vmx_complete_nested_posted_interrupt(vcpu);
+ return 0;
+}
+
+static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
+{
+ ktime_t remaining =
+ hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
+ u64 value;
+
+ if (ktime_to_ns(remaining) <= 0)
+ return 0;
+
+ value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
+ do_div(value, 1000000);
+ return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+}
+
+/*
+ * Update the guest state fields of vmcs12 to reflect changes that
+ * occurred while L2 was running. (The "IA-32e mode guest" bit of the
+ * VM-entry controls is also updated, since this is really a guest
+ * state bit.)
+ */
+static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
+ vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
+
+ vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+ vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
+ vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
+
+ vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
+ vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
+ vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
+ vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
+ vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
+ vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
+ vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
+ vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
+ vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
+ vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
+ vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
+ vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
+ vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
+ vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
+ vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
+ vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
+ vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
+ vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
+ vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
+ vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
+ vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
+ vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
+ vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
+ vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
+ vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
+ vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
+ vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
+ vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
+ vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
+ vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
+ vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
+ vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
+ vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
+ vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
+ vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
+ vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
+
+ vmcs12->guest_interruptibility_info =
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ vmcs12->guest_pending_dbg_exceptions =
+ vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+ if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
+ vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
+ else
+ vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
+
+ if (nested_cpu_has_preemption_timer(vmcs12)) {
+ if (vmcs12->vm_exit_controls &
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
+ vmcs12->vmx_preemption_timer_value =
+ vmx_get_preemption_timer_value(vcpu);
+ hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
+ }
+
+ /*
+ * In some cases (usually, nested EPT), L2 is allowed to change its
+ * own CR3 without exiting. If it has changed it, we must keep it.
+ * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
+ * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
+ *
+ * Additionally, restore L2's PDPTR to vmcs12.
+ */
+ if (enable_ept) {
+ vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
+ vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
+ vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
+ vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
+ vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
+ }
+
+ vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
+
+ if (nested_cpu_has_vid(vmcs12))
+ vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
+
+ vmcs12->vm_entry_controls =
+ (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
+ (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
+ kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
+ vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+ }
+
+ /* TODO: These cannot have changed unless we have MSR bitmaps and
+ * the relevant bit asks not to trap the change */
+ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
+ vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
+ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
+ vmcs12->guest_ia32_efer = vcpu->arch.efer;
+ vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
+ vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
+ vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
+ if (kvm_mpx_supported())
+ vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+}
+
+/*
+ * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
+ * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
+ * and this function updates it to reflect the changes to the guest state while
+ * L2 was running (and perhaps made some exits which were handled directly by L0
+ * without going back to L1), and to reflect the exit reason.
+ * Note that we do not have to copy here all VMCS fields, just those that
+ * could have changed by the L2 guest or the exit - i.e., the guest-state and
+ * exit-information fields only. Other fields are modified by L1 with VMWRITE,
+ * which already writes to vmcs12 directly.
+ */
+static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+ u32 exit_reason, u32 exit_intr_info,
+ unsigned long exit_qualification)
+{
+ /* update guest state fields: */
+ sync_vmcs12(vcpu, vmcs12);
+
+ /* update exit information fields: */
+
+ vmcs12->vm_exit_reason = exit_reason;
+ vmcs12->exit_qualification = exit_qualification;
+ vmcs12->vm_exit_intr_info = exit_intr_info;
+
+ vmcs12->idt_vectoring_info_field = 0;
+ vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+
+ if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
+ vmcs12->launch_state = 1;
+
+ /* vm_entry_intr_info_field is cleared on exit. Emulate this
+ * instead of reading the real value. */
+ vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
+
+ /*
+ * Transfer the event that L0 or L1 may wanted to inject into
+ * L2 to IDT_VECTORING_INFO_FIELD.
+ */
+ vmcs12_save_pending_event(vcpu, vmcs12);
+ }
+
+ /*
+ * Drop what we picked up for L2 via vmx_complete_interrupts. It is
+ * preserved above and would only end up incorrectly in L1.
+ */
+ vcpu->arch.nmi_injected = false;
+ kvm_clear_exception_queue(vcpu);
+ kvm_clear_interrupt_queue(vcpu);
+}
+
+/*
+ * A part of what we need to when the nested L2 guest exits and we want to
+ * run its L1 parent, is to reset L1's guest state to the host state specified
+ * in vmcs12.
+ * This function is to be called not only on normal nested exit, but also on
+ * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
+ * Failures During or After Loading Guest State").
+ * This function should be called when the active VMCS is L1's (vmcs01).
+ */
+static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct kvm_segment seg;
+ u32 entry_failure_code;
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
+ vcpu->arch.efer = vmcs12->host_ia32_efer;
+ else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+ vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+ else
+ vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+ vmx_set_efer(vcpu, vcpu->arch.efer);
+
+ kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
+ kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
+ vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
+ vmx_set_interrupt_shadow(vcpu, 0);
+
+ /*
+ * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
+ * actually changed, because vmx_set_cr0 refers to efer set above.
+ *
+ * CR0_GUEST_HOST_MASK is already set in the original vmcs01
+ * (KVM doesn't change it);
+ */
+ vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+ vmx_set_cr0(vcpu, vmcs12->host_cr0);
+
+ /* Same as above - no reason to call set_cr4_guest_host_mask(). */
+ vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+ vmx_set_cr4(vcpu, vmcs12->host_cr4);
+
+ nested_ept_uninit_mmu_context(vcpu);
+
+ /*
+ * Only PDPTE load can fail as the value of cr3 was checked on entry and
+ * couldn't have changed.
+ */
+ if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
+ nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
+
+ if (!enable_ept)
+ vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
+
+ /*
+ * If vmcs01 doesn't use VPID, CPU flushes TLB on every
+ * VMEntry/VMExit. Thus, no need to flush TLB.
+ *
+ * If vmcs12 doesn't use VPID, L1 expects TLB to be
+ * flushed on every VMEntry/VMExit.
+ *
+ * Otherwise, we can preserve TLB entries as long as we are
+ * able to tag L1 TLB entries differently than L2 TLB entries.
+ *
+ * If vmcs12 uses EPT, we need to execute this flush on EPTP01
+ * and therefore we request the TLB flush to happen only after VMCS EPTP
+ * has been set by KVM_REQ_LOAD_CR3.
+ */
+ if (enable_vpid &&
+ (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ }
+
+ vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
+ vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
+ vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
+ vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
+ vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
+ vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
+ vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
+
+ /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
+ if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
+ vmcs_write64(GUEST_BNDCFGS, 0);
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
+ vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
+ vcpu->arch.pat = vmcs12->host_ia32_pat;
+ }
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+ vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
+ vmcs12->host_ia32_perf_global_ctrl);
+
+ /* Set L1 segment info according to Intel SDM
+ 27.5.2 Loading Host Segment and Descriptor-Table Registers */
+ seg = (struct kvm_segment) {
+ .base = 0,
+ .limit = 0xFFFFFFFF,
+ .selector = vmcs12->host_cs_selector,
+ .type = 11,
+ .present = 1,
+ .s = 1,
+ .g = 1
+ };
+ if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+ seg.l = 1;
+ else
+ seg.db = 1;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
+ seg = (struct kvm_segment) {
+ .base = 0,
+ .limit = 0xFFFFFFFF,
+ .type = 3,
+ .present = 1,
+ .s = 1,
+ .db = 1,
+ .g = 1
+ };
+ seg.selector = vmcs12->host_ds_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
+ seg.selector = vmcs12->host_es_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
+ seg.selector = vmcs12->host_ss_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
+ seg.selector = vmcs12->host_fs_selector;
+ seg.base = vmcs12->host_fs_base;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
+ seg.selector = vmcs12->host_gs_selector;
+ seg.base = vmcs12->host_gs_base;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
+ seg = (struct kvm_segment) {
+ .base = vmcs12->host_tr_base,
+ .limit = 0x67,
+ .selector = vmcs12->host_tr_selector,
+ .type = 11,
+ .present = 1
+ };
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
+
+ kvm_set_dr(vcpu, 7, 0x400);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_update_msr_bitmap(vcpu);
+
+ if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
+ vmcs12->vm_exit_msr_load_count))
+ nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+}
+
+static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
+{
+ struct shared_msr_entry *efer_msr;
+ unsigned int i;
+
+ if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
+ return vmcs_read64(GUEST_IA32_EFER);
+
+ if (cpu_has_load_ia32_efer())
+ return host_efer;
+
+ for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
+ if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
+ return vmx->msr_autoload.guest.val[i].value;
+ }
+
+ efer_msr = find_msr_entry(vmx, MSR_EFER);
+ if (efer_msr)
+ return efer_msr->data;
+
+ return host_efer;
+}
+
+static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmx_msr_entry g, h;
+ struct msr_data msr;
+ gpa_t gpa;
+ u32 i, j;
+
+ vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
+
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
+ /*
+ * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
+ * as vmcs01.GUEST_DR7 contains a userspace defined value
+ * and vcpu->arch.dr7 is not squirreled away before the
+ * nested VMENTER (not worth adding a variable in nested_vmx).
+ */
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+ kvm_set_dr(vcpu, 7, DR7_FIXED_1);
+ else
+ WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
+ }
+
+ /*
+ * Note that calling vmx_set_{efer,cr0,cr4} is important as they
+ * handle a variety of side effects to KVM's software model.
+ */
+ vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
+
+ vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+ vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
+
+ vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+ vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
+
+ nested_ept_uninit_mmu_context(vcpu);
+ vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+ __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+
+ /*
+ * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
+ * from vmcs01 (if necessary). The PDPTRs are not loaded on
+ * VMFail, like everything else we just need to ensure our
+ * software model is up-to-date.
+ */
+ ept_save_pdptrs(vcpu);
+
+ kvm_mmu_reset_context(vcpu);
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_update_msr_bitmap(vcpu);
+
+ /*
+ * This nasty bit of open coding is a compromise between blindly
+ * loading L1's MSRs using the exit load lists (incorrect emulation
+ * of VMFail), leaving the nested VM's MSRs in the software model
+ * (incorrect behavior) and snapshotting the modified MSRs (too
+ * expensive since the lists are unbound by hardware). For each
+ * MSR that was (prematurely) loaded from the nested VMEntry load
+ * list, reload it from the exit load list if it exists and differs
+ * from the guest value. The intent is to stuff host state as
+ * silently as possible, not to fully process the exit load list.
+ */
+ msr.host_initiated = false;
+ for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
+ gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
+ if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
+ pr_debug_ratelimited(
+ "%s read MSR index failed (%u, 0x%08llx)\n",
+ __func__, i, gpa);
+ goto vmabort;
+ }
+
+ for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
+ gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
+ if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
+ pr_debug_ratelimited(
+ "%s read MSR failed (%u, 0x%08llx)\n",
+ __func__, j, gpa);
+ goto vmabort;
+ }
+ if (h.index != g.index)
+ continue;
+ if (h.value == g.value)
+ break;
+
+ if (nested_vmx_load_msr_check(vcpu, &h)) {
+ pr_debug_ratelimited(
+ "%s check failed (%u, 0x%x, 0x%x)\n",
+ __func__, j, h.index, h.reserved);
+ goto vmabort;
+ }
+
+ msr.index = h.index;
+ msr.data = h.value;
+ if (kvm_set_msr(vcpu, &msr)) {
+ pr_debug_ratelimited(
+ "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
+ __func__, j, h.index, h.value);
+ goto vmabort;
+ }
+ }
+ }
+
+ return;
+
+vmabort:
+ nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+}
+
+/*
+ * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
+ * and modify vmcs12 to make it see what it would expect to see there if
+ * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
+ */
+void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+ u32 exit_intr_info, unsigned long exit_qualification)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ /* trying to cancel vmlaunch/vmresume is a bug */
+ WARN_ON_ONCE(vmx->nested.nested_run_pending);
+
+ leave_guest_mode(vcpu);
+
+ if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+ vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+
+ if (likely(!vmx->fail)) {
+ if (exit_reason == -1)
+ sync_vmcs12(vcpu, vmcs12);
+ else
+ prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
+ exit_qualification);
+
+ /*
+ * Must happen outside of sync_vmcs12() as it will
+ * also be used to capture vmcs12 cache as part of
+ * capturing nVMX state for snapshot (migration).
+ *
+ * Otherwise, this flush will dirty guest memory at a
+ * point it is already assumed by user-space to be
+ * immutable.
+ */
+ nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
+
+ if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
+ vmcs12->vm_exit_msr_store_count))
+ nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
+ } else {
+ /*
+ * The only expected VM-instruction error is "VM entry with
+ * invalid control field(s)." Anything else indicates a
+ * problem with L0. And we should never get here with a
+ * VMFail of any type if early consistency checks are enabled.
+ */
+ WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+ VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ WARN_ON_ONCE(nested_early_check);
+ }
+
+ vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+
+ /* Update any VMCS fields that might have changed while L2 ran */
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+ vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+
+ if (kvm_has_tsc_control)
+ decache_tsc_multiplier(vmx);
+
+ if (vmx->nested.change_vmcs01_virtual_apic_mode) {
+ vmx->nested.change_vmcs01_virtual_apic_mode = false;
+ vmx_set_virtual_apic_mode(vcpu);
+ } else if (!nested_cpu_has_ept(vmcs12) &&
+ nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+ vmx_flush_tlb(vcpu, true);
+ }
+
+ /* This is needed for same reason as it was needed in prepare_vmcs02 */
+ vmx->host_rsp = 0;
+
+ /* Unpin physical memory we referred to in vmcs02 */
+ if (vmx->nested.apic_access_page) {
+ kvm_release_page_dirty(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = NULL;
+ }
+ if (vmx->nested.virtual_apic_page) {
+ kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+ vmx->nested.virtual_apic_page = NULL;
+ }
+ if (vmx->nested.pi_desc_page) {
+ kunmap(vmx->nested.pi_desc_page);
+ kvm_release_page_dirty(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc_page = NULL;
+ vmx->nested.pi_desc = NULL;
+ }
+
+ /*
+ * We are now running in L2, mmu_notifier will force to reload the
+ * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
+ */
+ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+ if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
+ vmx->nested.need_vmcs12_sync = true;
+
+ /* in case we halted in L2 */
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+
+ if (likely(!vmx->fail)) {
+ /*
+ * TODO: SDM says that with acknowledge interrupt on
+ * exit, bit 31 of the VM-exit interrupt information
+ * (valid interrupt) is always set to 1 on
+ * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
+ * need kvm_cpu_has_interrupt(). See the commit
+ * message for details.
+ */
+ if (nested_exit_intr_ack_set(vcpu) &&
+ exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
+ kvm_cpu_has_interrupt(vcpu)) {
+ int irq = kvm_cpu_get_interrupt(vcpu);
+ WARN_ON(irq < 0);
+ vmcs12->vm_exit_intr_info = irq |
+ INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
+ }
+
+ if (exit_reason != -1)
+ trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
+ vmcs12->exit_qualification,
+ vmcs12->idt_vectoring_info_field,
+ vmcs12->vm_exit_intr_info,
+ vmcs12->vm_exit_intr_error_code,
+ KVM_ISA_VMX);
+
+ load_vmcs12_host_state(vcpu, vmcs12);
+
+ return;
+ }
+
+ /*
+ * After an early L2 VM-entry failure, we're now back
+ * in L1 which thinks it just finished a VMLAUNCH or
+ * VMRESUME instruction, so we need to set the failure
+ * flag and the VM-instruction error field of the VMCS
+ * accordingly, and skip the emulated instruction.
+ */
+ (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+
+ /*
+ * Restore L1's host state to KVM's software model. We're here
+ * because a consistency check was caught by hardware, which
+ * means some amount of guest state has been propagated to KVM's
+ * model and needs to be unwound to the host's state.
+ */
+ nested_vmx_restore_host_state(vcpu);
+
+ vmx->fail = 0;
+}
+
+/*
+ * Decode the memory-address operand of a vmx instruction, as recorded on an
+ * exit caused by such an instruction (run by a guest hypervisor).
+ * On success, returns 0. When the operand is invalid, returns 1 and throws
+ * #UD or #GP.
+ */
+int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
+ u32 vmx_instruction_info, bool wr, gva_t *ret)
+{
+ gva_t off;
+ bool exn;
+ struct kvm_segment s;
+
+ /*
+ * According to Vol. 3B, "Information for VM Exits Due to Instruction
+ * Execution", on an exit, vmx_instruction_info holds most of the
+ * addressing components of the operand. Only the displacement part
+ * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
+ * For how an actual address is calculated from all these components,
+ * refer to Vol. 1, "Operand Addressing".
+ */
+ int scaling = vmx_instruction_info & 3;
+ int addr_size = (vmx_instruction_info >> 7) & 7;
+ bool is_reg = vmx_instruction_info & (1u << 10);
+ int seg_reg = (vmx_instruction_info >> 15) & 7;
+ int index_reg = (vmx_instruction_info >> 18) & 0xf;
+ bool index_is_valid = !(vmx_instruction_info & (1u << 22));
+ int base_reg = (vmx_instruction_info >> 23) & 0xf;
+ bool base_is_valid = !(vmx_instruction_info & (1u << 27));
+
+ if (is_reg) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ /* Addr = segment_base + offset */
+ /* offset = base + [index * scale] + displacement */
+ off = exit_qualification; /* holds the displacement */
+ if (base_is_valid)
+ off += kvm_register_read(vcpu, base_reg);
+ if (index_is_valid)
+ off += kvm_register_read(vcpu, index_reg)<<scaling;
+ vmx_get_segment(vcpu, &s, seg_reg);
+ *ret = s.base + off;
+
+ if (addr_size == 1) /* 32 bit */
+ *ret &= 0xffffffff;
+
+ /* Checks for #GP/#SS exceptions. */
+ exn = false;
+ if (is_long_mode(vcpu)) {
+ /* Long mode: #GP(0)/#SS(0) if the memory address is in a
+ * non-canonical form. This is the only check on the memory
+ * destination for long mode!
+ */
+ exn = is_noncanonical_address(*ret, vcpu);
+ } else if (is_protmode(vcpu)) {
+ /* Protected mode: apply checks for segment validity in the
+ * following order:
+ * - segment type check (#GP(0) may be thrown)
+ * - usability check (#GP(0)/#SS(0))
+ * - limit check (#GP(0)/#SS(0))
+ */
+ if (wr)
+ /* #GP(0) if the destination operand is located in a
+ * read-only data segment or any code segment.
+ */
+ exn = ((s.type & 0xa) == 0 || (s.type & 8));
+ else
+ /* #GP(0) if the source operand is located in an
+ * execute-only code segment
+ */
+ exn = ((s.type & 0xa) == 8);
+ if (exn) {
+ kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+ return 1;
+ }
+ /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
+ */
+ exn = (s.unusable != 0);
+ /* Protected mode: #GP(0)/#SS(0) if the memory
+ * operand is outside the segment limit.
+ */
+ exn = exn || (off + sizeof(u64) > s.limit);
+ }
+ if (exn) {
+ kvm_queue_exception_e(vcpu,
+ seg_reg == VCPU_SREG_SS ?
+ SS_VECTOR : GP_VECTOR,
+ 0);
+ return 1;
+ }
+
+ return 0;
+}
+
+static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
+{
+ gva_t gva;
+ struct x86_exception e;
+
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
+ return 1;
+
+ if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Allocate a shadow VMCS and associate it with the currently loaded
+ * VMCS, unless such a shadow VMCS already exists. The newly allocated
+ * VMCS is also VMCLEARed, so that it is ready for use.
+ */
+static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
+
+ /*
+ * We should allocate a shadow vmcs for vmcs01 only when L1
+ * executes VMXON and free it when L1 executes VMXOFF.
+ * As it is invalid to execute VMXON twice, we shouldn't reach
+ * here when vmcs01 already have an allocated shadow vmcs.
+ */
+ WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
+
+ if (!loaded_vmcs->shadow_vmcs) {
+ loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
+ if (loaded_vmcs->shadow_vmcs)
+ vmcs_clear(loaded_vmcs->shadow_vmcs);
+ }
+ return loaded_vmcs->shadow_vmcs;
+}
+
+static int enter_vmx_operation(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int r;
+
+ r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
+ if (r < 0)
+ goto out_vmcs02;
+
+ vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
+ if (!vmx->nested.cached_vmcs12)
+ goto out_cached_vmcs12;
+
+ vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
+ if (!vmx->nested.cached_shadow_vmcs12)
+ goto out_cached_shadow_vmcs12;
+
+ if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
+ goto out_shadow_vmcs;
+
+ hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL_PINNED);
+ vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
+
+ vmx->nested.vpid02 = allocate_vpid();
+
+ vmx->nested.vmcs02_initialized = false;
+ vmx->nested.vmxon = true;
+ return 0;
+
+out_shadow_vmcs:
+ kfree(vmx->nested.cached_shadow_vmcs12);
+
+out_cached_shadow_vmcs12:
+ kfree(vmx->nested.cached_vmcs12);
+
+out_cached_vmcs12:
+ free_loaded_vmcs(&vmx->nested.vmcs02);
+
+out_vmcs02:
+ return -ENOMEM;
+}
+
+/*
+ * Emulate the VMXON instruction.
+ * Currently, we just remember that VMX is active, and do not save or even
+ * inspect the argument to VMXON (the so-called "VMXON pointer") because we
+ * do not currently need to store anything in that guest-allocated memory
+ * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
+ * argument is different from the VMXON pointer (which the spec says they do).
+ */
+static int handle_vmon(struct kvm_vcpu *vcpu)
+{
+ int ret;
+ gpa_t vmptr;
+ struct page *page;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
+ | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+
+ /*
+ * The Intel VMX Instruction Reference lists a bunch of bits that are
+ * prerequisite to running VMXON, most notably cr4.VMXE must be set to
+ * 1 (see vmx_set_cr4() for when we allow the guest to set this).
+ * Otherwise, we should fail with #UD. But most faulting conditions
+ * have already been checked by hardware, prior to the VM-exit for
+ * VMXON. We do test guest cr4.VMXE because processor CR4 always has
+ * that bit set to 1 in non-root mode.
+ */
+ if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ /* CPL=0 must be checked manually. */
+ if (vmx_get_cpl(vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ if (vmx->nested.vmxon)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
+
+ if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
+ != VMXON_NEEDED_FEATURES) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ if (nested_vmx_get_vmptr(vcpu, &vmptr))
+ return 1;
+
+ /*
+ * SDM 3: 24.11.5
+ * The first 4 bytes of VMXON region contain the supported
+ * VMCS revision identifier
+ *
+ * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
+ * which replaces physical address width with 32
+ */
+ if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+ return nested_vmx_failInvalid(vcpu);
+
+ page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+ if (is_error_page(page))
+ return nested_vmx_failInvalid(vcpu);
+
+ if (*(u32 *)kmap(page) != VMCS12_REVISION) {
+ kunmap(page);
+ kvm_release_page_clean(page);
+ return nested_vmx_failInvalid(vcpu);
+ }
+ kunmap(page);
+ kvm_release_page_clean(page);
+
+ vmx->nested.vmxon_ptr = vmptr;
+ ret = enter_vmx_operation(vcpu);
+ if (ret)
+ return ret;
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (vmx->nested.current_vmptr == -1ull)
+ return;
+
+ if (enable_shadow_vmcs) {
+ /* copy to memory all shadowed fields in case
+ they were modified */
+ copy_shadow_to_vmcs12(vmx);
+ vmx->nested.need_vmcs12_sync = false;
+ vmx_disable_shadow_vmcs(vmx);
+ }
+ vmx->nested.posted_intr_nv = -1;
+
+ /* Flush VMCS12 to guest memory */
+ kvm_vcpu_write_guest_page(vcpu,
+ vmx->nested.current_vmptr >> PAGE_SHIFT,
+ vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
+
+ kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+
+ vmx->nested.current_vmptr = -1ull;
+}
+
+/* Emulate the VMXOFF instruction */
+static int handle_vmoff(struct kvm_vcpu *vcpu)
+{
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+ free_nested(vcpu);
+ return nested_vmx_succeed(vcpu);
+}
+
+/* Emulate the VMCLEAR instruction */
+static int handle_vmclear(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 zero = 0;
+ gpa_t vmptr;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (nested_vmx_get_vmptr(vcpu, &vmptr))
+ return 1;
+
+ if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_INVALID_ADDRESS);
+
+ if (vmptr == vmx->nested.vmxon_ptr)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_VMXON_POINTER);
+
+ if (vmx->nested.hv_evmcs_page) {
+ if (vmptr == vmx->nested.hv_evmcs_vmptr)
+ nested_release_evmcs(vcpu);
+ } else {
+ if (vmptr == vmx->nested.current_vmptr)
+ nested_release_vmcs12(vcpu);
+
+ kvm_vcpu_write_guest(vcpu,
+ vmptr + offsetof(struct vmcs12,
+ launch_state),
+ &zero, sizeof(zero));
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
+
+/* Emulate the VMLAUNCH instruction */
+static int handle_vmlaunch(struct kvm_vcpu *vcpu)
+{
+ return nested_vmx_run(vcpu, true);
+}
+
+/* Emulate the VMRESUME instruction */
+static int handle_vmresume(struct kvm_vcpu *vcpu)
+{
+
+ return nested_vmx_run(vcpu, false);
+}
+
+static int handle_vmread(struct kvm_vcpu *vcpu)
+{
+ unsigned long field;
+ u64 field_value;
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ gva_t gva = 0;
+ struct vmcs12 *vmcs12;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+
+ if (!is_guest_mode(vcpu))
+ vmcs12 = get_vmcs12(vcpu);
+ else {
+ /*
+ * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
+ * to shadowed-field sets the ALU flags for VMfailInvalid.
+ */
+ if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+ vmcs12 = get_shadow_vmcs12(vcpu);
+ }
+
+ /* Decode instruction info and find the field to read */
+ field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+ /* Read the field, zero-extended to a u64 field_value */
+ if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+
+ /*
+ * Now copy part of this value to register or memory, as requested.
+ * Note that the number of bits actually copied is 32 or 64 depending
+ * on the guest's mode (32 or 64 bit), not on the given field's length.
+ */
+ if (vmx_instruction_info & (1u << 10)) {
+ kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
+ field_value);
+ } else {
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, true, &gva))
+ return 1;
+ /* _system ok, nested_vmx_check_permission has verified cpl=0 */
+ kvm_write_guest_virt_system(vcpu, gva, &field_value,
+ (is_long_mode(vcpu) ? 8 : 4), NULL);
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+
+static int handle_vmwrite(struct kvm_vcpu *vcpu)
+{
+ unsigned long field;
+ gva_t gva;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+
+ /* The value to write might be 32 or 64 bits, depending on L1's long
+ * mode, and eventually we need to write that into a field of several
+ * possible lengths. The code below first zero-extends the value to 64
+ * bit (field_value), and then copies only the appropriate number of
+ * bits into the vmcs12 field.
+ */
+ u64 field_value = 0;
+ struct x86_exception e;
+ struct vmcs12 *vmcs12;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (vmx->nested.current_vmptr == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+
+ if (vmx_instruction_info & (1u << 10))
+ field_value = kvm_register_readl(vcpu,
+ (((vmx_instruction_info) >> 3) & 0xf));
+ else {
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, false, &gva))
+ return 1;
+ if (kvm_read_guest_virt(vcpu, gva, &field_value,
+ (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ }
+
+
+ field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+ /*
+ * If the vCPU supports "VMWRITE to any supported field in the
+ * VMCS," then the "read-only" fields are actually read/write.
+ */
+ if (vmcs_field_readonly(field) &&
+ !nested_cpu_has_vmwrite_any_field(vcpu))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
+
+ if (!is_guest_mode(vcpu))
+ vmcs12 = get_vmcs12(vcpu);
+ else {
+ /*
+ * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
+ * to shadowed-field sets the ALU flags for VMfailInvalid.
+ */
+ if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+ vmcs12 = get_shadow_vmcs12(vcpu);
+ }
+
+ if (vmcs12_write_any(vmcs12, field, field_value) < 0)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+
+ /*
+ * Do not track vmcs12 dirty-state if in guest-mode
+ * as we actually dirty shadow vmcs12 instead of vmcs12.
+ */
+ if (!is_guest_mode(vcpu)) {
+ switch (field) {
+#define SHADOW_FIELD_RW(x) case x:
+#include "vmcs_shadow_fields.h"
+ /*
+ * The fields that can be updated by L1 without a vmexit are
+ * always updated in the vmcs02, the others go down the slow
+ * path of prepare_vmcs02.
+ */
+ break;
+ default:
+ vmx->nested.dirty_vmcs12 = true;
+ break;
+ }
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
+{
+ vmx->nested.current_vmptr = vmptr;
+ if (enable_shadow_vmcs) {
+ vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_SHADOW_VMCS);
+ vmcs_write64(VMCS_LINK_POINTER,
+ __pa(vmx->vmcs01.shadow_vmcs));
+ vmx->nested.need_vmcs12_sync = true;
+ }
+ vmx->nested.dirty_vmcs12 = true;
+}
+
+/* Emulate the VMPTRLD instruction */
+static int handle_vmptrld(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ gpa_t vmptr;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (nested_vmx_get_vmptr(vcpu, &vmptr))
+ return 1;
+
+ if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INVALID_ADDRESS);
+
+ if (vmptr == vmx->nested.vmxon_ptr)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_VMXON_POINTER);
+
+ /* Forbid normal VMPTRLD if Enlightened version was used */
+ if (vmx->nested.hv_evmcs)
+ return 1;
+
+ if (vmx->nested.current_vmptr != vmptr) {
+ struct vmcs12 *new_vmcs12;
+ struct page *page;
+
+ page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+ if (is_error_page(page)) {
+ /*
+ * Reads from an unbacked page return all 1s,
+ * which means that the 32 bits located at the
+ * given physical address won't match the required
+ * VMCS12_REVISION identifier.
+ */
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+ new_vmcs12 = kmap(page);
+ if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+ (new_vmcs12->hdr.shadow_vmcs &&
+ !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
+ kunmap(page);
+ kvm_release_page_clean(page);
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+ }
+
+ nested_release_vmcs12(vcpu);
+
+ /*
+ * Load VMCS12 from guest memory since it is not already
+ * cached.
+ */
+ memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
+ kunmap(page);
+ kvm_release_page_clean(page);
+
+ set_current_vmptr(vmx, vmptr);
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+/* Emulate the VMPTRST instruction */
+static int handle_vmptrst(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
+ u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
+ struct x86_exception e;
+ gva_t gva;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
+ return 1;
+
+ if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
+ return 1;
+ /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
+ if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
+ sizeof(gpa_t), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ return nested_vmx_succeed(vcpu);
+}
+
+/* Emulate the INVEPT instruction */
+static int handle_invept(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 vmx_instruction_info, types;
+ unsigned long type;
+ gva_t gva;
+ struct x86_exception e;
+ struct {
+ u64 eptp, gpa;
+ } operand;
+
+ if (!(vmx->nested.msrs.secondary_ctls_high &
+ SECONDARY_EXEC_ENABLE_EPT) ||
+ !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+ types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
+
+ if (type >= 32 || !(types & (1 << type)))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+
+ /* According to the Intel VMX instruction reference, the memory
+ * operand is read even if it isn't needed (e.g., for type==global)
+ */
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmx_instruction_info, false, &gva))
+ return 1;
+ if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ switch (type) {
+ case VMX_EPT_EXTENT_GLOBAL:
+ /*
+ * TODO: track mappings and invalidate
+ * single context requests appropriately
+ */
+ case VMX_EPT_EXTENT_CONTEXT:
+ kvm_mmu_sync_roots(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ break;
+ default:
+ BUG_ON(1);
+ break;
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static int handle_invvpid(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 vmx_instruction_info;
+ unsigned long type, types;
+ gva_t gva;
+ struct x86_exception e;
+ struct {
+ u64 vpid;
+ u64 gla;
+ } operand;
+ u16 vpid02;
+
+ if (!(vmx->nested.msrs.secondary_ctls_high &
+ SECONDARY_EXEC_ENABLE_VPID) ||
+ !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+ types = (vmx->nested.msrs.vpid_caps &
+ VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
+
+ if (type >= 32 || !(types & (1 << type)))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+
+ /* according to the intel vmx instruction reference, the memory
+ * operand is read even if it isn't needed (e.g., for type==global)
+ */
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmx_instruction_info, false, &gva))
+ return 1;
+ if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ if (operand.vpid >> 16)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+
+ vpid02 = nested_get_vpid02(vcpu);
+ switch (type) {
+ case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
+ if (!operand.vpid ||
+ is_noncanonical_address(operand.gla, vcpu))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+ if (cpu_has_vmx_invvpid_individual_addr()) {
+ __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
+ vpid02, operand.gla);
+ } else
+ __vmx_flush_tlb(vcpu, vpid02, false);
+ break;
+ case VMX_VPID_EXTENT_SINGLE_CONTEXT:
+ case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
+ if (!operand.vpid)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+ __vmx_flush_tlb(vcpu, vpid02, false);
+ break;
+ case VMX_VPID_EXTENT_ALL_CONTEXT:
+ __vmx_flush_tlb(vcpu, vpid02, false);
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
+ u64 address;
+ bool accessed_dirty;
+ struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+ if (!nested_cpu_has_eptp_switching(vmcs12) ||
+ !nested_cpu_has_ept(vmcs12))
+ return 1;
+
+ if (index >= VMFUNC_EPTP_ENTRIES)
+ return 1;
+
+
+ if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
+ &address, index * 8, 8))
+ return 1;
+
+ accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
+
+ /*
+ * If the (L2) guest does a vmfunc to the currently
+ * active ept pointer, we don't have to do anything else
+ */
+ if (vmcs12->ept_pointer != address) {
+ if (!valid_ept_address(vcpu, address))
+ return 1;
+
+ kvm_mmu_unload(vcpu);
+ mmu->ept_ad = accessed_dirty;
+ mmu->mmu_role.base.ad_disabled = !accessed_dirty;
+ vmcs12->ept_pointer = address;
+ /*
+ * TODO: Check what's the correct approach in case
+ * mmu reload fails. Currently, we just let the next
+ * reload potentially fail
+ */
+ kvm_mmu_reload(vcpu);
+ }
+
+ return 0;
+}
+
+static int handle_vmfunc(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12;
+ u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
+
+ /*
+ * VMFUNC is only supported for nested guests, but we always enable the
+ * secondary control for simplicity; for non-nested mode, fake that we
+ * didn't by injecting #UD.
+ */
+ if (!is_guest_mode(vcpu)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ vmcs12 = get_vmcs12(vcpu);
+ if ((vmcs12->vm_function_control & (1 << function)) == 0)
+ goto fail;
+
+ switch (function) {
+ case 0:
+ if (nested_vmx_eptp_switching(vcpu, vmcs12))
+ goto fail;
+ break;
+ default:
+ goto fail;
+ }
+ return kvm_skip_emulated_instruction(vcpu);
+
+fail:
+ nested_vmx_vmexit(vcpu, vmx->exit_reason,
+ vmcs_read32(VM_EXIT_INTR_INFO),
+ vmcs_readl(EXIT_QUALIFICATION));
+ return 1;
+}
+
+
+static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ unsigned long exit_qualification;
+ gpa_t bitmap, last_bitmap;
+ unsigned int port;
+ int size;
+ u8 b;
+
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+ return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ port = exit_qualification >> 16;
+ size = (exit_qualification & 7) + 1;
+
+ last_bitmap = (gpa_t)-1;
+ b = -1;
+
+ while (size > 0) {
+ if (port < 0x8000)
+ bitmap = vmcs12->io_bitmap_a;
+ else if (port < 0x10000)
+ bitmap = vmcs12->io_bitmap_b;
+ else
+ return true;
+ bitmap += (port & 0x7fff) / 8;
+
+ if (last_bitmap != bitmap)
+ if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
+ return true;
+ if (b & (1 << (port & 7)))
+ return true;
+
+ port++;
+ size--;
+ last_bitmap = bitmap;
+ }
+
+ return false;
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
+ * rather than handle it ourselves in L0. I.e., check whether L1 expressed
+ * disinterest in the current event (read or write a specific MSR) by using an
+ * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
+ */
+static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12, u32 exit_reason)
+{
+ u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
+ gpa_t bitmap;
+
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+ return true;
+
+ /*
+ * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
+ * for the four combinations of read/write and low/high MSR numbers.
+ * First we need to figure out which of the four to use:
+ */
+ bitmap = vmcs12->msr_bitmap;
+ if (exit_reason == EXIT_REASON_MSR_WRITE)
+ bitmap += 2048;
+ if (msr_index >= 0xc0000000) {
+ msr_index -= 0xc0000000;
+ bitmap += 1024;
+ }
+
+ /* Then read the msr_index'th bit from this bitmap: */
+ if (msr_index < 1024*8) {
+ unsigned char b;
+ if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
+ return true;
+ return 1 & (b >> (msr_index & 7));
+ } else
+ return true; /* let L1 handle the wrong parameter */
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
+ * rather than handle it ourselves in L0. I.e., check if L1 wanted to
+ * intercept (via guest_host_mask etc.) the current event.
+ */
+static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ int cr = exit_qualification & 15;
+ int reg;
+ unsigned long val;
+
+ switch ((exit_qualification >> 4) & 3) {
+ case 0: /* mov to cr */
+ reg = (exit_qualification >> 8) & 15;
+ val = kvm_register_readl(vcpu, reg);
+ switch (cr) {
+ case 0:
+ if (vmcs12->cr0_guest_host_mask &
+ (val ^ vmcs12->cr0_read_shadow))
+ return true;
+ break;
+ case 3:
+ if ((vmcs12->cr3_target_count >= 1 &&
+ vmcs12->cr3_target_value0 == val) ||
+ (vmcs12->cr3_target_count >= 2 &&
+ vmcs12->cr3_target_value1 == val) ||
+ (vmcs12->cr3_target_count >= 3 &&
+ vmcs12->cr3_target_value2 == val) ||
+ (vmcs12->cr3_target_count >= 4 &&
+ vmcs12->cr3_target_value3 == val))
+ return false;
+ if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
+ return true;
+ break;
+ case 4:
+ if (vmcs12->cr4_guest_host_mask &
+ (vmcs12->cr4_read_shadow ^ val))
+ return true;
+ break;
+ case 8:
+ if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
+ return true;
+ break;
+ }
+ break;
+ case 2: /* clts */
+ if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
+ (vmcs12->cr0_read_shadow & X86_CR0_TS))
+ return true;
+ break;
+ case 1: /* mov from cr */
+ switch (cr) {
+ case 3:
+ if (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_CR3_STORE_EXITING)
+ return true;
+ break;
+ case 8:
+ if (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_CR8_STORE_EXITING)
+ return true;
+ break;
+ }
+ break;
+ case 3: /* lmsw */
+ /*
+ * lmsw can change bits 1..3 of cr0, and only set bit 0 of
+ * cr0. Other attempted changes are ignored, with no exit.
+ */
+ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+ if (vmcs12->cr0_guest_host_mask & 0xe &
+ (val ^ vmcs12->cr0_read_shadow))
+ return true;
+ if ((vmcs12->cr0_guest_host_mask & 0x1) &&
+ !(vmcs12->cr0_read_shadow & 0x1) &&
+ (val & 0x1))
+ return true;
+ break;
+ }
+ return false;
+}
+
+static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12, gpa_t bitmap)
+{
+ u32 vmx_instruction_info;
+ unsigned long field;
+ u8 b;
+
+ if (!nested_cpu_has_shadow_vmcs(vmcs12))
+ return true;
+
+ /* Decode instruction info and find the field to access */
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+
+ /* Out-of-range fields always cause a VM exit from L2 to L1 */
+ if (field >> 15)
+ return true;
+
+ if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
+ return true;
+
+ return 1 & (b >> (field & 7));
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
+ * should handle it ourselves in L0 (and then continue L2). Only call this
+ * when in is_guest_mode (L2).
+ */
+bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
+{
+ u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (vmx->nested.nested_run_pending)
+ return false;
+
+ if (unlikely(vmx->fail)) {
+ pr_info_ratelimited("%s failed vm entry %x\n", __func__,
+ vmcs_read32(VM_INSTRUCTION_ERROR));
+ return true;
+ }
+
+ /*
+ * The host physical addresses of some pages of guest memory
+ * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
+ * Page). The CPU may write to these pages via their host
+ * physical address while L2 is running, bypassing any
+ * address-translation-based dirty tracking (e.g. EPT write
+ * protection).
+ *
+ * Mark them dirty on every exit from L2 to prevent them from
+ * getting out of sync with dirty tracking.
+ */
+ nested_mark_vmcs12_pages_dirty(vcpu);
+
+ trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
+ vmcs_readl(EXIT_QUALIFICATION),
+ vmx->idt_vectoring_info,
+ intr_info,
+ vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+ KVM_ISA_VMX);
+
+ switch (exit_reason) {
+ case EXIT_REASON_EXCEPTION_NMI:
+ if (is_nmi(intr_info))
+ return false;
+ else if (is_page_fault(intr_info))
+ return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
+ else if (is_debug(intr_info) &&
+ vcpu->guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+ return false;
+ else if (is_breakpoint(intr_info) &&
+ vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+ return false;
+ return vmcs12->exception_bitmap &
+ (1u << (intr_info & INTR_INFO_VECTOR_MASK));
+ case EXIT_REASON_EXTERNAL_INTERRUPT:
+ return false;
+ case EXIT_REASON_TRIPLE_FAULT:
+ return true;
+ case EXIT_REASON_PENDING_INTERRUPT:
+ return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
+ case EXIT_REASON_NMI_WINDOW:
+ return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
+ case EXIT_REASON_TASK_SWITCH:
+ return true;
+ case EXIT_REASON_CPUID:
+ return true;
+ case EXIT_REASON_HLT:
+ return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
+ case EXIT_REASON_INVD:
+ return true;
+ case EXIT_REASON_INVLPG:
+ return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+ case EXIT_REASON_RDPMC:
+ return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
+ case EXIT_REASON_RDRAND:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
+ case EXIT_REASON_RDSEED:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
+ case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
+ return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
+ case EXIT_REASON_VMREAD:
+ return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+ vmcs12->vmread_bitmap);
+ case EXIT_REASON_VMWRITE:
+ return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+ vmcs12->vmwrite_bitmap);
+ case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
+ case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
+ case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
+ case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
+ case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
+ /*
+ * VMX instructions trap unconditionally. This allows L1 to
+ * emulate them for its L2 guest, i.e., allows 3-level nesting!
+ */
+ return true;
+ case EXIT_REASON_CR_ACCESS:
+ return nested_vmx_exit_handled_cr(vcpu, vmcs12);
+ case EXIT_REASON_DR_ACCESS:
+ return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
+ case EXIT_REASON_IO_INSTRUCTION:
+ return nested_vmx_exit_handled_io(vcpu, vmcs12);
+ case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
+ case EXIT_REASON_MSR_READ:
+ case EXIT_REASON_MSR_WRITE:
+ return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
+ case EXIT_REASON_INVALID_STATE:
+ return true;
+ case EXIT_REASON_MWAIT_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
+ case EXIT_REASON_MONITOR_TRAP_FLAG:
+ return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
+ case EXIT_REASON_MONITOR_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
+ case EXIT_REASON_PAUSE_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
+ nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING);
+ case EXIT_REASON_MCE_DURING_VMENTRY:
+ return false;
+ case EXIT_REASON_TPR_BELOW_THRESHOLD:
+ return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
+ case EXIT_REASON_APIC_ACCESS:
+ case EXIT_REASON_APIC_WRITE:
+ case EXIT_REASON_EOI_INDUCED:
+ /*
+ * The controls for "virtualize APIC accesses," "APIC-
+ * register virtualization," and "virtual-interrupt
+ * delivery" only come from vmcs12.
+ */
+ return true;
+ case EXIT_REASON_EPT_VIOLATION:
+ /*
+ * L0 always deals with the EPT violation. If nested EPT is
+ * used, and the nested mmu code discovers that the address is
+ * missing in the guest EPT table (EPT12), the EPT violation
+ * will be injected with nested_ept_inject_page_fault()
+ */
+ return false;
+ case EXIT_REASON_EPT_MISCONFIG:
+ /*
+ * L2 never uses directly L1's EPT, but rather L0's own EPT
+ * table (shadow on EPT) or a merged EPT table that L0 built
+ * (EPT on EPT). So any problems with the structure of the
+ * table is L0's fault.
+ */
+ return false;
+ case EXIT_REASON_INVPCID:
+ return
+ nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
+ nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+ case EXIT_REASON_WBINVD:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
+ case EXIT_REASON_XSETBV:
+ return true;
+ case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
+ /*
+ * This should never happen, since it is not possible to
+ * set XSS to a non-zero value---neither in L1 nor in L2.
+ * If if it were, XSS would have to be checked against
+ * the XSS exit bitmap in vmcs12.
+ */
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+ case EXIT_REASON_PREEMPTION_TIMER:
+ return false;
+ case EXIT_REASON_PML_FULL:
+ /* We emulate PML support to L1. */
+ return false;
+ case EXIT_REASON_VMFUNC:
+ /* VM functions are emulated through L2->L0 vmexits. */
+ return false;
+ case EXIT_REASON_ENCLS:
+ /* SGX is never exposed to L1 */
+ return false;
+ default:
+ return true;
+ }
+}
+
+
+static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
+ struct kvm_nested_state __user *user_kvm_nested_state,
+ u32 user_data_size)
+{
+ struct vcpu_vmx *vmx;
+ struct vmcs12 *vmcs12;
+ struct kvm_nested_state kvm_state = {
+ .flags = 0,
+ .format = 0,
+ .size = sizeof(kvm_state),
+ .vmx.vmxon_pa = -1ull,
+ .vmx.vmcs_pa = -1ull,
+ };
+
+ if (!vcpu)
+ return kvm_state.size + 2 * VMCS12_SIZE;
+
+ vmx = to_vmx(vcpu);
+ vmcs12 = get_vmcs12(vcpu);
+
+ if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
+ kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
+
+ if (nested_vmx_allowed(vcpu) &&
+ (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
+ kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
+ kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
+
+ if (vmx_has_valid_vmcs12(vcpu)) {
+ kvm_state.size += VMCS12_SIZE;
+
+ if (is_guest_mode(vcpu) &&
+ nested_cpu_has_shadow_vmcs(vmcs12) &&
+ vmcs12->vmcs_link_pointer != -1ull)
+ kvm_state.size += VMCS12_SIZE;
+ }
+
+ if (vmx->nested.smm.vmxon)
+ kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
+
+ if (vmx->nested.smm.guest_mode)
+ kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
+
+ if (is_guest_mode(vcpu)) {
+ kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
+
+ if (vmx->nested.nested_run_pending)
+ kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
+ }
+ }
+
+ if (user_data_size < kvm_state.size)
+ goto out;
+
+ if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
+ return -EFAULT;
+
+ if (!vmx_has_valid_vmcs12(vcpu))
+ goto out;
+
+ /*
+ * When running L2, the authoritative vmcs12 state is in the
+ * vmcs02. When running L1, the authoritative vmcs12 state is
+ * in the shadow or enlightened vmcs linked to vmcs01, unless
+ * need_vmcs12_sync is set, in which case, the authoritative
+ * vmcs12 state is in the vmcs12 already.
+ */
+ if (is_guest_mode(vcpu)) {
+ sync_vmcs12(vcpu, vmcs12);
+ } else if (!vmx->nested.need_vmcs12_sync) {
+ if (vmx->nested.hv_evmcs)
+ copy_enlightened_to_vmcs12(vmx);
+ else if (enable_shadow_vmcs)
+ copy_shadow_to_vmcs12(vmx);
+ }
+
+ if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
+ return -EFAULT;
+
+ if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+ vmcs12->vmcs_link_pointer != -1ull) {
+ if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
+ get_shadow_vmcs12(vcpu), sizeof(*vmcs12)))
+ return -EFAULT;
+ }
+
+out:
+ return kvm_state.size;
+}
+
+/*
+ * Forcibly leave nested mode in order to be able to reset the VCPU later on.
+ */
+void vmx_leave_nested(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu)) {
+ to_vmx(vcpu)->nested.nested_run_pending = 0;
+ nested_vmx_vmexit(vcpu, -1, 0, 0);
+ }
+ free_nested(vcpu);
+}
+
+static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
+ struct kvm_nested_state __user *user_kvm_nested_state,
+ struct kvm_nested_state *kvm_state)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12;
+ u32 exit_qual;
+ int ret;
+
+ if (kvm_state->format != 0)
+ return -EINVAL;
+
+ if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
+ nested_enable_evmcs(vcpu, NULL);
+
+ if (!nested_vmx_allowed(vcpu))
+ return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
+
+ if (kvm_state->vmx.vmxon_pa == -1ull) {
+ if (kvm_state->vmx.smm.flags)
+ return -EINVAL;
+
+ if (kvm_state->vmx.vmcs_pa != -1ull)
+ return -EINVAL;
+
+ vmx_leave_nested(vcpu);
+ return 0;
+ }
+
+ if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
+ return -EINVAL;
+
+ if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+ (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+ return -EINVAL;
+
+ if (kvm_state->vmx.smm.flags &
+ ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
+ return -EINVAL;
+
+ /*
+ * SMM temporarily disables VMX, so we cannot be in guest mode,
+ * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
+ * must be zero.
+ */
+ if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
+ return -EINVAL;
+
+ if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+ !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
+ return -EINVAL;
+
+ vmx_leave_nested(vcpu);
+ if (kvm_state->vmx.vmxon_pa == -1ull)
+ return 0;
+
+ vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
+ ret = enter_vmx_operation(vcpu);
+ if (ret)
+ return ret;
+
+ /* Empty 'VMXON' state is permitted */
+ if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
+ return 0;
+
+ if (kvm_state->vmx.vmcs_pa != -1ull) {
+ if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
+ !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
+ return -EINVAL;
+
+ set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
+ } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
+ /*
+ * Sync eVMCS upon entry as we may not have
+ * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
+ */
+ vmx->nested.need_vmcs12_sync = true;
+ } else {
+ return -EINVAL;
+ }
+
+ if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
+ vmx->nested.smm.vmxon = true;
+ vmx->nested.vmxon = false;
+
+ if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
+ vmx->nested.smm.guest_mode = true;
+ }
+
+ vmcs12 = get_vmcs12(vcpu);
+ if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
+ return -EFAULT;
+
+ if (vmcs12->hdr.revision_id != VMCS12_REVISION)
+ return -EINVAL;
+
+ if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+ return 0;
+
+ vmx->nested.nested_run_pending =
+ !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
+
+ if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+ vmcs12->vmcs_link_pointer != -1ull) {
+ struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
+
+ if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
+ return -EINVAL;
+
+ if (copy_from_user(shadow_vmcs12,
+ user_kvm_nested_state->data + VMCS12_SIZE,
+ sizeof(*vmcs12)))
+ return -EFAULT;
+
+ if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+ !shadow_vmcs12->hdr.shadow_vmcs)
+ return -EINVAL;
+ }
+
+ if (check_vmentry_prereqs(vcpu, vmcs12) ||
+ check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+ return -EINVAL;
+
+ vmx->nested.dirty_vmcs12 = true;
+ ret = nested_vmx_enter_non_root_mode(vcpu, false);
+ if (ret)
+ return -EINVAL;
+
+ return 0;
+}
+
+void nested_vmx_vcpu_setup(void)
+{
+ if (enable_shadow_vmcs) {
+ /*
+ * At vCPU creation, "VMWRITE to any supported field
+ * in the VMCS" is supported, so use the more
+ * permissive vmx_vmread_bitmap to specify both read
+ * and write permissions for the shadow VMCS.
+ */
+ vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
+ vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
+ }
+}
+
+/*
+ * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
+ * returned for the various VMX controls MSRs when nested VMX is enabled.
+ * The same values should also be used to verify that vmcs12 control fields are
+ * valid during nested entry from L1 to L2.
+ * Each of these control msrs has a low and high 32-bit half: A low bit is on
+ * if the corresponding bit in the (32-bit) control field *must* be on, and a
+ * bit in the high half is on if the corresponding bit in the control field
+ * may be on. See also vmx_control_verify().
+ */
+void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
+ bool apicv)
+{
+ /*
+ * Note that as a general rule, the high half of the MSRs (bits in
+ * the control fields which may be 1) should be initialized by the
+ * intersection of the underlying hardware's MSR (i.e., features which
+ * can be supported) and the list of features we want to expose -
+ * because they are known to be properly supported in our code.
+ * Also, usually, the low half of the MSRs (bits which must be 1) can
+ * be set to 0, meaning that L1 may turn off any of these bits. The
+ * reason is that if one of these bits is necessary, it will appear
+ * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
+ * fields of vmcs01 and vmcs02, will turn these bits off - and
+ * nested_vmx_exit_reflected() will not pass related exits to L1.
+ * These rules have exceptions below.
+ */
+
+ /* pin-based controls */
+ rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
+ msrs->pinbased_ctls_low,
+ msrs->pinbased_ctls_high);
+ msrs->pinbased_ctls_low |=
+ PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ msrs->pinbased_ctls_high &=
+ PIN_BASED_EXT_INTR_MASK |
+ PIN_BASED_NMI_EXITING |
+ PIN_BASED_VIRTUAL_NMIS |
+ (apicv ? PIN_BASED_POSTED_INTR : 0);
+ msrs->pinbased_ctls_high |=
+ PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+ PIN_BASED_VMX_PREEMPTION_TIMER;
+
+ /* exit controls */
+ rdmsr(MSR_IA32_VMX_EXIT_CTLS,
+ msrs->exit_ctls_low,
+ msrs->exit_ctls_high);
+ msrs->exit_ctls_low =
+ VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+
+ msrs->exit_ctls_high &=
+#ifdef CONFIG_X86_64
+ VM_EXIT_HOST_ADDR_SPACE_SIZE |
+#endif
+ VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
+ msrs->exit_ctls_high |=
+ VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
+ VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
+
+ /* We support free control of debug control saving. */
+ msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
+
+ /* entry controls */
+ rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
+ msrs->entry_ctls_low,
+ msrs->entry_ctls_high);
+ msrs->entry_ctls_low =
+ VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+ msrs->entry_ctls_high &=
+#ifdef CONFIG_X86_64
+ VM_ENTRY_IA32E_MODE |
+#endif
+ VM_ENTRY_LOAD_IA32_PAT;
+ msrs->entry_ctls_high |=
+ (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
+
+ /* We support free control of debug control loading. */
+ msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
+
+ /* cpu-based controls */
+ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
+ msrs->procbased_ctls_low,
+ msrs->procbased_ctls_high);
+ msrs->procbased_ctls_low =
+ CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ msrs->procbased_ctls_high &=
+ CPU_BASED_VIRTUAL_INTR_PENDING |
+ CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
+ CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
+ CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+#ifdef CONFIG_X86_64
+ CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
+#endif
+ CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
+ CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
+ CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
+ CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
+ CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+ /*
+ * We can allow some features even when not supported by the
+ * hardware. For example, L1 can specify an MSR bitmap - and we
+ * can use it to avoid exits to L1 - even when L0 runs L2
+ * without MSR bitmaps.
+ */
+ msrs->procbased_ctls_high |=
+ CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+ CPU_BASED_USE_MSR_BITMAPS;
+
+ /* We support free control of CR3 access interception. */
+ msrs->procbased_ctls_low &=
+ ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
+
+ /*
+ * secondary cpu-based controls. Do not include those that
+ * depend on CPUID bits, they are added later by vmx_cpuid_update.
+ */
+ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
+ msrs->secondary_ctls_low,
+ msrs->secondary_ctls_high);
+ msrs->secondary_ctls_low = 0;
+ msrs->secondary_ctls_high &=
+ SECONDARY_EXEC_DESC |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+ SECONDARY_EXEC_WBINVD_EXITING;
+
+ /*
+ * We can emulate "VMCS shadowing," even if the hardware
+ * doesn't support it.
+ */
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_SHADOW_VMCS;
+
+ if (enable_ept) {
+ /* nested EPT: emulate EPT also to L1 */
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_EPT;
+ msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
+ VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
+ if (cpu_has_vmx_ept_execute_only())
+ msrs->ept_caps |=
+ VMX_EPT_EXECUTE_ONLY_BIT;
+ msrs->ept_caps &= ept_caps;
+ msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
+ VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
+ VMX_EPT_1GB_PAGE_BIT;
+ if (enable_ept_ad_bits) {
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_PML;
+ msrs->ept_caps |= VMX_EPT_AD_BIT;
+ }
+ }
+
+ if (cpu_has_vmx_vmfunc()) {
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_VMFUNC;
+ /*
+ * Advertise EPTP switching unconditionally
+ * since we emulate it
+ */
+ if (enable_ept)
+ msrs->vmfunc_controls =
+ VMX_VMFUNC_EPTP_SWITCHING;
+ }
+
+ /*
+ * Old versions of KVM use the single-context version without
+ * checking for support, so declare that it is supported even
+ * though it is treated as global context. The alternative is
+ * not failing the single-context invvpid, and it is worse.
+ */
+ if (enable_vpid) {
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_VPID;
+ msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
+ VMX_VPID_EXTENT_SUPPORTED_MASK;
+ }
+
+ if (enable_unrestricted_guest)
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_UNRESTRICTED_GUEST;
+
+ if (flexpriority_enabled)
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+
+ /* miscellaneous data */
+ rdmsr(MSR_IA32_VMX_MISC,
+ msrs->misc_low,
+ msrs->misc_high);
+ msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
+ msrs->misc_low |=
+ MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
+ VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
+ VMX_MISC_ACTIVITY_HLT;
+ msrs->misc_high = 0;
+
+ /*
+ * This MSR reports some information about VMX support. We
+ * should return information about the VMX we emulate for the
+ * guest, and the VMCS structure we give it - not about the
+ * VMX support of the underlying hardware.
+ */
+ msrs->basic =
+ VMCS12_REVISION |
+ VMX_BASIC_TRUE_CTLS |
+ ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
+ (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
+
+ if (cpu_has_vmx_basic_inout())
+ msrs->basic |= VMX_BASIC_INOUT;
+
+ /*
+ * These MSRs specify bits which the guest must keep fixed on
+ * while L1 is in VMXON mode (in L1's root mode, or running an L2).
+ * We picked the standard core2 setting.
+ */
+#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
+#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
+ msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
+ msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
+
+ /* These MSRs specify bits which the guest must keep fixed off. */
+ rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
+ rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
+
+ /* highest index: VMX_PREEMPTION_TIMER_VALUE */
+ msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
+}
+
+void nested_vmx_hardware_unsetup(void)
+{
+ int i;
+
+ if (enable_shadow_vmcs) {
+ for (i = 0; i < VMX_BITMAP_NR; i++)
+ free_page((unsigned long)vmx_bitmap[i]);
+ }
+}
+
+__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
+{
+ int i;
+
+ if (!cpu_has_vmx_shadow_vmcs())
+ enable_shadow_vmcs = 0;
+ if (enable_shadow_vmcs) {
+ for (i = 0; i < VMX_BITMAP_NR; i++) {
+ vmx_bitmap[i] = (unsigned long *)
+ __get_free_page(GFP_KERNEL);
+ if (!vmx_bitmap[i]) {
+ nested_vmx_hardware_unsetup();
+ return -ENOMEM;
+ }
+ }
+
+ init_vmcs_shadow_fields();
+ }
+
+ exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear,
+ exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
+ exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld,
+ exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst,
+ exit_handlers[EXIT_REASON_VMREAD] = handle_vmread,
+ exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume,
+ exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite,
+ exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff,
+ exit_handlers[EXIT_REASON_VMON] = handle_vmon,
+ exit_handlers[EXIT_REASON_INVEPT] = handle_invept,
+ exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid,
+ exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc,
+
+ kvm_x86_ops->check_nested_events = vmx_check_nested_events;
+ kvm_x86_ops->get_nested_state = vmx_get_nested_state;
+ kvm_x86_ops->set_nested_state = vmx_set_nested_state;
+ kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
+ kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
+
+ return 0;
+}
diff --git a/arch/x86/kvm/vmx/nested.h b/arch/x86/kvm/vmx/nested.h
new file mode 100644
index 000000000000..e847ff1019a2
--- /dev/null
+++ b/arch/x86/kvm/vmx/nested.h
@@ -0,0 +1,282 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_NESTED_H
+#define __KVM_X86_VMX_NESTED_H
+
+#include "kvm_cache_regs.h"
+#include "vmcs12.h"
+#include "vmx.h"
+
+void vmx_leave_nested(struct kvm_vcpu *vcpu);
+void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
+ bool apicv);
+void nested_vmx_hardware_unsetup(void);
+__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *));
+void nested_vmx_vcpu_setup(void);
+void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu);
+int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry);
+bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason);
+void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+ u32 exit_intr_info, unsigned long exit_qualification);
+void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu);
+int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data);
+int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata);
+int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
+ u32 vmx_instruction_info, bool wr, gva_t *ret);
+
+static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.cached_vmcs12;
+}
+
+static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
+}
+
+static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * In case we do two consecutive get/set_nested_state()s while L2 was
+ * running hv_evmcs may end up not being mapped (we map it from
+ * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always
+ * have vmcs12 if it is true.
+ */
+ return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull ||
+ vmx->nested.hv_evmcs;
+}
+
+static inline unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
+{
+ /* return the page table to be shadowed - in our case, EPT12 */
+ return get_vmcs12(vcpu)->ept_pointer;
+}
+
+static inline bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
+{
+ return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
+}
+
+/*
+ * Reflect a VM Exit into L1.
+ */
+static inline int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu,
+ u32 exit_reason)
+{
+ u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+
+ /*
+ * At this point, the exit interruption info in exit_intr_info
+ * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
+ * we need to query the in-kernel LAPIC.
+ */
+ WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
+ if ((exit_intr_info &
+ (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
+ (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ vmcs12->vm_exit_intr_error_code =
+ vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+ }
+
+ nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
+ vmcs_readl(EXIT_QUALIFICATION));
+ return 1;
+}
+
+/*
+ * Return the cr0 value that a nested guest would read. This is a combination
+ * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
+ * its hypervisor (cr0_read_shadow).
+ */
+static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
+{
+ return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
+ (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
+}
+static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
+{
+ return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
+ (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
+}
+
+static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
+{
+ return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
+}
+
+/*
+ * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
+ * to modify any valid field of the VMCS, or are the VM-exit
+ * information fields read-only?
+ */
+static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.msrs.misc_low &
+ MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
+}
+
+static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
+}
+
+static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
+ CPU_BASED_MONITOR_TRAP_FLAG;
+}
+
+static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
+ SECONDARY_EXEC_SHADOW_VMCS;
+}
+
+static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
+{
+ return vmcs12->cpu_based_vm_exec_control & bit;
+}
+
+static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
+{
+ return (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+ (vmcs12->secondary_vm_exec_control & bit);
+}
+
+static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control &
+ PIN_BASED_VMX_PREEMPTION_TIMER;
+}
+
+static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
+}
+
+static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
+}
+
+static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+}
+
+static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
+}
+
+static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+}
+
+static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
+}
+
+static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
+}
+
+static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+}
+
+static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
+}
+
+static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
+}
+
+static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has_vmfunc(vmcs12) &&
+ (vmcs12->vm_function_control &
+ VMX_VMFUNC_EPTP_SWITCHING);
+}
+
+static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
+}
+
+static inline bool nested_cpu_has_save_preemption_timer(struct vmcs12 *vmcs12)
+{
+ return vmcs12->vm_exit_controls &
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
+}
+
+/*
+ * In nested virtualization, check if L1 asked to exit on external interrupts.
+ * For most existing hypervisors, this will always return true.
+ */
+static inline bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
+{
+ return get_vmcs12(vcpu)->pin_based_vm_exec_control &
+ PIN_BASED_EXT_INTR_MASK;
+}
+
+/*
+ * if fixed0[i] == 1: val[i] must be 1
+ * if fixed1[i] == 0: val[i] must be 0
+ */
+static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
+{
+ return ((val & fixed1) | fixed0) == val;
+}
+
+static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
+ u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
+ SECONDARY_EXEC_UNRESTRICTED_GUEST &&
+ nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
+ fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
+
+ return fixed_bits_valid(val, fixed0, fixed1);
+}
+
+static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
+ u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
+
+ return fixed_bits_valid(val, fixed0, fixed1);
+}
+
+static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
+ u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
+
+ return fixed_bits_valid(val, fixed0, fixed1);
+}
+
+/* No difference in the restrictions on guest and host CR4 in VMX operation. */
+#define nested_guest_cr4_valid nested_cr4_valid
+#define nested_host_cr4_valid nested_cr4_valid
+
+#endif /* __KVM_X86_VMX_NESTED_H */
diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c
index 58bb8de04d0d..47943d073d6d 100644
--- a/arch/x86/kvm/vmx/vmx.c
+++ b/arch/x86/kvm/vmx/vmx.c
@@ -50,11 +50,11 @@
#include "capabilities.h"
#include "cpuid.h"
#include "evmcs.h"
-#include "hyperv.h"
#include "irq.h"
#include "kvm_cache_regs.h"
#include "lapic.h"
#include "mmu.h"
+#include "nested.h"
#include "ops.h"
#include "pmu.h"
#include "trace.h"
@@ -101,8 +101,6 @@ module_param(fasteoi, bool, S_IRUGO);
static bool __read_mostly enable_apicv = 1;
module_param(enable_apicv, bool, S_IRUGO);
-static bool __read_mostly enable_shadow_vmcs = 1;
-module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
/*
* If nested=1, nested virtualization is supported, i.e., guests may use
* VMX and be a hypervisor for its own guests. If nested=0, guests may not
@@ -111,9 +109,6 @@ module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
static bool __read_mostly nested = 1;
module_param(nested, bool, S_IRUGO);
-static bool __read_mostly nested_early_check = 0;
-module_param(nested_early_check, bool, S_IRUGO);
-
static u64 __read_mostly host_xss;
bool __read_mostly enable_pml = 1;
@@ -146,18 +141,6 @@ module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
-#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
-
-/*
- * Hyper-V requires all of these, so mark them as supported even though
- * they are just treated the same as all-context.
- */
-#define VMX_VPID_EXTENT_SUPPORTED_MASK \
- (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
- VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
- VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
- VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
-
/*
* These 2 parameters are used to config the controls for Pause-Loop Exiting:
* ple_gap: upper bound on the amount of time between two successive
@@ -187,8 +170,6 @@ module_param(ple_window_shrink, uint, 0444);
static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
module_param(ple_window_max, uint, 0444);
-extern const ulong vmx_early_consistency_check_return;
-
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
static DEFINE_MUTEX(vmx_l1d_flush_mutex);
@@ -339,37 +320,8 @@ static const struct kernel_param_ops vmentry_l1d_flush_ops = {
};
module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
-static u16 shadow_read_only_fields[] = {
-#define SHADOW_FIELD_RO(x) x,
-#include "vmcs_shadow_fields.h"
-};
-static int max_shadow_read_only_fields =
- ARRAY_SIZE(shadow_read_only_fields);
-
-static u16 shadow_read_write_fields[] = {
-#define SHADOW_FIELD_RW(x) x,
-#include "vmcs_shadow_fields.h"
-};
-static int max_shadow_read_write_fields =
- ARRAY_SIZE(shadow_read_write_fields);
-
-static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.cached_vmcs12;
-}
-
-static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
-}
-
-static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
-static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
static bool guest_state_valid(struct kvm_vcpu *vcpu);
static u32 vmx_segment_access_rights(struct kvm_segment *var);
-static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
-static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
- u16 error_code);
static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
u32 msr, int type);
@@ -388,17 +340,6 @@ static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
-enum {
- VMX_VMREAD_BITMAP,
- VMX_VMWRITE_BITMAP,
- VMX_BITMAP_NR
-};
-
-static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
-
-#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
-#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
-
static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
static DEFINE_SPINLOCK(vmx_vpid_lock);
@@ -550,134 +491,6 @@ static inline bool report_flexpriority(void)
return flexpriority_enabled;
}
-static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
-{
- return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
-}
-
-/*
- * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
- * to modify any valid field of the VMCS, or are the VM-exit
- * information fields read-only?
- */
-static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.msrs.misc_low &
- MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
-}
-
-static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
-}
-
-static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
- CPU_BASED_MONITOR_TRAP_FLAG;
-}
-
-static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
- SECONDARY_EXEC_SHADOW_VMCS;
-}
-
-static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
-{
- return vmcs12->cpu_based_vm_exec_control & bit;
-}
-
-static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
-{
- return (vmcs12->cpu_based_vm_exec_control &
- CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
- (vmcs12->secondary_vm_exec_control & bit);
-}
-
-static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
-{
- return vmcs12->pin_based_vm_exec_control &
- PIN_BASED_VMX_PREEMPTION_TIMER;
-}
-
-static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
-{
- return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
-}
-
-static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
-{
- return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
-}
-
-static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
-}
-
-static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
-}
-
-static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
-}
-
-static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
-}
-
-static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
-}
-
-static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
-}
-
-static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
-}
-
-static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
-{
- return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
-}
-
-static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
-}
-
-static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has_vmfunc(vmcs12) &&
- (vmcs12->vm_function_control &
- VMX_VMFUNC_EPTP_SWITCHING);
-}
-
-static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
-}
-
-static inline bool nested_cpu_has_save_preemption_timer(struct vmcs12 *vmcs12)
-{
- return vmcs12->vm_exit_controls &
- VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
-}
-
-static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
- u32 exit_intr_info,
- unsigned long exit_qualification);
-
static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
{
int i;
@@ -888,29 +701,6 @@ static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
return true;
}
-/*
- * Check if MSR is intercepted for L01 MSR bitmap.
- */
-static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
-{
- unsigned long *msr_bitmap;
- int f = sizeof(unsigned long);
-
- if (!cpu_has_vmx_msr_bitmap())
- return true;
-
- msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
-
- if (msr <= 0x1fff) {
- return !!test_bit(msr, msr_bitmap + 0x800 / f);
- } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
- msr &= 0x1fff;
- return !!test_bit(msr, msr_bitmap + 0xc00 / f);
- }
-
- return true;
-}
-
static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
unsigned long entry, unsigned long exit)
{
@@ -1424,22 +1214,6 @@ static bool emulation_required(struct kvm_vcpu *vcpu)
static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
-/*
- * Return the cr0 value that a nested guest would read. This is a combination
- * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
- * its hypervisor (cr0_read_shadow).
- */
-static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
-{
- return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
- (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
-}
-static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
-{
- return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
- (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
-}
-
unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
{
unsigned long rflags, save_rflags;
@@ -1514,67 +1288,6 @@ static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
vmx_set_interrupt_shadow(vcpu, 0);
}
-static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
- unsigned long exit_qual)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- unsigned int nr = vcpu->arch.exception.nr;
- u32 intr_info = nr | INTR_INFO_VALID_MASK;
-
- if (vcpu->arch.exception.has_error_code) {
- vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
- intr_info |= INTR_INFO_DELIVER_CODE_MASK;
- }
-
- if (kvm_exception_is_soft(nr))
- intr_info |= INTR_TYPE_SOFT_EXCEPTION;
- else
- intr_info |= INTR_TYPE_HARD_EXCEPTION;
-
- if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
- vmx_get_nmi_mask(vcpu))
- intr_info |= INTR_INFO_UNBLOCK_NMI;
-
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
-}
-
-/*
- * KVM wants to inject page-faults which it got to the guest. This function
- * checks whether in a nested guest, we need to inject them to L1 or L2.
- */
-static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- unsigned int nr = vcpu->arch.exception.nr;
- bool has_payload = vcpu->arch.exception.has_payload;
- unsigned long payload = vcpu->arch.exception.payload;
-
- if (nr == PF_VECTOR) {
- if (vcpu->arch.exception.nested_apf) {
- *exit_qual = vcpu->arch.apf.nested_apf_token;
- return 1;
- }
- if (nested_vmx_is_page_fault_vmexit(vmcs12,
- vcpu->arch.exception.error_code)) {
- *exit_qual = has_payload ? payload : vcpu->arch.cr2;
- return 1;
- }
- } else if (vmcs12->exception_bitmap & (1u << nr)) {
- if (nr == DB_VECTOR) {
- if (!has_payload) {
- payload = vcpu->arch.dr6;
- payload &= ~(DR6_FIXED_1 | DR6_BT);
- payload ^= DR6_RTM;
- }
- *exit_qual = payload;
- } else
- *exit_qual = 0;
- return 1;
- }
-
- return 0;
-}
-
static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
{
/*
@@ -1736,571 +1449,6 @@ bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
}
-/*
- * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
- * returned for the various VMX controls MSRs when nested VMX is enabled.
- * The same values should also be used to verify that vmcs12 control fields are
- * valid during nested entry from L1 to L2.
- * Each of these control msrs has a low and high 32-bit half: A low bit is on
- * if the corresponding bit in the (32-bit) control field *must* be on, and a
- * bit in the high half is on if the corresponding bit in the control field
- * may be on. See also vmx_control_verify().
- */
-static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs,
- u32 ept_caps, bool apicv)
-{
- /*
- * Note that as a general rule, the high half of the MSRs (bits in
- * the control fields which may be 1) should be initialized by the
- * intersection of the underlying hardware's MSR (i.e., features which
- * can be supported) and the list of features we want to expose -
- * because they are known to be properly supported in our code.
- * Also, usually, the low half of the MSRs (bits which must be 1) can
- * be set to 0, meaning that L1 may turn off any of these bits. The
- * reason is that if one of these bits is necessary, it will appear
- * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
- * fields of vmcs01 and vmcs02, will turn these bits off - and
- * nested_vmx_exit_reflected() will not pass related exits to L1.
- * These rules have exceptions below.
- */
-
- /* pin-based controls */
- rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
- msrs->pinbased_ctls_low,
- msrs->pinbased_ctls_high);
- msrs->pinbased_ctls_low |=
- PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
- msrs->pinbased_ctls_high &=
- PIN_BASED_EXT_INTR_MASK |
- PIN_BASED_NMI_EXITING |
- PIN_BASED_VIRTUAL_NMIS |
- (apicv ? PIN_BASED_POSTED_INTR : 0);
- msrs->pinbased_ctls_high |=
- PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
- PIN_BASED_VMX_PREEMPTION_TIMER;
-
- /* exit controls */
- rdmsr(MSR_IA32_VMX_EXIT_CTLS,
- msrs->exit_ctls_low,
- msrs->exit_ctls_high);
- msrs->exit_ctls_low =
- VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
-
- msrs->exit_ctls_high &=
-#ifdef CONFIG_X86_64
- VM_EXIT_HOST_ADDR_SPACE_SIZE |
-#endif
- VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
- msrs->exit_ctls_high |=
- VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
- VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
- VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
-
- /* We support free control of debug control saving. */
- msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
-
- /* entry controls */
- rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
- msrs->entry_ctls_low,
- msrs->entry_ctls_high);
- msrs->entry_ctls_low =
- VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
- msrs->entry_ctls_high &=
-#ifdef CONFIG_X86_64
- VM_ENTRY_IA32E_MODE |
-#endif
- VM_ENTRY_LOAD_IA32_PAT;
- msrs->entry_ctls_high |=
- (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
-
- /* We support free control of debug control loading. */
- msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
-
- /* cpu-based controls */
- rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
- msrs->procbased_ctls_low,
- msrs->procbased_ctls_high);
- msrs->procbased_ctls_low =
- CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
- msrs->procbased_ctls_high &=
- CPU_BASED_VIRTUAL_INTR_PENDING |
- CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
- CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
- CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
- CPU_BASED_CR3_STORE_EXITING |
-#ifdef CONFIG_X86_64
- CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
-#endif
- CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
- CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
- CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
- CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
- CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
- /*
- * We can allow some features even when not supported by the
- * hardware. For example, L1 can specify an MSR bitmap - and we
- * can use it to avoid exits to L1 - even when L0 runs L2
- * without MSR bitmaps.
- */
- msrs->procbased_ctls_high |=
- CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
- CPU_BASED_USE_MSR_BITMAPS;
-
- /* We support free control of CR3 access interception. */
- msrs->procbased_ctls_low &=
- ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
-
- /*
- * secondary cpu-based controls. Do not include those that
- * depend on CPUID bits, they are added later by vmx_cpuid_update.
- */
- rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
- msrs->secondary_ctls_low,
- msrs->secondary_ctls_high);
- msrs->secondary_ctls_low = 0;
- msrs->secondary_ctls_high &=
- SECONDARY_EXEC_DESC |
- SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
- SECONDARY_EXEC_APIC_REGISTER_VIRT |
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
- SECONDARY_EXEC_WBINVD_EXITING;
-
- /*
- * We can emulate "VMCS shadowing," even if the hardware
- * doesn't support it.
- */
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_SHADOW_VMCS;
-
- if (enable_ept) {
- /* nested EPT: emulate EPT also to L1 */
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_EPT;
- msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
- VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
- if (cpu_has_vmx_ept_execute_only())
- msrs->ept_caps |=
- VMX_EPT_EXECUTE_ONLY_BIT;
- msrs->ept_caps &= ept_caps;
- msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
- VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
- VMX_EPT_1GB_PAGE_BIT;
- if (enable_ept_ad_bits) {
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_PML;
- msrs->ept_caps |= VMX_EPT_AD_BIT;
- }
- }
-
- if (cpu_has_vmx_vmfunc()) {
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_VMFUNC;
- /*
- * Advertise EPTP switching unconditionally
- * since we emulate it
- */
- if (enable_ept)
- msrs->vmfunc_controls =
- VMX_VMFUNC_EPTP_SWITCHING;
- }
-
- /*
- * Old versions of KVM use the single-context version without
- * checking for support, so declare that it is supported even
- * though it is treated as global context. The alternative is
- * not failing the single-context invvpid, and it is worse.
- */
- if (enable_vpid) {
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_VPID;
- msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
- VMX_VPID_EXTENT_SUPPORTED_MASK;
- }
-
- if (enable_unrestricted_guest)
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_UNRESTRICTED_GUEST;
-
- if (flexpriority_enabled)
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
-
- /* miscellaneous data */
- rdmsr(MSR_IA32_VMX_MISC,
- msrs->misc_low,
- msrs->misc_high);
- msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
- msrs->misc_low |=
- MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
- VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
- VMX_MISC_ACTIVITY_HLT;
- msrs->misc_high = 0;
-
- /*
- * This MSR reports some information about VMX support. We
- * should return information about the VMX we emulate for the
- * guest, and the VMCS structure we give it - not about the
- * VMX support of the underlying hardware.
- */
- msrs->basic =
- VMCS12_REVISION |
- VMX_BASIC_TRUE_CTLS |
- ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
- (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
-
- if (cpu_has_vmx_basic_inout())
- msrs->basic |= VMX_BASIC_INOUT;
-
- /*
- * These MSRs specify bits which the guest must keep fixed on
- * while L1 is in VMXON mode (in L1's root mode, or running an L2).
- * We picked the standard core2 setting.
- */
-#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
-#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
- msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
- msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
-
- /* These MSRs specify bits which the guest must keep fixed off. */
- rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
- rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
-
- /* highest index: VMX_PREEMPTION_TIMER_VALUE */
- msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
-}
-
-/*
- * if fixed0[i] == 1: val[i] must be 1
- * if fixed1[i] == 0: val[i] must be 0
- */
-static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
-{
- return ((val & fixed1) | fixed0) == val;
-}
-
-static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
-{
- return fixed_bits_valid(control, low, high);
-}
-
-static inline u64 vmx_control_msr(u32 low, u32 high)
-{
- return low | ((u64)high << 32);
-}
-
-static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
-{
- superset &= mask;
- subset &= mask;
-
- return (superset | subset) == superset;
-}
-
-static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
-{
- const u64 feature_and_reserved =
- /* feature (except bit 48; see below) */
- BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
- /* reserved */
- BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
- u64 vmx_basic = vmx->nested.msrs.basic;
-
- if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
- return -EINVAL;
-
- /*
- * KVM does not emulate a version of VMX that constrains physical
- * addresses of VMX structures (e.g. VMCS) to 32-bits.
- */
- if (data & BIT_ULL(48))
- return -EINVAL;
-
- if (vmx_basic_vmcs_revision_id(vmx_basic) !=
- vmx_basic_vmcs_revision_id(data))
- return -EINVAL;
-
- if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
- return -EINVAL;
-
- vmx->nested.msrs.basic = data;
- return 0;
-}
-
-static int
-vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
-{
- u64 supported;
- u32 *lowp, *highp;
-
- switch (msr_index) {
- case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
- lowp = &vmx->nested.msrs.pinbased_ctls_low;
- highp = &vmx->nested.msrs.pinbased_ctls_high;
- break;
- case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
- lowp = &vmx->nested.msrs.procbased_ctls_low;
- highp = &vmx->nested.msrs.procbased_ctls_high;
- break;
- case MSR_IA32_VMX_TRUE_EXIT_CTLS:
- lowp = &vmx->nested.msrs.exit_ctls_low;
- highp = &vmx->nested.msrs.exit_ctls_high;
- break;
- case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
- lowp = &vmx->nested.msrs.entry_ctls_low;
- highp = &vmx->nested.msrs.entry_ctls_high;
- break;
- case MSR_IA32_VMX_PROCBASED_CTLS2:
- lowp = &vmx->nested.msrs.secondary_ctls_low;
- highp = &vmx->nested.msrs.secondary_ctls_high;
- break;
- default:
- BUG();
- }
-
- supported = vmx_control_msr(*lowp, *highp);
-
- /* Check must-be-1 bits are still 1. */
- if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
- return -EINVAL;
-
- /* Check must-be-0 bits are still 0. */
- if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
- return -EINVAL;
-
- *lowp = data;
- *highp = data >> 32;
- return 0;
-}
-
-static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
-{
- const u64 feature_and_reserved_bits =
- /* feature */
- BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
- BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
- /* reserved */
- GENMASK_ULL(13, 9) | BIT_ULL(31);
- u64 vmx_misc;
-
- vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
- vmx->nested.msrs.misc_high);
-
- if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
- return -EINVAL;
-
- if ((vmx->nested.msrs.pinbased_ctls_high &
- PIN_BASED_VMX_PREEMPTION_TIMER) &&
- vmx_misc_preemption_timer_rate(data) !=
- vmx_misc_preemption_timer_rate(vmx_misc))
- return -EINVAL;
-
- if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
- return -EINVAL;
-
- if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
- return -EINVAL;
-
- if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
- return -EINVAL;
-
- vmx->nested.msrs.misc_low = data;
- vmx->nested.msrs.misc_high = data >> 32;
-
- /*
- * If L1 has read-only VM-exit information fields, use the
- * less permissive vmx_vmwrite_bitmap to specify write
- * permissions for the shadow VMCS.
- */
- if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
- vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
-
- return 0;
-}
-
-static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
-{
- u64 vmx_ept_vpid_cap;
-
- vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
- vmx->nested.msrs.vpid_caps);
-
- /* Every bit is either reserved or a feature bit. */
- if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
- return -EINVAL;
-
- vmx->nested.msrs.ept_caps = data;
- vmx->nested.msrs.vpid_caps = data >> 32;
- return 0;
-}
-
-static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
-{
- u64 *msr;
-
- switch (msr_index) {
- case MSR_IA32_VMX_CR0_FIXED0:
- msr = &vmx->nested.msrs.cr0_fixed0;
- break;
- case MSR_IA32_VMX_CR4_FIXED0:
- msr = &vmx->nested.msrs.cr4_fixed0;
- break;
- default:
- BUG();
- }
-
- /*
- * 1 bits (which indicates bits which "must-be-1" during VMX operation)
- * must be 1 in the restored value.
- */
- if (!is_bitwise_subset(data, *msr, -1ULL))
- return -EINVAL;
-
- *msr = data;
- return 0;
-}
-
-/*
- * Called when userspace is restoring VMX MSRs.
- *
- * Returns 0 on success, non-0 otherwise.
- */
-static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * Don't allow changes to the VMX capability MSRs while the vCPU
- * is in VMX operation.
- */
- if (vmx->nested.vmxon)
- return -EBUSY;
-
- switch (msr_index) {
- case MSR_IA32_VMX_BASIC:
- return vmx_restore_vmx_basic(vmx, data);
- case MSR_IA32_VMX_PINBASED_CTLS:
- case MSR_IA32_VMX_PROCBASED_CTLS:
- case MSR_IA32_VMX_EXIT_CTLS:
- case MSR_IA32_VMX_ENTRY_CTLS:
- /*
- * The "non-true" VMX capability MSRs are generated from the
- * "true" MSRs, so we do not support restoring them directly.
- *
- * If userspace wants to emulate VMX_BASIC[55]=0, userspace
- * should restore the "true" MSRs with the must-be-1 bits
- * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
- * DEFAULT SETTINGS".
- */
- return -EINVAL;
- case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
- case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
- case MSR_IA32_VMX_TRUE_EXIT_CTLS:
- case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
- case MSR_IA32_VMX_PROCBASED_CTLS2:
- return vmx_restore_control_msr(vmx, msr_index, data);
- case MSR_IA32_VMX_MISC:
- return vmx_restore_vmx_misc(vmx, data);
- case MSR_IA32_VMX_CR0_FIXED0:
- case MSR_IA32_VMX_CR4_FIXED0:
- return vmx_restore_fixed0_msr(vmx, msr_index, data);
- case MSR_IA32_VMX_CR0_FIXED1:
- case MSR_IA32_VMX_CR4_FIXED1:
- /*
- * These MSRs are generated based on the vCPU's CPUID, so we
- * do not support restoring them directly.
- */
- return -EINVAL;
- case MSR_IA32_VMX_EPT_VPID_CAP:
- return vmx_restore_vmx_ept_vpid_cap(vmx, data);
- case MSR_IA32_VMX_VMCS_ENUM:
- vmx->nested.msrs.vmcs_enum = data;
- return 0;
- default:
- /*
- * The rest of the VMX capability MSRs do not support restore.
- */
- return -EINVAL;
- }
-}
-
-/* Returns 0 on success, non-0 otherwise. */
-static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
-{
- switch (msr_index) {
- case MSR_IA32_VMX_BASIC:
- *pdata = msrs->basic;
- break;
- case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
- case MSR_IA32_VMX_PINBASED_CTLS:
- *pdata = vmx_control_msr(
- msrs->pinbased_ctls_low,
- msrs->pinbased_ctls_high);
- if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
- *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
- break;
- case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
- case MSR_IA32_VMX_PROCBASED_CTLS:
- *pdata = vmx_control_msr(
- msrs->procbased_ctls_low,
- msrs->procbased_ctls_high);
- if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
- *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
- break;
- case MSR_IA32_VMX_TRUE_EXIT_CTLS:
- case MSR_IA32_VMX_EXIT_CTLS:
- *pdata = vmx_control_msr(
- msrs->exit_ctls_low,
- msrs->exit_ctls_high);
- if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
- *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
- break;
- case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
- case MSR_IA32_VMX_ENTRY_CTLS:
- *pdata = vmx_control_msr(
- msrs->entry_ctls_low,
- msrs->entry_ctls_high);
- if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
- *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
- break;
- case MSR_IA32_VMX_MISC:
- *pdata = vmx_control_msr(
- msrs->misc_low,
- msrs->misc_high);
- break;
- case MSR_IA32_VMX_CR0_FIXED0:
- *pdata = msrs->cr0_fixed0;
- break;
- case MSR_IA32_VMX_CR0_FIXED1:
- *pdata = msrs->cr0_fixed1;
- break;
- case MSR_IA32_VMX_CR4_FIXED0:
- *pdata = msrs->cr4_fixed0;
- break;
- case MSR_IA32_VMX_CR4_FIXED1:
- *pdata = msrs->cr4_fixed1;
- break;
- case MSR_IA32_VMX_VMCS_ENUM:
- *pdata = msrs->vmcs_enum;
- break;
- case MSR_IA32_VMX_PROCBASED_CTLS2:
- *pdata = vmx_control_msr(
- msrs->secondary_ctls_low,
- msrs->secondary_ctls_high);
- break;
- case MSR_IA32_VMX_EPT_VPID_CAP:
- *pdata = msrs->ept_caps |
- ((u64)msrs->vpid_caps << 32);
- break;
- case MSR_IA32_VMX_VMFUNC:
- *pdata = msrs->vmfunc_controls;
- break;
- default:
- return 1;
- }
-
- return 0;
-}
-
static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
uint64_t val)
{
@@ -2413,8 +1561,6 @@ static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
return 0;
}
-static void vmx_leave_nested(struct kvm_vcpu *vcpu);
-
/*
* Writes msr value into into the appropriate "register".
* Returns 0 on success, non-0 otherwise.
@@ -3041,75 +2187,6 @@ static void free_kvm_area(void)
}
}
-static void init_vmcs_shadow_fields(void)
-{
- int i, j;
-
- memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
- memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
-
- for (i = j = 0; i < max_shadow_read_only_fields; i++) {
- u16 field = shadow_read_only_fields[i];
- if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
- (i + 1 == max_shadow_read_only_fields ||
- shadow_read_only_fields[i + 1] != field + 1))
- pr_err("Missing field from shadow_read_only_field %x\n",
- field + 1);
-
- clear_bit(field, vmx_vmread_bitmap);
-#ifdef CONFIG_X86_64
- if (field & 1)
- continue;
-#endif
- if (j < i)
- shadow_read_only_fields[j] = field;
- j++;
- }
- max_shadow_read_only_fields = j;
-
- for (i = j = 0; i < max_shadow_read_write_fields; i++) {
- u16 field = shadow_read_write_fields[i];
- if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
- (i + 1 == max_shadow_read_write_fields ||
- shadow_read_write_fields[i + 1] != field + 1))
- pr_err("Missing field from shadow_read_write_field %x\n",
- field + 1);
-
- /*
- * PML and the preemption timer can be emulated, but the
- * processor cannot vmwrite to fields that don't exist
- * on bare metal.
- */
- switch (field) {
- case GUEST_PML_INDEX:
- if (!cpu_has_vmx_pml())
- continue;
- break;
- case VMX_PREEMPTION_TIMER_VALUE:
- if (!cpu_has_vmx_preemption_timer())
- continue;
- break;
- case GUEST_INTR_STATUS:
- if (!cpu_has_vmx_apicv())
- continue;
- break;
- default:
- break;
- }
-
- clear_bit(field, vmx_vmwrite_bitmap);
- clear_bit(field, vmx_vmread_bitmap);
-#ifdef CONFIG_X86_64
- if (field & 1)
- continue;
-#endif
- if (j < i)
- shadow_read_write_fields[j] = field;
- j++;
- }
- max_shadow_read_write_fields = j;
-}
-
static __init int alloc_kvm_area(void)
{
int cpu;
@@ -3399,40 +2476,6 @@ void ept_save_pdptrs(struct kvm_vcpu *vcpu)
(unsigned long *)&vcpu->arch.regs_dirty);
}
-static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
- u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
- u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
- SECONDARY_EXEC_UNRESTRICTED_GUEST &&
- nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
- fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
-
- return fixed_bits_valid(val, fixed0, fixed1);
-}
-
-static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
- u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
- u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
-
- return fixed_bits_valid(val, fixed0, fixed1);
-}
-
-static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
- u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
- u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
-
- return fixed_bits_valid(val, fixed0, fixed1);
-}
-
-/* No difference in the restrictions on guest and host CR4 in VMX operation. */
-#define nested_guest_cr4_valid nested_cr4_valid
-#define nested_host_cr4_valid nested_cr4_valid
-
static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
unsigned long cr0,
struct kvm_vcpu *vcpu)
@@ -3972,11 +3015,6 @@ static bool guest_state_valid(struct kvm_vcpu *vcpu)
return true;
}
-static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
-{
- return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
-}
-
static int init_rmode_tss(struct kvm *kvm)
{
gfn_t fn;
@@ -4208,47 +3246,6 @@ static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
}
-/*
- * If a msr is allowed by L0, we should check whether it is allowed by L1.
- * The corresponding bit will be cleared unless both of L0 and L1 allow it.
- */
-static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
- unsigned long *msr_bitmap_nested,
- u32 msr, int type)
-{
- int f = sizeof(unsigned long);
-
- /*
- * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
- * have the write-low and read-high bitmap offsets the wrong way round.
- * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
- */
- if (msr <= 0x1fff) {
- if (type & MSR_TYPE_R &&
- !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
- /* read-low */
- __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
-
- if (type & MSR_TYPE_W &&
- !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
- /* write-low */
- __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
-
- } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
- msr &= 0x1fff;
- if (type & MSR_TYPE_R &&
- !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
- /* read-high */
- __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
-
- if (type & MSR_TYPE_W &&
- !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
- /* write-high */
- __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
-
- }
-}
-
static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
{
u8 mode = 0;
@@ -4310,60 +3307,6 @@ static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
return enable_apicv;
}
-static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- gfn_t gfn;
-
- /*
- * Don't need to mark the APIC access page dirty; it is never
- * written to by the CPU during APIC virtualization.
- */
-
- if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
- gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
- kvm_vcpu_mark_page_dirty(vcpu, gfn);
- }
-
- if (nested_cpu_has_posted_intr(vmcs12)) {
- gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
- kvm_vcpu_mark_page_dirty(vcpu, gfn);
- }
-}
-
-
-static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int max_irr;
- void *vapic_page;
- u16 status;
-
- if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
- return;
-
- vmx->nested.pi_pending = false;
- if (!pi_test_and_clear_on(vmx->nested.pi_desc))
- return;
-
- max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
- if (max_irr != 256) {
- vapic_page = kmap(vmx->nested.virtual_apic_page);
- __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
- vapic_page, &max_irr);
- kunmap(vmx->nested.virtual_apic_page);
-
- status = vmcs_read16(GUEST_INTR_STATUS);
- if ((u8)max_irr > ((u8)status & 0xff)) {
- status &= ~0xff;
- status |= (u8)max_irr;
- vmcs_write16(GUEST_INTR_STATUS, status);
- }
- }
-
- nested_mark_vmcs12_pages_dirty(vcpu);
-}
-
static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
@@ -4747,20 +3690,6 @@ static void ept_set_mmio_spte_mask(void)
#define VMX_XSS_EXIT_BITMAP 0
-static void nested_vmx_vcpu_setup(void)
-{
- if (enable_shadow_vmcs) {
- /*
- * At vCPU creation, "VMWRITE to any supported field
- * in the VMCS" is supported, so use the more
- * permissive vmx_vmread_bitmap to specify both read
- * and write permissions for the shadow VMCS.
- */
- vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
- vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
- }
-}
-
/*
* Sets up the vmcs for emulated real mode.
*/
@@ -4963,31 +3892,6 @@ static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
vmx_clear_hlt(vcpu);
}
-/*
- * In nested virtualization, check if L1 asked to exit on external interrupts.
- * For most existing hypervisors, this will always return true.
- */
-static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
-{
- return get_vmcs12(vcpu)->pin_based_vm_exec_control &
- PIN_BASED_EXT_INTR_MASK;
-}
-
-/*
- * In nested virtualization, check if L1 has set
- * VM_EXIT_ACK_INTR_ON_EXIT
- */
-static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
-{
- return get_vmcs12(vcpu)->vm_exit_controls &
- VM_EXIT_ACK_INTR_ON_EXIT;
-}
-
-static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
-{
- return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
-}
-
static void enable_irq_window(struct kvm_vcpu *vcpu)
{
vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
@@ -6095,1453 +4999,6 @@ static int handle_monitor(struct kvm_vcpu *vcpu)
return handle_nop(vcpu);
}
-/*
- * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
- * set the success or error code of an emulated VMX instruction (as specified
- * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
- * instruction.
- */
-static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
-{
- vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
- & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
- X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
-{
- vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
- & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
- X86_EFLAGS_SF | X86_EFLAGS_OF))
- | X86_EFLAGS_CF);
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
- u32 vm_instruction_error)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * failValid writes the error number to the current VMCS, which
- * can't be done if there isn't a current VMCS.
- */
- if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
- return nested_vmx_failInvalid(vcpu);
-
- vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
- & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
- X86_EFLAGS_SF | X86_EFLAGS_OF))
- | X86_EFLAGS_ZF);
- get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
- /*
- * We don't need to force a shadow sync because
- * VM_INSTRUCTION_ERROR is not shadowed
- */
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
-{
- /* TODO: not to reset guest simply here. */
- kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
- pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
-}
-
-static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
-{
- struct vcpu_vmx *vmx =
- container_of(timer, struct vcpu_vmx, nested.preemption_timer);
-
- vmx->nested.preemption_timer_expired = true;
- kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
- kvm_vcpu_kick(&vmx->vcpu);
-
- return HRTIMER_NORESTART;
-}
-
-/*
- * Decode the memory-address operand of a vmx instruction, as recorded on an
- * exit caused by such an instruction (run by a guest hypervisor).
- * On success, returns 0. When the operand is invalid, returns 1 and throws
- * #UD or #GP.
- */
-static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
- unsigned long exit_qualification,
- u32 vmx_instruction_info, bool wr, gva_t *ret)
-{
- gva_t off;
- bool exn;
- struct kvm_segment s;
-
- /*
- * According to Vol. 3B, "Information for VM Exits Due to Instruction
- * Execution", on an exit, vmx_instruction_info holds most of the
- * addressing components of the operand. Only the displacement part
- * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
- * For how an actual address is calculated from all these components,
- * refer to Vol. 1, "Operand Addressing".
- */
- int scaling = vmx_instruction_info & 3;
- int addr_size = (vmx_instruction_info >> 7) & 7;
- bool is_reg = vmx_instruction_info & (1u << 10);
- int seg_reg = (vmx_instruction_info >> 15) & 7;
- int index_reg = (vmx_instruction_info >> 18) & 0xf;
- bool index_is_valid = !(vmx_instruction_info & (1u << 22));
- int base_reg = (vmx_instruction_info >> 23) & 0xf;
- bool base_is_valid = !(vmx_instruction_info & (1u << 27));
-
- if (is_reg) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- /* Addr = segment_base + offset */
- /* offset = base + [index * scale] + displacement */
- off = exit_qualification; /* holds the displacement */
- if (base_is_valid)
- off += kvm_register_read(vcpu, base_reg);
- if (index_is_valid)
- off += kvm_register_read(vcpu, index_reg)<<scaling;
- vmx_get_segment(vcpu, &s, seg_reg);
- *ret = s.base + off;
-
- if (addr_size == 1) /* 32 bit */
- *ret &= 0xffffffff;
-
- /* Checks for #GP/#SS exceptions. */
- exn = false;
- if (is_long_mode(vcpu)) {
- /* Long mode: #GP(0)/#SS(0) if the memory address is in a
- * non-canonical form. This is the only check on the memory
- * destination for long mode!
- */
- exn = is_noncanonical_address(*ret, vcpu);
- } else if (is_protmode(vcpu)) {
- /* Protected mode: apply checks for segment validity in the
- * following order:
- * - segment type check (#GP(0) may be thrown)
- * - usability check (#GP(0)/#SS(0))
- * - limit check (#GP(0)/#SS(0))
- */
- if (wr)
- /* #GP(0) if the destination operand is located in a
- * read-only data segment or any code segment.
- */
- exn = ((s.type & 0xa) == 0 || (s.type & 8));
- else
- /* #GP(0) if the source operand is located in an
- * execute-only code segment
- */
- exn = ((s.type & 0xa) == 8);
- if (exn) {
- kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
- return 1;
- }
- /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
- */
- exn = (s.unusable != 0);
- /* Protected mode: #GP(0)/#SS(0) if the memory
- * operand is outside the segment limit.
- */
- exn = exn || (off + sizeof(u64) > s.limit);
- }
- if (exn) {
- kvm_queue_exception_e(vcpu,
- seg_reg == VCPU_SREG_SS ?
- SS_VECTOR : GP_VECTOR,
- 0);
- return 1;
- }
-
- return 0;
-}
-
-static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
-{
- gva_t gva;
- struct x86_exception e;
-
- if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
- vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
- return 1;
-
- if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
-
- return 0;
-}
-
-/*
- * Allocate a shadow VMCS and associate it with the currently loaded
- * VMCS, unless such a shadow VMCS already exists. The newly allocated
- * VMCS is also VMCLEARed, so that it is ready for use.
- */
-static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
-
- /*
- * We should allocate a shadow vmcs for vmcs01 only when L1
- * executes VMXON and free it when L1 executes VMXOFF.
- * As it is invalid to execute VMXON twice, we shouldn't reach
- * here when vmcs01 already have an allocated shadow vmcs.
- */
- WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
-
- if (!loaded_vmcs->shadow_vmcs) {
- loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
- if (loaded_vmcs->shadow_vmcs)
- vmcs_clear(loaded_vmcs->shadow_vmcs);
- }
- return loaded_vmcs->shadow_vmcs;
-}
-
-static int enter_vmx_operation(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int r;
-
- r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
- if (r < 0)
- goto out_vmcs02;
-
- vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
- if (!vmx->nested.cached_vmcs12)
- goto out_cached_vmcs12;
-
- vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
- if (!vmx->nested.cached_shadow_vmcs12)
- goto out_cached_shadow_vmcs12;
-
- if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
- goto out_shadow_vmcs;
-
- hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
- HRTIMER_MODE_REL_PINNED);
- vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
-
- vmx->nested.vpid02 = allocate_vpid();
-
- vmx->nested.vmcs02_initialized = false;
- vmx->nested.vmxon = true;
- return 0;
-
-out_shadow_vmcs:
- kfree(vmx->nested.cached_shadow_vmcs12);
-
-out_cached_shadow_vmcs12:
- kfree(vmx->nested.cached_vmcs12);
-
-out_cached_vmcs12:
- free_loaded_vmcs(&vmx->nested.vmcs02);
-
-out_vmcs02:
- return -ENOMEM;
-}
-
-/*
- * Emulate the VMXON instruction.
- * Currently, we just remember that VMX is active, and do not save or even
- * inspect the argument to VMXON (the so-called "VMXON pointer") because we
- * do not currently need to store anything in that guest-allocated memory
- * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
- * argument is different from the VMXON pointer (which the spec says they do).
- */
-static int handle_vmon(struct kvm_vcpu *vcpu)
-{
- int ret;
- gpa_t vmptr;
- struct page *page;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
- | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
-
- /*
- * The Intel VMX Instruction Reference lists a bunch of bits that are
- * prerequisite to running VMXON, most notably cr4.VMXE must be set to
- * 1 (see vmx_set_cr4() for when we allow the guest to set this).
- * Otherwise, we should fail with #UD. But most faulting conditions
- * have already been checked by hardware, prior to the VM-exit for
- * VMXON. We do test guest cr4.VMXE because processor CR4 always has
- * that bit set to 1 in non-root mode.
- */
- if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- /* CPL=0 must be checked manually. */
- if (vmx_get_cpl(vcpu)) {
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
-
- if (vmx->nested.vmxon)
- return nested_vmx_failValid(vcpu,
- VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
-
- if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
- != VMXON_NEEDED_FEATURES) {
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
-
- if (nested_vmx_get_vmptr(vcpu, &vmptr))
- return 1;
-
- /*
- * SDM 3: 24.11.5
- * The first 4 bytes of VMXON region contain the supported
- * VMCS revision identifier
- *
- * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
- * which replaces physical address width with 32
- */
- if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
- return nested_vmx_failInvalid(vcpu);
-
- page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
- if (is_error_page(page))
- return nested_vmx_failInvalid(vcpu);
-
- if (*(u32 *)kmap(page) != VMCS12_REVISION) {
- kunmap(page);
- kvm_release_page_clean(page);
- return nested_vmx_failInvalid(vcpu);
- }
- kunmap(page);
- kvm_release_page_clean(page);
-
- vmx->nested.vmxon_ptr = vmptr;
- ret = enter_vmx_operation(vcpu);
- if (ret)
- return ret;
-
- return nested_vmx_succeed(vcpu);
-}
-
-/*
- * Intel's VMX Instruction Reference specifies a common set of prerequisites
- * for running VMX instructions (except VMXON, whose prerequisites are
- * slightly different). It also specifies what exception to inject otherwise.
- * Note that many of these exceptions have priority over VM exits, so they
- * don't have to be checked again here.
- */
-static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
-{
- if (!to_vmx(vcpu)->nested.vmxon) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 0;
- }
-
- if (vmx_get_cpl(vcpu)) {
- kvm_inject_gp(vcpu, 0);
- return 0;
- }
-
- return 1;
-}
-
-static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
-{
- vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
- vmcs_write64(VMCS_LINK_POINTER, -1ull);
-}
-
-static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (!vmx->nested.hv_evmcs)
- return;
-
- kunmap(vmx->nested.hv_evmcs_page);
- kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
- vmx->nested.hv_evmcs_vmptr = -1ull;
- vmx->nested.hv_evmcs_page = NULL;
- vmx->nested.hv_evmcs = NULL;
-}
-
-static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (vmx->nested.current_vmptr == -1ull)
- return;
-
- if (enable_shadow_vmcs) {
- /* copy to memory all shadowed fields in case
- they were modified */
- copy_shadow_to_vmcs12(vmx);
- vmx->nested.need_vmcs12_sync = false;
- vmx_disable_shadow_vmcs(vmx);
- }
- vmx->nested.posted_intr_nv = -1;
-
- /* Flush VMCS12 to guest memory */
- kvm_vcpu_write_guest_page(vcpu,
- vmx->nested.current_vmptr >> PAGE_SHIFT,
- vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
-
- kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
-
- vmx->nested.current_vmptr = -1ull;
-}
-
-/*
- * Free whatever needs to be freed from vmx->nested when L1 goes down, or
- * just stops using VMX.
- */
-static void free_nested(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
- return;
-
- vmx->nested.vmxon = false;
- vmx->nested.smm.vmxon = false;
- free_vpid(vmx->nested.vpid02);
- vmx->nested.posted_intr_nv = -1;
- vmx->nested.current_vmptr = -1ull;
- if (enable_shadow_vmcs) {
- vmx_disable_shadow_vmcs(vmx);
- vmcs_clear(vmx->vmcs01.shadow_vmcs);
- free_vmcs(vmx->vmcs01.shadow_vmcs);
- vmx->vmcs01.shadow_vmcs = NULL;
- }
- kfree(vmx->nested.cached_vmcs12);
- kfree(vmx->nested.cached_shadow_vmcs12);
- /* Unpin physical memory we referred to in the vmcs02 */
- if (vmx->nested.apic_access_page) {
- kvm_release_page_dirty(vmx->nested.apic_access_page);
- vmx->nested.apic_access_page = NULL;
- }
- if (vmx->nested.virtual_apic_page) {
- kvm_release_page_dirty(vmx->nested.virtual_apic_page);
- vmx->nested.virtual_apic_page = NULL;
- }
- if (vmx->nested.pi_desc_page) {
- kunmap(vmx->nested.pi_desc_page);
- kvm_release_page_dirty(vmx->nested.pi_desc_page);
- vmx->nested.pi_desc_page = NULL;
- vmx->nested.pi_desc = NULL;
- }
-
- kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
-
- nested_release_evmcs(vcpu);
-
- free_loaded_vmcs(&vmx->nested.vmcs02);
-}
-
-/* Emulate the VMXOFF instruction */
-static int handle_vmoff(struct kvm_vcpu *vcpu)
-{
- if (!nested_vmx_check_permission(vcpu))
- return 1;
- free_nested(vcpu);
- return nested_vmx_succeed(vcpu);
-}
-
-/* Emulate the VMCLEAR instruction */
-static int handle_vmclear(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 zero = 0;
- gpa_t vmptr;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (nested_vmx_get_vmptr(vcpu, &vmptr))
- return 1;
-
- if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
- return nested_vmx_failValid(vcpu,
- VMXERR_VMCLEAR_INVALID_ADDRESS);
-
- if (vmptr == vmx->nested.vmxon_ptr)
- return nested_vmx_failValid(vcpu,
- VMXERR_VMCLEAR_VMXON_POINTER);
-
- if (vmx->nested.hv_evmcs_page) {
- if (vmptr == vmx->nested.hv_evmcs_vmptr)
- nested_release_evmcs(vcpu);
- } else {
- if (vmptr == vmx->nested.current_vmptr)
- nested_release_vmcs12(vcpu);
-
- kvm_vcpu_write_guest(vcpu,
- vmptr + offsetof(struct vmcs12,
- launch_state),
- &zero, sizeof(zero));
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
-
-/* Emulate the VMLAUNCH instruction */
-static int handle_vmlaunch(struct kvm_vcpu *vcpu)
-{
- return nested_vmx_run(vcpu, true);
-}
-
-/* Emulate the VMRESUME instruction */
-static int handle_vmresume(struct kvm_vcpu *vcpu)
-{
-
- return nested_vmx_run(vcpu, false);
-}
-
-static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
-{
- struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
- struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
-
- /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
- vmcs12->tpr_threshold = evmcs->tpr_threshold;
- vmcs12->guest_rip = evmcs->guest_rip;
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
- vmcs12->guest_rsp = evmcs->guest_rsp;
- vmcs12->guest_rflags = evmcs->guest_rflags;
- vmcs12->guest_interruptibility_info =
- evmcs->guest_interruptibility_info;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
- vmcs12->cpu_based_vm_exec_control =
- evmcs->cpu_based_vm_exec_control;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
- vmcs12->exception_bitmap = evmcs->exception_bitmap;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
- vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
- vmcs12->vm_entry_intr_info_field =
- evmcs->vm_entry_intr_info_field;
- vmcs12->vm_entry_exception_error_code =
- evmcs->vm_entry_exception_error_code;
- vmcs12->vm_entry_instruction_len =
- evmcs->vm_entry_instruction_len;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
- vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
- vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
- vmcs12->host_cr0 = evmcs->host_cr0;
- vmcs12->host_cr3 = evmcs->host_cr3;
- vmcs12->host_cr4 = evmcs->host_cr4;
- vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
- vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
- vmcs12->host_rip = evmcs->host_rip;
- vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
- vmcs12->host_es_selector = evmcs->host_es_selector;
- vmcs12->host_cs_selector = evmcs->host_cs_selector;
- vmcs12->host_ss_selector = evmcs->host_ss_selector;
- vmcs12->host_ds_selector = evmcs->host_ds_selector;
- vmcs12->host_fs_selector = evmcs->host_fs_selector;
- vmcs12->host_gs_selector = evmcs->host_gs_selector;
- vmcs12->host_tr_selector = evmcs->host_tr_selector;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
- vmcs12->pin_based_vm_exec_control =
- evmcs->pin_based_vm_exec_control;
- vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
- vmcs12->secondary_vm_exec_control =
- evmcs->secondary_vm_exec_control;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
- vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
- vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
- vmcs12->msr_bitmap = evmcs->msr_bitmap;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
- vmcs12->guest_es_base = evmcs->guest_es_base;
- vmcs12->guest_cs_base = evmcs->guest_cs_base;
- vmcs12->guest_ss_base = evmcs->guest_ss_base;
- vmcs12->guest_ds_base = evmcs->guest_ds_base;
- vmcs12->guest_fs_base = evmcs->guest_fs_base;
- vmcs12->guest_gs_base = evmcs->guest_gs_base;
- vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
- vmcs12->guest_tr_base = evmcs->guest_tr_base;
- vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
- vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
- vmcs12->guest_es_limit = evmcs->guest_es_limit;
- vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
- vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
- vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
- vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
- vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
- vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
- vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
- vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
- vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
- vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
- vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
- vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
- vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
- vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
- vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
- vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
- vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
- vmcs12->guest_es_selector = evmcs->guest_es_selector;
- vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
- vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
- vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
- vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
- vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
- vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
- vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
- vmcs12->tsc_offset = evmcs->tsc_offset;
- vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
- vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
- vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
- vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
- vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
- vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
- vmcs12->guest_cr0 = evmcs->guest_cr0;
- vmcs12->guest_cr3 = evmcs->guest_cr3;
- vmcs12->guest_cr4 = evmcs->guest_cr4;
- vmcs12->guest_dr7 = evmcs->guest_dr7;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
- vmcs12->host_fs_base = evmcs->host_fs_base;
- vmcs12->host_gs_base = evmcs->host_gs_base;
- vmcs12->host_tr_base = evmcs->host_tr_base;
- vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
- vmcs12->host_idtr_base = evmcs->host_idtr_base;
- vmcs12->host_rsp = evmcs->host_rsp;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
- vmcs12->ept_pointer = evmcs->ept_pointer;
- vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
- vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
- vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
- vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
- vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
- vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
- vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
- vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
- vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
- vmcs12->guest_pending_dbg_exceptions =
- evmcs->guest_pending_dbg_exceptions;
- vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
- vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
- vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
- vmcs12->guest_activity_state = evmcs->guest_activity_state;
- vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
- }
-
- /*
- * Not used?
- * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
- * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
- * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
- * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
- * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
- * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
- * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
- * vmcs12->page_fault_error_code_mask =
- * evmcs->page_fault_error_code_mask;
- * vmcs12->page_fault_error_code_match =
- * evmcs->page_fault_error_code_match;
- * vmcs12->cr3_target_count = evmcs->cr3_target_count;
- * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
- * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
- * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
- */
-
- /*
- * Read only fields:
- * vmcs12->guest_physical_address = evmcs->guest_physical_address;
- * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
- * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
- * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
- * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
- * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
- * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
- * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
- * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
- * vmcs12->exit_qualification = evmcs->exit_qualification;
- * vmcs12->guest_linear_address = evmcs->guest_linear_address;
- *
- * Not present in struct vmcs12:
- * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
- * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
- * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
- * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
- */
-
- return 0;
-}
-
-static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
-{
- struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
- struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
-
- /*
- * Should not be changed by KVM:
- *
- * evmcs->host_es_selector = vmcs12->host_es_selector;
- * evmcs->host_cs_selector = vmcs12->host_cs_selector;
- * evmcs->host_ss_selector = vmcs12->host_ss_selector;
- * evmcs->host_ds_selector = vmcs12->host_ds_selector;
- * evmcs->host_fs_selector = vmcs12->host_fs_selector;
- * evmcs->host_gs_selector = vmcs12->host_gs_selector;
- * evmcs->host_tr_selector = vmcs12->host_tr_selector;
- * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
- * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
- * evmcs->host_cr0 = vmcs12->host_cr0;
- * evmcs->host_cr3 = vmcs12->host_cr3;
- * evmcs->host_cr4 = vmcs12->host_cr4;
- * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
- * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
- * evmcs->host_rip = vmcs12->host_rip;
- * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
- * evmcs->host_fs_base = vmcs12->host_fs_base;
- * evmcs->host_gs_base = vmcs12->host_gs_base;
- * evmcs->host_tr_base = vmcs12->host_tr_base;
- * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
- * evmcs->host_idtr_base = vmcs12->host_idtr_base;
- * evmcs->host_rsp = vmcs12->host_rsp;
- * sync_vmcs12() doesn't read these:
- * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
- * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
- * evmcs->msr_bitmap = vmcs12->msr_bitmap;
- * evmcs->ept_pointer = vmcs12->ept_pointer;
- * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
- * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
- * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
- * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
- * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
- * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
- * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
- * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
- * evmcs->tpr_threshold = vmcs12->tpr_threshold;
- * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
- * evmcs->exception_bitmap = vmcs12->exception_bitmap;
- * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
- * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
- * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
- * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
- * evmcs->page_fault_error_code_mask =
- * vmcs12->page_fault_error_code_mask;
- * evmcs->page_fault_error_code_match =
- * vmcs12->page_fault_error_code_match;
- * evmcs->cr3_target_count = vmcs12->cr3_target_count;
- * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
- * evmcs->tsc_offset = vmcs12->tsc_offset;
- * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
- * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
- * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
- * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
- * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
- * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
- * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
- * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
- *
- * Not present in struct vmcs12:
- * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
- * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
- * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
- * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
- */
-
- evmcs->guest_es_selector = vmcs12->guest_es_selector;
- evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
- evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
- evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
- evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
- evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
- evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
- evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
-
- evmcs->guest_es_limit = vmcs12->guest_es_limit;
- evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
- evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
- evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
- evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
- evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
- evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
- evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
- evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
- evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
-
- evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
- evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
- evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
- evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
- evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
- evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
- evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
- evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
-
- evmcs->guest_es_base = vmcs12->guest_es_base;
- evmcs->guest_cs_base = vmcs12->guest_cs_base;
- evmcs->guest_ss_base = vmcs12->guest_ss_base;
- evmcs->guest_ds_base = vmcs12->guest_ds_base;
- evmcs->guest_fs_base = vmcs12->guest_fs_base;
- evmcs->guest_gs_base = vmcs12->guest_gs_base;
- evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
- evmcs->guest_tr_base = vmcs12->guest_tr_base;
- evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
- evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
-
- evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
- evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
-
- evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
- evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
- evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
- evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
-
- evmcs->guest_pending_dbg_exceptions =
- vmcs12->guest_pending_dbg_exceptions;
- evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
- evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
-
- evmcs->guest_activity_state = vmcs12->guest_activity_state;
- evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
-
- evmcs->guest_cr0 = vmcs12->guest_cr0;
- evmcs->guest_cr3 = vmcs12->guest_cr3;
- evmcs->guest_cr4 = vmcs12->guest_cr4;
- evmcs->guest_dr7 = vmcs12->guest_dr7;
-
- evmcs->guest_physical_address = vmcs12->guest_physical_address;
-
- evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
- evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
- evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
- evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
- evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
- evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
- evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
- evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
-
- evmcs->exit_qualification = vmcs12->exit_qualification;
-
- evmcs->guest_linear_address = vmcs12->guest_linear_address;
- evmcs->guest_rsp = vmcs12->guest_rsp;
- evmcs->guest_rflags = vmcs12->guest_rflags;
-
- evmcs->guest_interruptibility_info =
- vmcs12->guest_interruptibility_info;
- evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
- evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
- evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
- evmcs->vm_entry_exception_error_code =
- vmcs12->vm_entry_exception_error_code;
- evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
-
- evmcs->guest_rip = vmcs12->guest_rip;
-
- evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
-
- return 0;
-}
-
-/*
- * Copy the writable VMCS shadow fields back to the VMCS12, in case
- * they have been modified by the L1 guest. Note that the "read-only"
- * VM-exit information fields are actually writable if the vCPU is
- * configured to support "VMWRITE to any supported field in the VMCS."
- */
-static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
-{
- const u16 *fields[] = {
- shadow_read_write_fields,
- shadow_read_only_fields
- };
- const int max_fields[] = {
- max_shadow_read_write_fields,
- max_shadow_read_only_fields
- };
- int i, q;
- unsigned long field;
- u64 field_value;
- struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
-
- preempt_disable();
-
- vmcs_load(shadow_vmcs);
-
- for (q = 0; q < ARRAY_SIZE(fields); q++) {
- for (i = 0; i < max_fields[q]; i++) {
- field = fields[q][i];
- field_value = __vmcs_readl(field);
- vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
- }
- /*
- * Skip the VM-exit information fields if they are read-only.
- */
- if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
- break;
- }
-
- vmcs_clear(shadow_vmcs);
- vmcs_load(vmx->loaded_vmcs->vmcs);
-
- preempt_enable();
-}
-
-static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
-{
- const u16 *fields[] = {
- shadow_read_write_fields,
- shadow_read_only_fields
- };
- const int max_fields[] = {
- max_shadow_read_write_fields,
- max_shadow_read_only_fields
- };
- int i, q;
- unsigned long field;
- u64 field_value = 0;
- struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
-
- vmcs_load(shadow_vmcs);
-
- for (q = 0; q < ARRAY_SIZE(fields); q++) {
- for (i = 0; i < max_fields[q]; i++) {
- field = fields[q][i];
- vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
- __vmcs_writel(field, field_value);
- }
- }
-
- vmcs_clear(shadow_vmcs);
- vmcs_load(vmx->loaded_vmcs->vmcs);
-}
-
-static int handle_vmread(struct kvm_vcpu *vcpu)
-{
- unsigned long field;
- u64 field_value;
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- gva_t gva = 0;
- struct vmcs12 *vmcs12;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
- return nested_vmx_failInvalid(vcpu);
-
- if (!is_guest_mode(vcpu))
- vmcs12 = get_vmcs12(vcpu);
- else {
- /*
- * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
- * to shadowed-field sets the ALU flags for VMfailInvalid.
- */
- if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
- return nested_vmx_failInvalid(vcpu);
- vmcs12 = get_shadow_vmcs12(vcpu);
- }
-
- /* Decode instruction info and find the field to read */
- field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
- /* Read the field, zero-extended to a u64 field_value */
- if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
- return nested_vmx_failValid(vcpu,
- VMXERR_UNSUPPORTED_VMCS_COMPONENT);
-
- /*
- * Now copy part of this value to register or memory, as requested.
- * Note that the number of bits actually copied is 32 or 64 depending
- * on the guest's mode (32 or 64 bit), not on the given field's length.
- */
- if (vmx_instruction_info & (1u << 10)) {
- kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
- field_value);
- } else {
- if (get_vmx_mem_address(vcpu, exit_qualification,
- vmx_instruction_info, true, &gva))
- return 1;
- /* _system ok, nested_vmx_check_permission has verified cpl=0 */
- kvm_write_guest_virt_system(vcpu, gva, &field_value,
- (is_long_mode(vcpu) ? 8 : 4), NULL);
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-
-static int handle_vmwrite(struct kvm_vcpu *vcpu)
-{
- unsigned long field;
- gva_t gva;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-
- /* The value to write might be 32 or 64 bits, depending on L1's long
- * mode, and eventually we need to write that into a field of several
- * possible lengths. The code below first zero-extends the value to 64
- * bit (field_value), and then copies only the appropriate number of
- * bits into the vmcs12 field.
- */
- u64 field_value = 0;
- struct x86_exception e;
- struct vmcs12 *vmcs12;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (vmx->nested.current_vmptr == -1ull)
- return nested_vmx_failInvalid(vcpu);
-
- if (vmx_instruction_info & (1u << 10))
- field_value = kvm_register_readl(vcpu,
- (((vmx_instruction_info) >> 3) & 0xf));
- else {
- if (get_vmx_mem_address(vcpu, exit_qualification,
- vmx_instruction_info, false, &gva))
- return 1;
- if (kvm_read_guest_virt(vcpu, gva, &field_value,
- (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
- }
-
-
- field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
- /*
- * If the vCPU supports "VMWRITE to any supported field in the
- * VMCS," then the "read-only" fields are actually read/write.
- */
- if (vmcs_field_readonly(field) &&
- !nested_cpu_has_vmwrite_any_field(vcpu))
- return nested_vmx_failValid(vcpu,
- VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
-
- if (!is_guest_mode(vcpu))
- vmcs12 = get_vmcs12(vcpu);
- else {
- /*
- * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
- * to shadowed-field sets the ALU flags for VMfailInvalid.
- */
- if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
- return nested_vmx_failInvalid(vcpu);
- vmcs12 = get_shadow_vmcs12(vcpu);
- }
-
- if (vmcs12_write_any(vmcs12, field, field_value) < 0)
- return nested_vmx_failValid(vcpu,
- VMXERR_UNSUPPORTED_VMCS_COMPONENT);
-
- /*
- * Do not track vmcs12 dirty-state if in guest-mode
- * as we actually dirty shadow vmcs12 instead of vmcs12.
- */
- if (!is_guest_mode(vcpu)) {
- switch (field) {
-#define SHADOW_FIELD_RW(x) case x:
-#include "vmcs_shadow_fields.h"
- /*
- * The fields that can be updated by L1 without a vmexit are
- * always updated in the vmcs02, the others go down the slow
- * path of prepare_vmcs02.
- */
- break;
- default:
- vmx->nested.dirty_vmcs12 = true;
- break;
- }
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
-{
- vmx->nested.current_vmptr = vmptr;
- if (enable_shadow_vmcs) {
- vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
- SECONDARY_EXEC_SHADOW_VMCS);
- vmcs_write64(VMCS_LINK_POINTER,
- __pa(vmx->vmcs01.shadow_vmcs));
- vmx->nested.need_vmcs12_sync = true;
- }
- vmx->nested.dirty_vmcs12 = true;
-}
-
-/* Emulate the VMPTRLD instruction */
-static int handle_vmptrld(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- gpa_t vmptr;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (nested_vmx_get_vmptr(vcpu, &vmptr))
- return 1;
-
- if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
- return nested_vmx_failValid(vcpu,
- VMXERR_VMPTRLD_INVALID_ADDRESS);
-
- if (vmptr == vmx->nested.vmxon_ptr)
- return nested_vmx_failValid(vcpu,
- VMXERR_VMPTRLD_VMXON_POINTER);
-
- /* Forbid normal VMPTRLD if Enlightened version was used */
- if (vmx->nested.hv_evmcs)
- return 1;
-
- if (vmx->nested.current_vmptr != vmptr) {
- struct vmcs12 *new_vmcs12;
- struct page *page;
- page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
- if (is_error_page(page)) {
- /*
- * Reads from an unbacked page return all 1s,
- * which means that the 32 bits located at the
- * given physical address won't match the required
- * VMCS12_REVISION identifier.
- */
- nested_vmx_failValid(vcpu,
- VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
- return kvm_skip_emulated_instruction(vcpu);
- }
- new_vmcs12 = kmap(page);
- if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
- (new_vmcs12->hdr.shadow_vmcs &&
- !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
- kunmap(page);
- kvm_release_page_clean(page);
- return nested_vmx_failValid(vcpu,
- VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
- }
-
- nested_release_vmcs12(vcpu);
-
- /*
- * Load VMCS12 from guest memory since it is not already
- * cached.
- */
- memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
- kunmap(page);
- kvm_release_page_clean(page);
-
- set_current_vmptr(vmx, vmptr);
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-/*
- * This is an equivalent of the nested hypervisor executing the vmptrld
- * instruction.
- */
-static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
- bool from_launch)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct hv_vp_assist_page assist_page;
-
- if (likely(!vmx->nested.enlightened_vmcs_enabled))
- return 1;
-
- if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
- return 1;
-
- if (unlikely(!assist_page.enlighten_vmentry))
- return 1;
-
- if (unlikely(assist_page.current_nested_vmcs !=
- vmx->nested.hv_evmcs_vmptr)) {
-
- if (!vmx->nested.hv_evmcs)
- vmx->nested.current_vmptr = -1ull;
-
- nested_release_evmcs(vcpu);
-
- vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
- vcpu, assist_page.current_nested_vmcs);
-
- if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
- return 0;
-
- vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
-
- /*
- * Currently, KVM only supports eVMCS version 1
- * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
- * value to first u32 field of eVMCS which should specify eVMCS
- * VersionNumber.
- *
- * Guest should be aware of supported eVMCS versions by host by
- * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
- * expected to set this CPUID leaf according to the value
- * returned in vmcs_version from nested_enable_evmcs().
- *
- * However, it turns out that Microsoft Hyper-V fails to comply
- * to their own invented interface: When Hyper-V use eVMCS, it
- * just sets first u32 field of eVMCS to revision_id specified
- * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
- * which is one of the supported versions specified in
- * CPUID.0x4000000A.EAX[0:15].
- *
- * To overcome Hyper-V bug, we accept here either a supported
- * eVMCS version or VMCS12 revision_id as valid values for first
- * u32 field of eVMCS.
- */
- if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
- (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
- nested_release_evmcs(vcpu);
- return 0;
- }
-
- vmx->nested.dirty_vmcs12 = true;
- /*
- * As we keep L2 state for one guest only 'hv_clean_fields' mask
- * can't be used when we switch between them. Reset it here for
- * simplicity.
- */
- vmx->nested.hv_evmcs->hv_clean_fields &=
- ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
- vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
-
- /*
- * Unlike normal vmcs12, enlightened vmcs12 is not fully
- * reloaded from guest's memory (read only fields, fields not
- * present in struct hv_enlightened_vmcs, ...). Make sure there
- * are no leftovers.
- */
- if (from_launch) {
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- memset(vmcs12, 0, sizeof(*vmcs12));
- vmcs12->hdr.revision_id = VMCS12_REVISION;
- }
-
- }
- return 1;
-}
-
-/* Emulate the VMPTRST instruction */
-static int handle_vmptrst(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
- u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
- struct x86_exception e;
- gva_t gva;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
- return 1;
-
- if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
- return 1;
- /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
- if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
- sizeof(gpa_t), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
- return nested_vmx_succeed(vcpu);
-}
-
-/* Emulate the INVEPT instruction */
-static int handle_invept(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 vmx_instruction_info, types;
- unsigned long type;
- gva_t gva;
- struct x86_exception e;
- struct {
- u64 eptp, gpa;
- } operand;
-
- if (!(vmx->nested.msrs.secondary_ctls_high &
- SECONDARY_EXEC_ENABLE_EPT) ||
- !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
-
- types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
-
- if (type >= 32 || !(types & (1 << type)))
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-
- /* According to the Intel VMX instruction reference, the memory
- * operand is read even if it isn't needed (e.g., for type==global)
- */
- if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
- vmx_instruction_info, false, &gva))
- return 1;
- if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
-
- switch (type) {
- case VMX_EPT_EXTENT_GLOBAL:
- /*
- * TODO: track mappings and invalidate
- * single context requests appropriately
- */
- case VMX_EPT_EXTENT_CONTEXT:
- kvm_mmu_sync_roots(vcpu);
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- break;
- default:
- BUG_ON(1);
- break;
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
-}
-
-static int handle_invvpid(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 vmx_instruction_info;
- unsigned long type, types;
- gva_t gva;
- struct x86_exception e;
- struct {
- u64 vpid;
- u64 gla;
- } operand;
- u16 vpid02;
-
- if (!(vmx->nested.msrs.secondary_ctls_high &
- SECONDARY_EXEC_ENABLE_VPID) ||
- !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
-
- types = (vmx->nested.msrs.vpid_caps &
- VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
-
- if (type >= 32 || !(types & (1 << type)))
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-
- /* according to the intel vmx instruction reference, the memory
- * operand is read even if it isn't needed (e.g., for type==global)
- */
- if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
- vmx_instruction_info, false, &gva))
- return 1;
- if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
- if (operand.vpid >> 16)
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-
- vpid02 = nested_get_vpid02(vcpu);
- switch (type) {
- case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
- if (!operand.vpid ||
- is_noncanonical_address(operand.gla, vcpu))
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
- if (cpu_has_vmx_invvpid_individual_addr()) {
- __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
- vpid02, operand.gla);
- } else
- __vmx_flush_tlb(vcpu, vpid02, false);
- break;
- case VMX_VPID_EXTENT_SINGLE_CONTEXT:
- case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
- if (!operand.vpid)
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
- __vmx_flush_tlb(vcpu, vpid02, false);
- break;
- case VMX_VPID_EXTENT_ALL_CONTEXT:
- __vmx_flush_tlb(vcpu, vpid02, false);
- break;
- default:
- WARN_ON_ONCE(1);
- return kvm_skip_emulated_instruction(vcpu);
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
static int handle_invpcid(struct kvm_vcpu *vcpu)
{
u32 vmx_instruction_info;
@@ -7673,124 +5130,6 @@ static int handle_preemption_timer(struct kvm_vcpu *vcpu)
return 1;
}
-static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int maxphyaddr = cpuid_maxphyaddr(vcpu);
-
- /* Check for memory type validity */
- switch (address & VMX_EPTP_MT_MASK) {
- case VMX_EPTP_MT_UC:
- if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
- return false;
- break;
- case VMX_EPTP_MT_WB:
- if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
- return false;
- break;
- default:
- return false;
- }
-
- /* only 4 levels page-walk length are valid */
- if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
- return false;
-
- /* Reserved bits should not be set */
- if (address >> maxphyaddr || ((address >> 7) & 0x1f))
- return false;
-
- /* AD, if set, should be supported */
- if (address & VMX_EPTP_AD_ENABLE_BIT) {
- if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
- return false;
- }
-
- return true;
-}
-
-static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
- u64 address;
- bool accessed_dirty;
- struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
-
- if (!nested_cpu_has_eptp_switching(vmcs12) ||
- !nested_cpu_has_ept(vmcs12))
- return 1;
-
- if (index >= VMFUNC_EPTP_ENTRIES)
- return 1;
-
-
- if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
- &address, index * 8, 8))
- return 1;
-
- accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
-
- /*
- * If the (L2) guest does a vmfunc to the currently
- * active ept pointer, we don't have to do anything else
- */
- if (vmcs12->ept_pointer != address) {
- if (!valid_ept_address(vcpu, address))
- return 1;
-
- kvm_mmu_unload(vcpu);
- mmu->ept_ad = accessed_dirty;
- mmu->mmu_role.base.ad_disabled = !accessed_dirty;
- vmcs12->ept_pointer = address;
- /*
- * TODO: Check what's the correct approach in case
- * mmu reload fails. Currently, we just let the next
- * reload potentially fail
- */
- kvm_mmu_reload(vcpu);
- }
-
- return 0;
-}
-
-static int handle_vmfunc(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12;
- u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
-
- /*
- * VMFUNC is only supported for nested guests, but we always enable the
- * secondary control for simplicity; for non-nested mode, fake that we
- * didn't by injecting #UD.
- */
- if (!is_guest_mode(vcpu)) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- vmcs12 = get_vmcs12(vcpu);
- if ((vmcs12->vm_function_control & (1 << function)) == 0)
- goto fail;
-
- switch (function) {
- case 0:
- if (nested_vmx_eptp_switching(vcpu, vmcs12))
- goto fail;
- break;
- default:
- goto fail;
- }
- return kvm_skip_emulated_instruction(vcpu);
-
-fail:
- nested_vmx_vmexit(vcpu, vmx->exit_reason,
- vmcs_read32(VM_EXIT_INTR_INFO),
- vmcs_readl(EXIT_QUALIFICATION));
- return 1;
-}
-
/*
* When nested=0, all VMX instruction VM Exits filter here. The handlers
* are overwritten by nested_vmx_setup() when nested=1.
@@ -7875,399 +5214,6 @@ static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
static const int kvm_vmx_max_exit_handlers =
ARRAY_SIZE(kvm_vmx_exit_handlers);
-static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- unsigned long exit_qualification;
- gpa_t bitmap, last_bitmap;
- unsigned int port;
- int size;
- u8 b;
-
- if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
- return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
-
- exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
- port = exit_qualification >> 16;
- size = (exit_qualification & 7) + 1;
-
- last_bitmap = (gpa_t)-1;
- b = -1;
-
- while (size > 0) {
- if (port < 0x8000)
- bitmap = vmcs12->io_bitmap_a;
- else if (port < 0x10000)
- bitmap = vmcs12->io_bitmap_b;
- else
- return true;
- bitmap += (port & 0x7fff) / 8;
-
- if (last_bitmap != bitmap)
- if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
- return true;
- if (b & (1 << (port & 7)))
- return true;
-
- port++;
- size--;
- last_bitmap = bitmap;
- }
-
- return false;
-}
-
-/*
- * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
- * rather than handle it ourselves in L0. I.e., check whether L1 expressed
- * disinterest in the current event (read or write a specific MSR) by using an
- * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
- */
-static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12, u32 exit_reason)
-{
- u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
- gpa_t bitmap;
-
- if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
- return true;
-
- /*
- * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
- * for the four combinations of read/write and low/high MSR numbers.
- * First we need to figure out which of the four to use:
- */
- bitmap = vmcs12->msr_bitmap;
- if (exit_reason == EXIT_REASON_MSR_WRITE)
- bitmap += 2048;
- if (msr_index >= 0xc0000000) {
- msr_index -= 0xc0000000;
- bitmap += 1024;
- }
-
- /* Then read the msr_index'th bit from this bitmap: */
- if (msr_index < 1024*8) {
- unsigned char b;
- if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
- return true;
- return 1 & (b >> (msr_index & 7));
- } else
- return true; /* let L1 handle the wrong parameter */
-}
-
-/*
- * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
- * rather than handle it ourselves in L0. I.e., check if L1 wanted to
- * intercept (via guest_host_mask etc.) the current event.
- */
-static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- int cr = exit_qualification & 15;
- int reg;
- unsigned long val;
-
- switch ((exit_qualification >> 4) & 3) {
- case 0: /* mov to cr */
- reg = (exit_qualification >> 8) & 15;
- val = kvm_register_readl(vcpu, reg);
- switch (cr) {
- case 0:
- if (vmcs12->cr0_guest_host_mask &
- (val ^ vmcs12->cr0_read_shadow))
- return true;
- break;
- case 3:
- if ((vmcs12->cr3_target_count >= 1 &&
- vmcs12->cr3_target_value0 == val) ||
- (vmcs12->cr3_target_count >= 2 &&
- vmcs12->cr3_target_value1 == val) ||
- (vmcs12->cr3_target_count >= 3 &&
- vmcs12->cr3_target_value2 == val) ||
- (vmcs12->cr3_target_count >= 4 &&
- vmcs12->cr3_target_value3 == val))
- return false;
- if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
- return true;
- break;
- case 4:
- if (vmcs12->cr4_guest_host_mask &
- (vmcs12->cr4_read_shadow ^ val))
- return true;
- break;
- case 8:
- if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
- return true;
- break;
- }
- break;
- case 2: /* clts */
- if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
- (vmcs12->cr0_read_shadow & X86_CR0_TS))
- return true;
- break;
- case 1: /* mov from cr */
- switch (cr) {
- case 3:
- if (vmcs12->cpu_based_vm_exec_control &
- CPU_BASED_CR3_STORE_EXITING)
- return true;
- break;
- case 8:
- if (vmcs12->cpu_based_vm_exec_control &
- CPU_BASED_CR8_STORE_EXITING)
- return true;
- break;
- }
- break;
- case 3: /* lmsw */
- /*
- * lmsw can change bits 1..3 of cr0, and only set bit 0 of
- * cr0. Other attempted changes are ignored, with no exit.
- */
- val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
- if (vmcs12->cr0_guest_host_mask & 0xe &
- (val ^ vmcs12->cr0_read_shadow))
- return true;
- if ((vmcs12->cr0_guest_host_mask & 0x1) &&
- !(vmcs12->cr0_read_shadow & 0x1) &&
- (val & 0x1))
- return true;
- break;
- }
- return false;
-}
-
-static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12, gpa_t bitmap)
-{
- u32 vmx_instruction_info;
- unsigned long field;
- u8 b;
-
- if (!nested_cpu_has_shadow_vmcs(vmcs12))
- return true;
-
- /* Decode instruction info and find the field to access */
- vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
-
- /* Out-of-range fields always cause a VM exit from L2 to L1 */
- if (field >> 15)
- return true;
-
- if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
- return true;
-
- return 1 & (b >> (field & 7));
-}
-
-/*
- * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
- * should handle it ourselves in L0 (and then continue L2). Only call this
- * when in is_guest_mode (L2).
- */
-static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
-{
- u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- if (vmx->nested.nested_run_pending)
- return false;
-
- if (unlikely(vmx->fail)) {
- pr_info_ratelimited("%s failed vm entry %x\n", __func__,
- vmcs_read32(VM_INSTRUCTION_ERROR));
- return true;
- }
-
- /*
- * The host physical addresses of some pages of guest memory
- * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
- * Page). The CPU may write to these pages via their host
- * physical address while L2 is running, bypassing any
- * address-translation-based dirty tracking (e.g. EPT write
- * protection).
- *
- * Mark them dirty on every exit from L2 to prevent them from
- * getting out of sync with dirty tracking.
- */
- nested_mark_vmcs12_pages_dirty(vcpu);
-
- trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
- vmcs_readl(EXIT_QUALIFICATION),
- vmx->idt_vectoring_info,
- intr_info,
- vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
- KVM_ISA_VMX);
-
- switch (exit_reason) {
- case EXIT_REASON_EXCEPTION_NMI:
- if (is_nmi(intr_info))
- return false;
- else if (is_page_fault(intr_info))
- return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
- else if (is_debug(intr_info) &&
- vcpu->guest_debug &
- (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
- return false;
- else if (is_breakpoint(intr_info) &&
- vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
- return false;
- return vmcs12->exception_bitmap &
- (1u << (intr_info & INTR_INFO_VECTOR_MASK));
- case EXIT_REASON_EXTERNAL_INTERRUPT:
- return false;
- case EXIT_REASON_TRIPLE_FAULT:
- return true;
- case EXIT_REASON_PENDING_INTERRUPT:
- return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
- case EXIT_REASON_NMI_WINDOW:
- return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
- case EXIT_REASON_TASK_SWITCH:
- return true;
- case EXIT_REASON_CPUID:
- return true;
- case EXIT_REASON_HLT:
- return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
- case EXIT_REASON_INVD:
- return true;
- case EXIT_REASON_INVLPG:
- return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
- case EXIT_REASON_RDPMC:
- return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
- case EXIT_REASON_RDRAND:
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
- case EXIT_REASON_RDSEED:
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
- case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
- return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
- case EXIT_REASON_VMREAD:
- return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
- vmcs12->vmread_bitmap);
- case EXIT_REASON_VMWRITE:
- return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
- vmcs12->vmwrite_bitmap);
- case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
- case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
- case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
- case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
- case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
- /*
- * VMX instructions trap unconditionally. This allows L1 to
- * emulate them for its L2 guest, i.e., allows 3-level nesting!
- */
- return true;
- case EXIT_REASON_CR_ACCESS:
- return nested_vmx_exit_handled_cr(vcpu, vmcs12);
- case EXIT_REASON_DR_ACCESS:
- return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
- case EXIT_REASON_IO_INSTRUCTION:
- return nested_vmx_exit_handled_io(vcpu, vmcs12);
- case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
- case EXIT_REASON_MSR_READ:
- case EXIT_REASON_MSR_WRITE:
- return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
- case EXIT_REASON_INVALID_STATE:
- return true;
- case EXIT_REASON_MWAIT_INSTRUCTION:
- return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
- case EXIT_REASON_MONITOR_TRAP_FLAG:
- return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
- case EXIT_REASON_MONITOR_INSTRUCTION:
- return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
- case EXIT_REASON_PAUSE_INSTRUCTION:
- return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
- nested_cpu_has2(vmcs12,
- SECONDARY_EXEC_PAUSE_LOOP_EXITING);
- case EXIT_REASON_MCE_DURING_VMENTRY:
- return false;
- case EXIT_REASON_TPR_BELOW_THRESHOLD:
- return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
- case EXIT_REASON_APIC_ACCESS:
- case EXIT_REASON_APIC_WRITE:
- case EXIT_REASON_EOI_INDUCED:
- /*
- * The controls for "virtualize APIC accesses," "APIC-
- * register virtualization," and "virtual-interrupt
- * delivery" only come from vmcs12.
- */
- return true;
- case EXIT_REASON_EPT_VIOLATION:
- /*
- * L0 always deals with the EPT violation. If nested EPT is
- * used, and the nested mmu code discovers that the address is
- * missing in the guest EPT table (EPT12), the EPT violation
- * will be injected with nested_ept_inject_page_fault()
- */
- return false;
- case EXIT_REASON_EPT_MISCONFIG:
- /*
- * L2 never uses directly L1's EPT, but rather L0's own EPT
- * table (shadow on EPT) or a merged EPT table that L0 built
- * (EPT on EPT). So any problems with the structure of the
- * table is L0's fault.
- */
- return false;
- case EXIT_REASON_INVPCID:
- return
- nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
- nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
- case EXIT_REASON_WBINVD:
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
- case EXIT_REASON_XSETBV:
- return true;
- case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
- /*
- * This should never happen, since it is not possible to
- * set XSS to a non-zero value---neither in L1 nor in L2.
- * If if it were, XSS would have to be checked against
- * the XSS exit bitmap in vmcs12.
- */
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
- case EXIT_REASON_PREEMPTION_TIMER:
- return false;
- case EXIT_REASON_PML_FULL:
- /* We emulate PML support to L1. */
- return false;
- case EXIT_REASON_VMFUNC:
- /* VM functions are emulated through L2->L0 vmexits. */
- return false;
- case EXIT_REASON_ENCLS:
- /* SGX is never exposed to L1 */
- return false;
- default:
- return true;
- }
-}
-
-static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
-{
- u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
-
- /*
- * At this point, the exit interruption info in exit_intr_info
- * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
- * we need to query the in-kernel LAPIC.
- */
- WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
- if ((exit_intr_info &
- (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
- (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- vmcs12->vm_exit_intr_error_code =
- vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
- }
-
- nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
- vmcs_readl(EXIT_QUALIFICATION));
- return 1;
-}
-
static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
{
*info1 = vmcs_readl(EXIT_QUALIFICATION);
@@ -8813,14 +5759,6 @@ static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
return max_irr;
}
-static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
-{
- u8 rvi = vmx_get_rvi();
- u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
-
- return ((rvi & 0xf0) > (vppr & 0xf0));
-}
-
static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
{
if (!kvm_vcpu_apicv_active(vcpu))
@@ -9099,30 +6037,6 @@ static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
vmx->loaded_vmcs->hv_timer_armed = false;
}
-static void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * hv_evmcs may end up being not mapped after migration (when
- * L2 was running), map it here to make sure vmcs12 changes are
- * properly reflected.
- */
- if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
- nested_vmx_handle_enlightened_vmptrld(vcpu, false);
-
- if (vmx->nested.hv_evmcs) {
- copy_vmcs12_to_enlightened(vmx);
- /* All fields are clean */
- vmx->nested.hv_evmcs->hv_clean_fields |=
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
- } else {
- copy_vmcs12_to_shadow(vmx);
- }
-
- vmx->nested.need_vmcs12_sync = false;
-}
-
static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
@@ -9414,37 +6328,6 @@ static void vmx_vm_free(struct kvm *kvm)
vfree(to_kvm_vmx(kvm));
}
-static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int cpu;
-
- if (vmx->loaded_vmcs == vmcs)
- return;
-
- cpu = get_cpu();
- vmx_vcpu_put(vcpu);
- vmx->loaded_vmcs = vmcs;
- vmx_vcpu_load(vcpu, cpu);
- put_cpu();
-
- vm_entry_controls_reset_shadow(vmx);
- vm_exit_controls_reset_shadow(vmx);
- vmx_segment_cache_clear(vmx);
-}
-
-/*
- * Ensure that the current vmcs of the logical processor is the
- * vmcs01 of the vcpu before calling free_nested().
- */
-static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
-{
- vcpu_load(vcpu);
- vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
- free_nested(vcpu);
- vcpu_put(vcpu);
-}
-
static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
@@ -9453,7 +6336,7 @@ static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
vmx_destroy_pml_buffer(vmx);
free_vpid(vmx->vpid);
leave_guest_mode(vcpu);
- vmx_free_vcpu_nested(vcpu);
+ nested_vmx_free_vcpu(vcpu);
free_loaded_vmcs(vmx->loaded_vmcs);
kfree(vmx->guest_msrs);
kvm_vcpu_uninit(vcpu);
@@ -9777,2526 +6660,11 @@ static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
entry->ecx |= bit(X86_FEATURE_VMX);
}
-static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
- struct x86_exception *fault)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 exit_reason;
- unsigned long exit_qualification = vcpu->arch.exit_qualification;
-
- if (vmx->nested.pml_full) {
- exit_reason = EXIT_REASON_PML_FULL;
- vmx->nested.pml_full = false;
- exit_qualification &= INTR_INFO_UNBLOCK_NMI;
- } else if (fault->error_code & PFERR_RSVD_MASK)
- exit_reason = EXIT_REASON_EPT_MISCONFIG;
- else
- exit_reason = EXIT_REASON_EPT_VIOLATION;
-
- nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
- vmcs12->guest_physical_address = fault->address;
-}
-
-static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
-{
- return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
-}
-
-/* Callbacks for nested_ept_init_mmu_context: */
-
-static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
-{
- /* return the page table to be shadowed - in our case, EPT12 */
- return get_vmcs12(vcpu)->ept_pointer;
-}
-
-static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
-{
- WARN_ON(mmu_is_nested(vcpu));
-
- vcpu->arch.mmu = &vcpu->arch.guest_mmu;
- kvm_init_shadow_ept_mmu(vcpu,
- to_vmx(vcpu)->nested.msrs.ept_caps &
- VMX_EPT_EXECUTE_ONLY_BIT,
- nested_ept_ad_enabled(vcpu),
- nested_ept_get_cr3(vcpu));
- vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
- vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
- vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
- vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
-
- vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
-}
-
-static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
-{
- vcpu->arch.mmu = &vcpu->arch.root_mmu;
- vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
-}
-
-static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
- u16 error_code)
-{
- bool inequality, bit;
-
- bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
- inequality =
- (error_code & vmcs12->page_fault_error_code_mask) !=
- vmcs12->page_fault_error_code_match;
- return inequality ^ bit;
-}
-
-static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
- struct x86_exception *fault)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- WARN_ON(!is_guest_mode(vcpu));
-
- if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
- !to_vmx(vcpu)->nested.nested_run_pending) {
- vmcs12->vm_exit_intr_error_code = fault->error_code;
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
- PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
- INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
- fault->address);
- } else {
- kvm_inject_page_fault(vcpu, fault);
- }
-}
-
-static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12);
-
-static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct page *page;
- u64 hpa;
-
- if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
- /*
- * Translate L1 physical address to host physical
- * address for vmcs02. Keep the page pinned, so this
- * physical address remains valid. We keep a reference
- * to it so we can release it later.
- */
- if (vmx->nested.apic_access_page) { /* shouldn't happen */
- kvm_release_page_dirty(vmx->nested.apic_access_page);
- vmx->nested.apic_access_page = NULL;
- }
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
- /*
- * If translation failed, no matter: This feature asks
- * to exit when accessing the given address, and if it
- * can never be accessed, this feature won't do
- * anything anyway.
- */
- if (!is_error_page(page)) {
- vmx->nested.apic_access_page = page;
- hpa = page_to_phys(vmx->nested.apic_access_page);
- vmcs_write64(APIC_ACCESS_ADDR, hpa);
- } else {
- vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
- }
- }
-
- if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
- if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
- kvm_release_page_dirty(vmx->nested.virtual_apic_page);
- vmx->nested.virtual_apic_page = NULL;
- }
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
-
- /*
- * If translation failed, VM entry will fail because
- * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
- * Failing the vm entry is _not_ what the processor
- * does but it's basically the only possibility we
- * have. We could still enter the guest if CR8 load
- * exits are enabled, CR8 store exits are enabled, and
- * virtualize APIC access is disabled; in this case
- * the processor would never use the TPR shadow and we
- * could simply clear the bit from the execution
- * control. But such a configuration is useless, so
- * let's keep the code simple.
- */
- if (!is_error_page(page)) {
- vmx->nested.virtual_apic_page = page;
- hpa = page_to_phys(vmx->nested.virtual_apic_page);
- vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
- }
- }
-
- if (nested_cpu_has_posted_intr(vmcs12)) {
- if (vmx->nested.pi_desc_page) { /* shouldn't happen */
- kunmap(vmx->nested.pi_desc_page);
- kvm_release_page_dirty(vmx->nested.pi_desc_page);
- vmx->nested.pi_desc_page = NULL;
- }
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
- if (is_error_page(page))
- return;
- vmx->nested.pi_desc_page = page;
- vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
- vmx->nested.pi_desc =
- (struct pi_desc *)((void *)vmx->nested.pi_desc +
- (unsigned long)(vmcs12->posted_intr_desc_addr &
- (PAGE_SIZE - 1)));
- vmcs_write64(POSTED_INTR_DESC_ADDR,
- page_to_phys(vmx->nested.pi_desc_page) +
- (unsigned long)(vmcs12->posted_intr_desc_addr &
- (PAGE_SIZE - 1)));
- }
- if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
- vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
- CPU_BASED_USE_MSR_BITMAPS);
- else
- vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
- CPU_BASED_USE_MSR_BITMAPS);
-}
-
-static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
-{
- u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * A timer value of zero is architecturally guaranteed to cause
- * a VMExit prior to executing any instructions in the guest.
- */
- if (preemption_timeout == 0) {
- vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
- return;
- }
-
- if (vcpu->arch.virtual_tsc_khz == 0)
- return;
-
- preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
- preemption_timeout *= 1000000;
- do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
- hrtimer_start(&vmx->nested.preemption_timer,
- ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
-}
-
-static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
- !page_address_valid(vcpu, vmcs12->io_bitmap_b))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
- return -EINVAL;
-
- return 0;
-}
-
-/*
- * Merge L0's and L1's MSR bitmap, return false to indicate that
- * we do not use the hardware.
- */
-static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- int msr;
- struct page *page;
- unsigned long *msr_bitmap_l1;
- unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
- /*
- * pred_cmd & spec_ctrl are trying to verify two things:
- *
- * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
- * ensures that we do not accidentally generate an L02 MSR bitmap
- * from the L12 MSR bitmap that is too permissive.
- * 2. That L1 or L2s have actually used the MSR. This avoids
- * unnecessarily merging of the bitmap if the MSR is unused. This
- * works properly because we only update the L01 MSR bitmap lazily.
- * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
- * updated to reflect this when L1 (or its L2s) actually write to
- * the MSR.
- */
- bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
- bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
-
- /* Nothing to do if the MSR bitmap is not in use. */
- if (!cpu_has_vmx_msr_bitmap() ||
- !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
- return false;
-
- if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
- !pred_cmd && !spec_ctrl)
- return false;
-
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
- if (is_error_page(page))
- return false;
-
- msr_bitmap_l1 = (unsigned long *)kmap(page);
- if (nested_cpu_has_apic_reg_virt(vmcs12)) {
- /*
- * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
- * just lets the processor take the value from the virtual-APIC page;
- * take those 256 bits directly from the L1 bitmap.
- */
- for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
- unsigned word = msr / BITS_PER_LONG;
- msr_bitmap_l0[word] = msr_bitmap_l1[word];
- msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
- }
- } else {
- for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
- unsigned word = msr / BITS_PER_LONG;
- msr_bitmap_l0[word] = ~0;
- msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
- }
- }
-
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- X2APIC_MSR(APIC_TASKPRI),
- MSR_TYPE_W);
-
- if (nested_cpu_has_vid(vmcs12)) {
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- X2APIC_MSR(APIC_EOI),
- MSR_TYPE_W);
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- X2APIC_MSR(APIC_SELF_IPI),
- MSR_TYPE_W);
- }
-
- if (spec_ctrl)
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- MSR_IA32_SPEC_CTRL,
- MSR_TYPE_R | MSR_TYPE_W);
-
- if (pred_cmd)
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- MSR_IA32_PRED_CMD,
- MSR_TYPE_W);
-
- kunmap(page);
- kvm_release_page_clean(page);
-
- return true;
-}
-
-static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- struct vmcs12 *shadow;
- struct page *page;
-
- if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
- vmcs12->vmcs_link_pointer == -1ull)
- return;
-
- shadow = get_shadow_vmcs12(vcpu);
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
-
- memcpy(shadow, kmap(page), VMCS12_SIZE);
-
- kunmap(page);
- kvm_release_page_clean(page);
-}
-
-static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
- vmcs12->vmcs_link_pointer == -1ull)
- return;
-
- kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
- get_shadow_vmcs12(vcpu), VMCS12_SIZE);
-}
-
-static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
- !page_address_valid(vcpu, vmcs12->apic_access_addr))
- return -EINVAL;
- else
- return 0;
-}
-
-static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
- !nested_cpu_has_apic_reg_virt(vmcs12) &&
- !nested_cpu_has_vid(vmcs12) &&
- !nested_cpu_has_posted_intr(vmcs12))
- return 0;
-
- /*
- * If virtualize x2apic mode is enabled,
- * virtualize apic access must be disabled.
- */
- if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
- nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
- return -EINVAL;
-
- /*
- * If virtual interrupt delivery is enabled,
- * we must exit on external interrupts.
- */
- if (nested_cpu_has_vid(vmcs12) &&
- !nested_exit_on_intr(vcpu))
- return -EINVAL;
-
- /*
- * bits 15:8 should be zero in posted_intr_nv,
- * the descriptor address has been already checked
- * in nested_get_vmcs12_pages.
- *
- * bits 5:0 of posted_intr_desc_addr should be zero.
- */
- if (nested_cpu_has_posted_intr(vmcs12) &&
- (!nested_cpu_has_vid(vmcs12) ||
- !nested_exit_intr_ack_set(vcpu) ||
- (vmcs12->posted_intr_nv & 0xff00) ||
- (vmcs12->posted_intr_desc_addr & 0x3f) ||
- (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
- return -EINVAL;
-
- /* tpr shadow is needed by all apicv features. */
- if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
- unsigned long count_field,
- unsigned long addr_field)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- int maxphyaddr;
- u64 count, addr;
-
- if (vmcs12_read_any(vmcs12, count_field, &count) ||
- vmcs12_read_any(vmcs12, addr_field, &addr)) {
- WARN_ON(1);
- return -EINVAL;
- }
- if (count == 0)
- return 0;
- maxphyaddr = cpuid_maxphyaddr(vcpu);
- if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
- (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
- pr_debug_ratelimited(
- "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
- addr_field, maxphyaddr, count, addr);
- return -EINVAL;
- }
- return 0;
-}
-
-static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (vmcs12->vm_exit_msr_load_count == 0 &&
- vmcs12->vm_exit_msr_store_count == 0 &&
- vmcs12->vm_entry_msr_load_count == 0)
- return 0; /* Fast path */
- if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
- VM_EXIT_MSR_LOAD_ADDR) ||
- nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
- VM_EXIT_MSR_STORE_ADDR) ||
- nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
- VM_ENTRY_MSR_LOAD_ADDR))
- return -EINVAL;
- return 0;
-}
-
-static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has_pml(vmcs12))
- return 0;
-
- if (!nested_cpu_has_ept(vmcs12) ||
- !page_address_valid(vcpu, vmcs12->pml_address))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
- !nested_cpu_has_ept(vmcs12))
- return -EINVAL;
- return 0;
-}
-
-static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
- !nested_cpu_has_ept(vmcs12))
- return -EINVAL;
- return 0;
-}
-
-static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has_shadow_vmcs(vmcs12))
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
- !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
- struct vmx_msr_entry *e)
-{
- /* x2APIC MSR accesses are not allowed */
- if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
- return -EINVAL;
- if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
- e->index == MSR_IA32_UCODE_REV)
- return -EINVAL;
- if (e->reserved != 0)
- return -EINVAL;
- return 0;
-}
-
-static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
- struct vmx_msr_entry *e)
-{
- if (e->index == MSR_FS_BASE ||
- e->index == MSR_GS_BASE ||
- e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
- nested_vmx_msr_check_common(vcpu, e))
- return -EINVAL;
- return 0;
-}
-
-static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
- struct vmx_msr_entry *e)
-{
- if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
- nested_vmx_msr_check_common(vcpu, e))
- return -EINVAL;
- return 0;
-}
-
-/*
- * Load guest's/host's msr at nested entry/exit.
- * return 0 for success, entry index for failure.
- */
-static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
-{
- u32 i;
- struct vmx_msr_entry e;
- struct msr_data msr;
-
- msr.host_initiated = false;
- for (i = 0; i < count; i++) {
- if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
- &e, sizeof(e))) {
- pr_debug_ratelimited(
- "%s cannot read MSR entry (%u, 0x%08llx)\n",
- __func__, i, gpa + i * sizeof(e));
- goto fail;
- }
- if (nested_vmx_load_msr_check(vcpu, &e)) {
- pr_debug_ratelimited(
- "%s check failed (%u, 0x%x, 0x%x)\n",
- __func__, i, e.index, e.reserved);
- goto fail;
- }
- msr.index = e.index;
- msr.data = e.value;
- if (kvm_set_msr(vcpu, &msr)) {
- pr_debug_ratelimited(
- "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
- __func__, i, e.index, e.value);
- goto fail;
- }
- }
- return 0;
-fail:
- return i + 1;
-}
-
-static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
-{
- u32 i;
- struct vmx_msr_entry e;
-
- for (i = 0; i < count; i++) {
- struct msr_data msr_info;
- if (kvm_vcpu_read_guest(vcpu,
- gpa + i * sizeof(e),
- &e, 2 * sizeof(u32))) {
- pr_debug_ratelimited(
- "%s cannot read MSR entry (%u, 0x%08llx)\n",
- __func__, i, gpa + i * sizeof(e));
- return -EINVAL;
- }
- if (nested_vmx_store_msr_check(vcpu, &e)) {
- pr_debug_ratelimited(
- "%s check failed (%u, 0x%x, 0x%x)\n",
- __func__, i, e.index, e.reserved);
- return -EINVAL;
- }
- msr_info.host_initiated = false;
- msr_info.index = e.index;
- if (kvm_get_msr(vcpu, &msr_info)) {
- pr_debug_ratelimited(
- "%s cannot read MSR (%u, 0x%x)\n",
- __func__, i, e.index);
- return -EINVAL;
- }
- if (kvm_vcpu_write_guest(vcpu,
- gpa + i * sizeof(e) +
- offsetof(struct vmx_msr_entry, value),
- &msr_info.data, sizeof(msr_info.data))) {
- pr_debug_ratelimited(
- "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
- __func__, i, e.index, msr_info.data);
- return -EINVAL;
- }
- }
- return 0;
-}
-
-static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
- unsigned long invalid_mask;
-
- invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
- return (val & invalid_mask) == 0;
-}
-
-/*
- * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
- * emulating VM entry into a guest with EPT enabled.
- * Returns 0 on success, 1 on failure. Invalid state exit qualification code
- * is assigned to entry_failure_code on failure.
- */
-static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
- u32 *entry_failure_code)
-{
- if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
- if (!nested_cr3_valid(vcpu, cr3)) {
- *entry_failure_code = ENTRY_FAIL_DEFAULT;
- return 1;
- }
-
- /*
- * If PAE paging and EPT are both on, CR3 is not used by the CPU and
- * must not be dereferenced.
- */
- if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
- !nested_ept) {
- if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
- *entry_failure_code = ENTRY_FAIL_PDPTE;
- return 1;
- }
- }
- }
-
- if (!nested_ept)
- kvm_mmu_new_cr3(vcpu, cr3, false);
-
- vcpu->arch.cr3 = cr3;
- __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
-
- kvm_init_mmu(vcpu, false);
-
- return 0;
-}
-
-/*
- * Returns if KVM is able to config CPU to tag TLB entries
- * populated by L2 differently than TLB entries populated
- * by L1.
- *
- * If L1 uses EPT, then TLB entries are tagged with different EPTP.
- *
- * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
- * with different VPID (L1 entries are tagged with vmx->vpid
- * while L2 entries are tagged with vmx->nested.vpid02).
- */
-static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- return nested_cpu_has_ept(vmcs12) ||
- (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
-}
-
-static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
-{
- if (vmx->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
- return vmcs12->guest_ia32_efer;
- else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
- return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
- else
- return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
-}
-
-static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
-{
- /*
- * If vmcs02 hasn't been initialized, set the constant vmcs02 state
- * according to L0's settings (vmcs12 is irrelevant here). Host
- * fields that come from L0 and are not constant, e.g. HOST_CR3,
- * will be set as needed prior to VMLAUNCH/VMRESUME.
- */
- if (vmx->nested.vmcs02_initialized)
- return;
- vmx->nested.vmcs02_initialized = true;
-
- /*
- * We don't care what the EPTP value is we just need to guarantee
- * it's valid so we don't get a false positive when doing early
- * consistency checks.
- */
- if (enable_ept && nested_early_check)
- vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
-
- /* All VMFUNCs are currently emulated through L0 vmexits. */
- if (cpu_has_vmx_vmfunc())
- vmcs_write64(VM_FUNCTION_CONTROL, 0);
-
- if (cpu_has_vmx_posted_intr())
- vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
-
- if (cpu_has_vmx_msr_bitmap())
- vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
-
- if (enable_pml)
- vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
-
- /*
- * Set the MSR load/store lists to match L0's settings. Only the
- * addresses are constant (for vmcs02), the counts can change based
- * on L2's behavior, e.g. switching to/from long mode.
- */
- vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
- vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
- vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
-
- vmx_set_constant_host_state(vmx);
-}
-
-static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
- struct vmcs12 *vmcs12)
-{
- prepare_vmcs02_constant_state(vmx);
-
- vmcs_write64(VMCS_LINK_POINTER, -1ull);
-
- if (enable_vpid) {
- if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
- vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
- else
- vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
- }
-}
-
-static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
-{
- u32 exec_control, vmcs12_exec_ctrl;
- u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
-
- if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
- prepare_vmcs02_early_full(vmx, vmcs12);
-
- /*
- * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
- * entry, but only if the current (host) sp changed from the value
- * we wrote last (vmx->host_rsp). This cache is no longer relevant
- * if we switch vmcs, and rather than hold a separate cache per vmcs,
- * here we just force the write to happen on entry. host_rsp will
- * also be written unconditionally by nested_vmx_check_vmentry_hw()
- * if we are doing early consistency checks via hardware.
- */
- vmx->host_rsp = 0;
-
- /*
- * PIN CONTROLS
- */
- exec_control = vmcs12->pin_based_vm_exec_control;
-
- /* Preemption timer setting is computed directly in vmx_vcpu_run. */
- exec_control |= vmcs_config.pin_based_exec_ctrl;
- exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
- vmx->loaded_vmcs->hv_timer_armed = false;
-
- /* Posted interrupts setting is only taken from vmcs12. */
- if (nested_cpu_has_posted_intr(vmcs12)) {
- vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
- vmx->nested.pi_pending = false;
- } else {
- exec_control &= ~PIN_BASED_POSTED_INTR;
- }
- vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
-
- /*
- * EXEC CONTROLS
- */
- exec_control = vmx_exec_control(vmx); /* L0's desires */
- exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
- exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
- exec_control &= ~CPU_BASED_TPR_SHADOW;
- exec_control |= vmcs12->cpu_based_vm_exec_control;
-
- /*
- * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
- * nested_get_vmcs12_pages can't fix it up, the illegal value
- * will result in a VM entry failure.
- */
- if (exec_control & CPU_BASED_TPR_SHADOW) {
- vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
- vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
- } else {
-#ifdef CONFIG_X86_64
- exec_control |= CPU_BASED_CR8_LOAD_EXITING |
- CPU_BASED_CR8_STORE_EXITING;
-#endif
- }
-
- /*
- * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
- * for I/O port accesses.
- */
- exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
- exec_control |= CPU_BASED_UNCOND_IO_EXITING;
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
-
- /*
- * SECONDARY EXEC CONTROLS
- */
- if (cpu_has_secondary_exec_ctrls()) {
- exec_control = vmx->secondary_exec_control;
-
- /* Take the following fields only from vmcs12 */
- exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
- SECONDARY_EXEC_ENABLE_INVPCID |
- SECONDARY_EXEC_RDTSCP |
- SECONDARY_EXEC_XSAVES |
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
- SECONDARY_EXEC_APIC_REGISTER_VIRT |
- SECONDARY_EXEC_ENABLE_VMFUNC);
- if (nested_cpu_has(vmcs12,
- CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
- vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
- ~SECONDARY_EXEC_ENABLE_PML;
- exec_control |= vmcs12_exec_ctrl;
- }
-
- /* VMCS shadowing for L2 is emulated for now */
- exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
-
- if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
- vmcs_write16(GUEST_INTR_STATUS,
- vmcs12->guest_intr_status);
-
- /*
- * Write an illegal value to APIC_ACCESS_ADDR. Later,
- * nested_get_vmcs12_pages will either fix it up or
- * remove the VM execution control.
- */
- if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
- vmcs_write64(APIC_ACCESS_ADDR, -1ull);
-
- if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
- vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
-
- vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
- }
-
- /*
- * ENTRY CONTROLS
- *
- * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
- * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
- * on the related bits (if supported by the CPU) in the hope that
- * we can avoid VMWrites during vmx_set_efer().
- */
- exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
- ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
- if (cpu_has_load_ia32_efer()) {
- if (guest_efer & EFER_LMA)
- exec_control |= VM_ENTRY_IA32E_MODE;
- if (guest_efer != host_efer)
- exec_control |= VM_ENTRY_LOAD_IA32_EFER;
- }
- vm_entry_controls_init(vmx, exec_control);
-
- /*
- * EXIT CONTROLS
- *
- * L2->L1 exit controls are emulated - the hardware exit is to L0 so
- * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
- * bits may be modified by vmx_set_efer() in prepare_vmcs02().
- */
- exec_control = vmx_vmexit_ctrl();
- if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
- exec_control |= VM_EXIT_LOAD_IA32_EFER;
- vm_exit_controls_init(vmx, exec_control);
-
- /*
- * Conceptually we want to copy the PML address and index from
- * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
- * since we always flush the log on each vmexit and never change
- * the PML address (once set), this happens to be equivalent to
- * simply resetting the index in vmcs02.
- */
- if (enable_pml)
- vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
-
- /*
- * Interrupt/Exception Fields
- */
- if (vmx->nested.nested_run_pending) {
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
- vmcs12->vm_entry_intr_info_field);
- vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
- vmcs12->vm_entry_exception_error_code);
- vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
- vmcs12->vm_entry_instruction_len);
- vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
- vmcs12->guest_interruptibility_info);
- vmx->loaded_vmcs->nmi_known_unmasked =
- !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
- } else {
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
- }
-}
-
-static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
-{
- struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
-
- if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
- vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
- vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
- vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
- vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
- vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
- vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
- vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
- vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
- vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
- vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
- vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
- vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
- vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
- vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
- vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
- vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
- vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
- vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
- vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
- vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
- vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
- vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
- vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
- vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
- vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
- vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
- vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
- vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
- vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
- vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
- vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
- vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
- vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
- vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
- }
-
- if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
- vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
- vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
- vmcs12->guest_pending_dbg_exceptions);
- vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
- vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
-
- /*
- * L1 may access the L2's PDPTR, so save them to construct
- * vmcs12
- */
- if (enable_ept) {
- vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
- vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
- vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
- vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
- }
- }
-
- if (nested_cpu_has_xsaves(vmcs12))
- vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
-
- /*
- * Whether page-faults are trapped is determined by a combination of
- * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
- * If enable_ept, L0 doesn't care about page faults and we should
- * set all of these to L1's desires. However, if !enable_ept, L0 does
- * care about (at least some) page faults, and because it is not easy
- * (if at all possible?) to merge L0 and L1's desires, we simply ask
- * to exit on each and every L2 page fault. This is done by setting
- * MASK=MATCH=0 and (see below) EB.PF=1.
- * Note that below we don't need special code to set EB.PF beyond the
- * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
- * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
- * !enable_ept, EB.PF is 1, so the "or" will always be 1.
- */
- vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
- enable_ept ? vmcs12->page_fault_error_code_mask : 0);
- vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
- enable_ept ? vmcs12->page_fault_error_code_match : 0);
-
- if (cpu_has_vmx_apicv()) {
- vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
- vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
- vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
- vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
- }
-
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
-
- set_cr4_guest_host_mask(vmx);
-
- if (kvm_mpx_supported()) {
- if (vmx->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
- vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
- else
- vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
- }
-}
-
-/*
- * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
- * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
- * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
- * guest in a way that will both be appropriate to L1's requests, and our
- * needs. In addition to modifying the active vmcs (which is vmcs02), this
- * function also has additional necessary side-effects, like setting various
- * vcpu->arch fields.
- * Returns 0 on success, 1 on failure. Invalid state exit qualification code
- * is assigned to entry_failure_code on failure.
- */
-static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
- u32 *entry_failure_code)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
-
- if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
- prepare_vmcs02_full(vmx, vmcs12);
- vmx->nested.dirty_vmcs12 = false;
- }
-
- /*
- * First, the fields that are shadowed. This must be kept in sync
- * with vmcs_shadow_fields.h.
- */
- if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
- vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
- vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
- }
-
- if (vmx->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
- kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
- vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
- } else {
- kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
- vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
- }
- vmx_set_rflags(vcpu, vmcs12->guest_rflags);
-
- vmx->nested.preemption_timer_expired = false;
- if (nested_cpu_has_preemption_timer(vmcs12))
- vmx_start_preemption_timer(vcpu);
-
- /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
- * bitwise-or of what L1 wants to trap for L2, and what we want to
- * trap. Note that CR0.TS also needs updating - we do this later.
- */
- update_exception_bitmap(vcpu);
- vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
- vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
-
- if (vmx->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
- vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
- vcpu->arch.pat = vmcs12->guest_ia32_pat;
- } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
- vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
- }
-
- vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
-
- if (kvm_has_tsc_control)
- decache_tsc_multiplier(vmx);
-
- if (enable_vpid) {
- /*
- * There is no direct mapping between vpid02 and vpid12, the
- * vpid02 is per-vCPU for L0 and reused while the value of
- * vpid12 is changed w/ one invvpid during nested vmentry.
- * The vpid12 is allocated by L1 for L2, so it will not
- * influence global bitmap(for vpid01 and vpid02 allocation)
- * even if spawn a lot of nested vCPUs.
- */
- if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
- if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
- vmx->nested.last_vpid = vmcs12->virtual_processor_id;
- __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
- }
- } else {
- /*
- * If L1 use EPT, then L0 needs to execute INVEPT on
- * EPTP02 instead of EPTP01. Therefore, delay TLB
- * flush until vmcs02->eptp is fully updated by
- * KVM_REQ_LOAD_CR3. Note that this assumes
- * KVM_REQ_TLB_FLUSH is evaluated after
- * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
- */
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- }
- }
-
- if (nested_cpu_has_ept(vmcs12))
- nested_ept_init_mmu_context(vcpu);
- else if (nested_cpu_has2(vmcs12,
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
- vmx_flush_tlb(vcpu, true);
-
- /*
- * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
- * bits which we consider mandatory enabled.
- * The CR0_READ_SHADOW is what L2 should have expected to read given
- * the specifications by L1; It's not enough to take
- * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
- * have more bits than L1 expected.
- */
- vmx_set_cr0(vcpu, vmcs12->guest_cr0);
- vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
-
- vmx_set_cr4(vcpu, vmcs12->guest_cr4);
- vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
-
- vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
- /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
- vmx_set_efer(vcpu, vcpu->arch.efer);
-
- /*
- * Guest state is invalid and unrestricted guest is disabled,
- * which means L1 attempted VMEntry to L2 with invalid state.
- * Fail the VMEntry.
- */
- if (vmx->emulation_required) {
- *entry_failure_code = ENTRY_FAIL_DEFAULT;
- return 1;
- }
-
- /* Shadow page tables on either EPT or shadow page tables. */
- if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
- entry_failure_code))
- return 1;
-
- if (!enable_ept)
- vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
-
- kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
- kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
- return 0;
-}
-
-static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has_nmi_exiting(vmcs12) &&
- nested_cpu_has_virtual_nmis(vmcs12))
- return -EINVAL;
-
- if (!nested_cpu_has_virtual_nmis(vmcs12) &&
- nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
- return -EINVAL;
-
- return 0;
-}
-
-static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- bool ia32e;
-
- if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
- vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (!nested_cpu_has_preemption_timer(vmcs12) &&
- nested_cpu_has_save_preemption_timer(vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_pml_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
- vmx->nested.msrs.procbased_ctls_low,
- vmx->nested.msrs.procbased_ctls_high) ||
- (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
- !vmx_control_verify(vmcs12->secondary_vm_exec_control,
- vmx->nested.msrs.secondary_ctls_low,
- vmx->nested.msrs.secondary_ctls_high)) ||
- !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
- vmx->nested.msrs.pinbased_ctls_low,
- vmx->nested.msrs.pinbased_ctls_high) ||
- !vmx_control_verify(vmcs12->vm_exit_controls,
- vmx->nested.msrs.exit_ctls_low,
- vmx->nested.msrs.exit_ctls_high) ||
- !vmx_control_verify(vmcs12->vm_entry_controls,
- vmx->nested.msrs.entry_ctls_low,
- vmx->nested.msrs.entry_ctls_high))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_nmi_controls(vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_cpu_has_vmfunc(vmcs12)) {
- if (vmcs12->vm_function_control &
- ~vmx->nested.msrs.vmfunc_controls)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_cpu_has_eptp_switching(vmcs12)) {
- if (!nested_cpu_has_ept(vmcs12) ||
- !page_address_valid(vcpu, vmcs12->eptp_list_address))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
- }
- }
-
- if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
- !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
- !nested_cr3_valid(vcpu, vmcs12->host_cr3))
- return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
-
- /*
- * If the load IA32_EFER VM-exit control is 1, bits reserved in the
- * IA32_EFER MSR must be 0 in the field for that register. In addition,
- * the values of the LMA and LME bits in the field must each be that of
- * the host address-space size VM-exit control.
- */
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
- ia32e = (vmcs12->vm_exit_controls &
- VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
- if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
- ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
- ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
- return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
- }
-
- /*
- * From the Intel SDM, volume 3:
- * Fields relevant to VM-entry event injection must be set properly.
- * These fields are the VM-entry interruption-information field, the
- * VM-entry exception error code, and the VM-entry instruction length.
- */
- if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
- u32 intr_info = vmcs12->vm_entry_intr_info_field;
- u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
- u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
- bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
- bool should_have_error_code;
- bool urg = nested_cpu_has2(vmcs12,
- SECONDARY_EXEC_UNRESTRICTED_GUEST);
- bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
-
- /* VM-entry interruption-info field: interruption type */
- if (intr_type == INTR_TYPE_RESERVED ||
- (intr_type == INTR_TYPE_OTHER_EVENT &&
- !nested_cpu_supports_monitor_trap_flag(vcpu)))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry interruption-info field: vector */
- if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
- (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
- (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry interruption-info field: deliver error code */
- should_have_error_code =
- intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
- x86_exception_has_error_code(vector);
- if (has_error_code != should_have_error_code)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry exception error code */
- if (has_error_code &&
- vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry interruption-info field: reserved bits */
- if (intr_info & INTR_INFO_RESVD_BITS_MASK)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry instruction length */
- switch (intr_type) {
- case INTR_TYPE_SOFT_EXCEPTION:
- case INTR_TYPE_SOFT_INTR:
- case INTR_TYPE_PRIV_SW_EXCEPTION:
- if ((vmcs12->vm_entry_instruction_len > 15) ||
- (vmcs12->vm_entry_instruction_len == 0 &&
- !nested_cpu_has_zero_length_injection(vcpu)))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
- }
- }
-
- if (nested_cpu_has_ept(vmcs12) &&
- !valid_ept_address(vcpu, vmcs12->ept_pointer))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- return 0;
-}
-
-static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- int r;
- struct page *page;
- struct vmcs12 *shadow;
-
- if (vmcs12->vmcs_link_pointer == -1ull)
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
- return -EINVAL;
-
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
- if (is_error_page(page))
- return -EINVAL;
-
- r = 0;
- shadow = kmap(page);
- if (shadow->hdr.revision_id != VMCS12_REVISION ||
- shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
- r = -EINVAL;
- kunmap(page);
- kvm_release_page_clean(page);
- return r;
-}
-
-static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
- u32 *exit_qual)
-{
- bool ia32e;
-
- *exit_qual = ENTRY_FAIL_DEFAULT;
-
- if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
- !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
- return 1;
-
- if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
- *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
- return 1;
- }
-
- /*
- * If the load IA32_EFER VM-entry control is 1, the following checks
- * are performed on the field for the IA32_EFER MSR:
- * - Bits reserved in the IA32_EFER MSR must be 0.
- * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
- * the IA-32e mode guest VM-exit control. It must also be identical
- * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
- * CR0.PG) is 1.
- */
- if (to_vmx(vcpu)->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
- ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
- if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
- ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
- ((vmcs12->guest_cr0 & X86_CR0_PG) &&
- ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
- return 1;
- }
-
- if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
- (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
- (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
- return 1;
-
- return 0;
-}
-
-static int __noclone nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long cr3, cr4;
-
- if (!nested_early_check)
- return 0;
-
- if (vmx->msr_autoload.host.nr)
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
- if (vmx->msr_autoload.guest.nr)
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
-
- preempt_disable();
-
- vmx_prepare_switch_to_guest(vcpu);
-
- /*
- * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
- * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
- * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
- * there is no need to preserve other bits or save/restore the field.
- */
- vmcs_writel(GUEST_RFLAGS, 0);
-
- vmcs_writel(HOST_RIP, vmx_early_consistency_check_return);
-
- cr3 = __get_current_cr3_fast();
- if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
- vmcs_writel(HOST_CR3, cr3);
- vmx->loaded_vmcs->host_state.cr3 = cr3;
- }
-
- cr4 = cr4_read_shadow();
- if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
- vmcs_writel(HOST_CR4, cr4);
- vmx->loaded_vmcs->host_state.cr4 = cr4;
- }
-
- vmx->__launched = vmx->loaded_vmcs->launched;
-
- asm(
- /* Set HOST_RSP */
- __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
- "mov %%" _ASM_SP ", %c[host_rsp](%0)\n\t"
-
- /* Check if vmlaunch or vmresume is needed */
- "cmpl $0, %c[launched](%0)\n\t"
- "jne 1f\n\t"
- __ex("vmlaunch") "\n\t"
- "jmp 2f\n\t"
- "1: " __ex("vmresume") "\n\t"
- "2: "
- /* Set vmx->fail accordingly */
- "setbe %c[fail](%0)\n\t"
-
- ".pushsection .rodata\n\t"
- ".global vmx_early_consistency_check_return\n\t"
- "vmx_early_consistency_check_return: " _ASM_PTR " 2b\n\t"
- ".popsection"
- :
- : "c"(vmx), "d"((unsigned long)HOST_RSP),
- [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
- [fail]"i"(offsetof(struct vcpu_vmx, fail)),
- [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp))
- : "rax", "cc", "memory"
- );
-
- vmcs_writel(HOST_RIP, vmx_return);
-
- preempt_enable();
-
- if (vmx->msr_autoload.host.nr)
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
- if (vmx->msr_autoload.guest.nr)
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
-
- if (vmx->fail) {
- WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
- VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- vmx->fail = 0;
- return 1;
- }
-
- /*
- * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
- */
- local_irq_enable();
- if (hw_breakpoint_active())
- set_debugreg(__this_cpu_read(cpu_dr7), 7);
-
- /*
- * A non-failing VMEntry means we somehow entered guest mode with
- * an illegal RIP, and that's just the tip of the iceberg. There
- * is no telling what memory has been modified or what state has
- * been exposed to unknown code. Hitting this all but guarantees
- * a (very critical) hardware issue.
- */
- WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
- VMX_EXIT_REASONS_FAILED_VMENTRY));
-
- return 0;
-}
-STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
-
-static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12);
-
-/*
- * If from_vmentry is false, this is being called from state restore (either RSM
- * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
-+ *
-+ * Returns:
-+ * 0 - success, i.e. proceed with actual VMEnter
-+ * 1 - consistency check VMExit
-+ * -1 - consistency check VMFail
- */
-static int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
- bool from_vmentry)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- bool evaluate_pending_interrupts;
- u32 exit_reason = EXIT_REASON_INVALID_STATE;
- u32 exit_qual;
-
- evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
- (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
- if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
- evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
-
- if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
- vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
- if (kvm_mpx_supported() &&
- !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
- vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
-
- vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
-
- prepare_vmcs02_early(vmx, vmcs12);
-
- if (from_vmentry) {
- nested_get_vmcs12_pages(vcpu);
-
- if (nested_vmx_check_vmentry_hw(vcpu)) {
- vmx_switch_vmcs(vcpu, &vmx->vmcs01);
- return -1;
- }
-
- if (check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
- goto vmentry_fail_vmexit;
- }
-
- enter_guest_mode(vcpu);
- if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
- vcpu->arch.tsc_offset += vmcs12->tsc_offset;
-
- if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
- goto vmentry_fail_vmexit_guest_mode;
-
- if (from_vmentry) {
- exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
- exit_qual = nested_vmx_load_msr(vcpu,
- vmcs12->vm_entry_msr_load_addr,
- vmcs12->vm_entry_msr_load_count);
- if (exit_qual)
- goto vmentry_fail_vmexit_guest_mode;
- } else {
- /*
- * The MMU is not initialized to point at the right entities yet and
- * "get pages" would need to read data from the guest (i.e. we will
- * need to perform gpa to hpa translation). Request a call
- * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
- * have already been set at vmentry time and should not be reset.
- */
- kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
- }
-
- /*
- * If L1 had a pending IRQ/NMI until it executed
- * VMLAUNCH/VMRESUME which wasn't delivered because it was
- * disallowed (e.g. interrupts disabled), L0 needs to
- * evaluate if this pending event should cause an exit from L2
- * to L1 or delivered directly to L2 (e.g. In case L1 don't
- * intercept EXTERNAL_INTERRUPT).
- *
- * Usually this would be handled by the processor noticing an
- * IRQ/NMI window request, or checking RVI during evaluation of
- * pending virtual interrupts. However, this setting was done
- * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
- * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
- */
- if (unlikely(evaluate_pending_interrupts))
- kvm_make_request(KVM_REQ_EVENT, vcpu);
-
- /*
- * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
- * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
- * returned as far as L1 is concerned. It will only return (and set
- * the success flag) when L2 exits (see nested_vmx_vmexit()).
- */
- return 0;
-
- /*
- * A failed consistency check that leads to a VMExit during L1's
- * VMEnter to L2 is a variation of a normal VMexit, as explained in
- * 26.7 "VM-entry failures during or after loading guest state".
- */
-vmentry_fail_vmexit_guest_mode:
- if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
- vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
- leave_guest_mode(vcpu);
-
-vmentry_fail_vmexit:
- vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-
- if (!from_vmentry)
- return 1;
-
- load_vmcs12_host_state(vcpu, vmcs12);
- vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
- vmcs12->exit_qualification = exit_qual;
- if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
- vmx->nested.need_vmcs12_sync = true;
- return 1;
-}
-
-/*
- * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
- * for running an L2 nested guest.
- */
-static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
-{
- struct vmcs12 *vmcs12;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
- int ret;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
- return 1;
-
- if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
- return nested_vmx_failInvalid(vcpu);
-
- vmcs12 = get_vmcs12(vcpu);
-
- /*
- * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
- * that there *is* a valid VMCS pointer, RFLAGS.CF is set
- * rather than RFLAGS.ZF, and no error number is stored to the
- * VM-instruction error field.
- */
- if (vmcs12->hdr.shadow_vmcs)
- return nested_vmx_failInvalid(vcpu);
-
- if (vmx->nested.hv_evmcs) {
- copy_enlightened_to_vmcs12(vmx);
- /* Enlightened VMCS doesn't have launch state */
- vmcs12->launch_state = !launch;
- } else if (enable_shadow_vmcs) {
- copy_shadow_to_vmcs12(vmx);
- }
-
- /*
- * The nested entry process starts with enforcing various prerequisites
- * on vmcs12 as required by the Intel SDM, and act appropriately when
- * they fail: As the SDM explains, some conditions should cause the
- * instruction to fail, while others will cause the instruction to seem
- * to succeed, but return an EXIT_REASON_INVALID_STATE.
- * To speed up the normal (success) code path, we should avoid checking
- * for misconfigurations which will anyway be caught by the processor
- * when using the merged vmcs02.
- */
- if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
- return nested_vmx_failValid(vcpu,
- VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
-
- if (vmcs12->launch_state == launch)
- return nested_vmx_failValid(vcpu,
- launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
- : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
-
- ret = check_vmentry_prereqs(vcpu, vmcs12);
- if (ret)
- return nested_vmx_failValid(vcpu, ret);
-
- /*
- * We're finally done with prerequisite checking, and can start with
- * the nested entry.
- */
- vmx->nested.nested_run_pending = 1;
- ret = nested_vmx_enter_non_root_mode(vcpu, true);
- vmx->nested.nested_run_pending = !ret;
- if (ret > 0)
- return 1;
- else if (ret)
- return nested_vmx_failValid(vcpu,
- VMXERR_ENTRY_INVALID_CONTROL_FIELD);
-
- /* Hide L1D cache contents from the nested guest. */
- vmx->vcpu.arch.l1tf_flush_l1d = true;
-
- /*
- * Must happen outside of nested_vmx_enter_non_root_mode() as it will
- * also be used as part of restoring nVMX state for
- * snapshot restore (migration).
- *
- * In this flow, it is assumed that vmcs12 cache was
- * trasferred as part of captured nVMX state and should
- * therefore not be read from guest memory (which may not
- * exist on destination host yet).
- */
- nested_cache_shadow_vmcs12(vcpu, vmcs12);
-
- /*
- * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
- * by event injection, halt vcpu.
- */
- if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
- !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK)) {
- vmx->nested.nested_run_pending = 0;
- return kvm_vcpu_halt(vcpu);
- }
- return 1;
-}
-
-/*
- * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
- * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
- * This function returns the new value we should put in vmcs12.guest_cr0.
- * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
- * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
- * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
- * didn't trap the bit, because if L1 did, so would L0).
- * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
- * been modified by L2, and L1 knows it. So just leave the old value of
- * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
- * isn't relevant, because if L0 traps this bit it can set it to anything.
- * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
- * changed these bits, and therefore they need to be updated, but L0
- * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
- * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
- */
-static inline unsigned long
-vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
- return
- /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
- /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
- /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
- vcpu->arch.cr0_guest_owned_bits));
-}
-
-static inline unsigned long
-vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
- return
- /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
- /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
- /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
- vcpu->arch.cr4_guest_owned_bits));
-}
-
-static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- u32 idt_vectoring;
- unsigned int nr;
-
- if (vcpu->arch.exception.injected) {
- nr = vcpu->arch.exception.nr;
- idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
-
- if (kvm_exception_is_soft(nr)) {
- vmcs12->vm_exit_instruction_len =
- vcpu->arch.event_exit_inst_len;
- idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
- } else
- idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
-
- if (vcpu->arch.exception.has_error_code) {
- idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
- vmcs12->idt_vectoring_error_code =
- vcpu->arch.exception.error_code;
- }
-
- vmcs12->idt_vectoring_info_field = idt_vectoring;
- } else if (vcpu->arch.nmi_injected) {
- vmcs12->idt_vectoring_info_field =
- INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
- } else if (vcpu->arch.interrupt.injected) {
- nr = vcpu->arch.interrupt.nr;
- idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
-
- if (vcpu->arch.interrupt.soft) {
- idt_vectoring |= INTR_TYPE_SOFT_INTR;
- vmcs12->vm_entry_instruction_len =
- vcpu->arch.event_exit_inst_len;
- } else
- idt_vectoring |= INTR_TYPE_EXT_INTR;
-
- vmcs12->idt_vectoring_info_field = idt_vectoring;
- }
-}
-
-static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long exit_qual;
- bool block_nested_events =
- vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
-
- if (vcpu->arch.exception.pending &&
- nested_vmx_check_exception(vcpu, &exit_qual)) {
- if (block_nested_events)
- return -EBUSY;
- nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
- return 0;
- }
-
- if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
- vmx->nested.preemption_timer_expired) {
- if (block_nested_events)
- return -EBUSY;
- nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
- return 0;
- }
-
- if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
- if (block_nested_events)
- return -EBUSY;
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
- NMI_VECTOR | INTR_TYPE_NMI_INTR |
- INTR_INFO_VALID_MASK, 0);
- /*
- * The NMI-triggered VM exit counts as injection:
- * clear this one and block further NMIs.
- */
- vcpu->arch.nmi_pending = 0;
- vmx_set_nmi_mask(vcpu, true);
- return 0;
- }
-
- if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
- nested_exit_on_intr(vcpu)) {
- if (block_nested_events)
- return -EBUSY;
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
- return 0;
- }
-
- vmx_complete_nested_posted_interrupt(vcpu);
- return 0;
-}
-
static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
{
to_vmx(vcpu)->req_immediate_exit = true;
}
-static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
-{
- ktime_t remaining =
- hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
- u64 value;
-
- if (ktime_to_ns(remaining) <= 0)
- return 0;
-
- value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
- do_div(value, 1000000);
- return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
-}
-
-/*
- * Update the guest state fields of vmcs12 to reflect changes that
- * occurred while L2 was running. (The "IA-32e mode guest" bit of the
- * VM-entry controls is also updated, since this is really a guest
- * state bit.)
- */
-static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
- vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
- vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
-
- vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
- vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
- vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
-
- vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
- vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
- vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
- vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
- vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
- vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
- vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
- vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
- vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
- vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
- vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
- vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
- vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
- vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
- vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
- vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
- vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
- vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
- vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
- vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
- vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
- vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
- vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
- vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
- vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
- vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
- vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
- vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
- vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
- vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
- vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
- vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
- vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
- vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
- vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
- vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
-
- vmcs12->guest_interruptibility_info =
- vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
- vmcs12->guest_pending_dbg_exceptions =
- vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
- if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
- vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
- else
- vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
-
- if (nested_cpu_has_preemption_timer(vmcs12)) {
- if (vmcs12->vm_exit_controls &
- VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
- vmcs12->vmx_preemption_timer_value =
- vmx_get_preemption_timer_value(vcpu);
- hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
- }
-
- /*
- * In some cases (usually, nested EPT), L2 is allowed to change its
- * own CR3 without exiting. If it has changed it, we must keep it.
- * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
- * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
- *
- * Additionally, restore L2's PDPTR to vmcs12.
- */
- if (enable_ept) {
- vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
- vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
- vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
- vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
- vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
- }
-
- vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
-
- if (nested_cpu_has_vid(vmcs12))
- vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
-
- vmcs12->vm_entry_controls =
- (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
- (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
-
- if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
- kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
- vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
- }
-
- /* TODO: These cannot have changed unless we have MSR bitmaps and
- * the relevant bit asks not to trap the change */
- if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
- vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
- if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
- vmcs12->guest_ia32_efer = vcpu->arch.efer;
- vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
- vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
- vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
- if (kvm_mpx_supported())
- vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
-}
-
-/*
- * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
- * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
- * and this function updates it to reflect the changes to the guest state while
- * L2 was running (and perhaps made some exits which were handled directly by L0
- * without going back to L1), and to reflect the exit reason.
- * Note that we do not have to copy here all VMCS fields, just those that
- * could have changed by the L2 guest or the exit - i.e., the guest-state and
- * exit-information fields only. Other fields are modified by L1 with VMWRITE,
- * which already writes to vmcs12 directly.
- */
-static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
- u32 exit_reason, u32 exit_intr_info,
- unsigned long exit_qualification)
-{
- /* update guest state fields: */
- sync_vmcs12(vcpu, vmcs12);
-
- /* update exit information fields: */
-
- vmcs12->vm_exit_reason = exit_reason;
- vmcs12->exit_qualification = exit_qualification;
- vmcs12->vm_exit_intr_info = exit_intr_info;
-
- vmcs12->idt_vectoring_info_field = 0;
- vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
- vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-
- if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
- vmcs12->launch_state = 1;
-
- /* vm_entry_intr_info_field is cleared on exit. Emulate this
- * instead of reading the real value. */
- vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
-
- /*
- * Transfer the event that L0 or L1 may wanted to inject into
- * L2 to IDT_VECTORING_INFO_FIELD.
- */
- vmcs12_save_pending_event(vcpu, vmcs12);
- }
-
- /*
- * Drop what we picked up for L2 via vmx_complete_interrupts. It is
- * preserved above and would only end up incorrectly in L1.
- */
- vcpu->arch.nmi_injected = false;
- kvm_clear_exception_queue(vcpu);
- kvm_clear_interrupt_queue(vcpu);
-}
-
-/*
- * A part of what we need to when the nested L2 guest exits and we want to
- * run its L1 parent, is to reset L1's guest state to the host state specified
- * in vmcs12.
- * This function is to be called not only on normal nested exit, but also on
- * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
- * Failures During or After Loading Guest State").
- * This function should be called when the active VMCS is L1's (vmcs01).
- */
-static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- struct kvm_segment seg;
- u32 entry_failure_code;
-
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
- vcpu->arch.efer = vmcs12->host_ia32_efer;
- else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
- vcpu->arch.efer |= (EFER_LMA | EFER_LME);
- else
- vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
- vmx_set_efer(vcpu, vcpu->arch.efer);
-
- kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
- kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
- vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
- vmx_set_interrupt_shadow(vcpu, 0);
-
- /*
- * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
- * actually changed, because vmx_set_cr0 refers to efer set above.
- *
- * CR0_GUEST_HOST_MASK is already set in the original vmcs01
- * (KVM doesn't change it);
- */
- vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
- vmx_set_cr0(vcpu, vmcs12->host_cr0);
-
- /* Same as above - no reason to call set_cr4_guest_host_mask(). */
- vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
- vmx_set_cr4(vcpu, vmcs12->host_cr4);
-
- nested_ept_uninit_mmu_context(vcpu);
-
- /*
- * Only PDPTE load can fail as the value of cr3 was checked on entry and
- * couldn't have changed.
- */
- if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
- nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
-
- if (!enable_ept)
- vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
-
- /*
- * If vmcs01 doesn't use VPID, CPU flushes TLB on every
- * VMEntry/VMExit. Thus, no need to flush TLB.
- *
- * If vmcs12 doesn't use VPID, L1 expects TLB to be
- * flushed on every VMEntry/VMExit.
- *
- * Otherwise, we can preserve TLB entries as long as we are
- * able to tag L1 TLB entries differently than L2 TLB entries.
- *
- * If vmcs12 uses EPT, we need to execute this flush on EPTP01
- * and therefore we request the TLB flush to happen only after VMCS EPTP
- * has been set by KVM_REQ_LOAD_CR3.
- */
- if (enable_vpid &&
- (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- }
-
- vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
- vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
- vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
- vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
- vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
- vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
- vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
-
- /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
- if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
- vmcs_write64(GUEST_BNDCFGS, 0);
-
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
- vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
- vcpu->arch.pat = vmcs12->host_ia32_pat;
- }
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
- vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
- vmcs12->host_ia32_perf_global_ctrl);
-
- /* Set L1 segment info according to Intel SDM
- 27.5.2 Loading Host Segment and Descriptor-Table Registers */
- seg = (struct kvm_segment) {
- .base = 0,
- .limit = 0xFFFFFFFF,
- .selector = vmcs12->host_cs_selector,
- .type = 11,
- .present = 1,
- .s = 1,
- .g = 1
- };
- if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
- seg.l = 1;
- else
- seg.db = 1;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
- seg = (struct kvm_segment) {
- .base = 0,
- .limit = 0xFFFFFFFF,
- .type = 3,
- .present = 1,
- .s = 1,
- .db = 1,
- .g = 1
- };
- seg.selector = vmcs12->host_ds_selector;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
- seg.selector = vmcs12->host_es_selector;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
- seg.selector = vmcs12->host_ss_selector;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
- seg.selector = vmcs12->host_fs_selector;
- seg.base = vmcs12->host_fs_base;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
- seg.selector = vmcs12->host_gs_selector;
- seg.base = vmcs12->host_gs_base;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
- seg = (struct kvm_segment) {
- .base = vmcs12->host_tr_base,
- .limit = 0x67,
- .selector = vmcs12->host_tr_selector,
- .type = 11,
- .present = 1
- };
- vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
-
- kvm_set_dr(vcpu, 7, 0x400);
- vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
-
- if (cpu_has_vmx_msr_bitmap())
- vmx_update_msr_bitmap(vcpu);
-
- if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
- vmcs12->vm_exit_msr_load_count))
- nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
-}
-
-static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
-{
- struct shared_msr_entry *efer_msr;
- unsigned int i;
-
- if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
- return vmcs_read64(GUEST_IA32_EFER);
-
- if (cpu_has_load_ia32_efer())
- return host_efer;
-
- for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
- if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
- return vmx->msr_autoload.guest.val[i].value;
- }
-
- efer_msr = find_msr_entry(vmx, MSR_EFER);
- if (efer_msr)
- return efer_msr->data;
-
- return host_efer;
-}
-
-static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmx_msr_entry g, h;
- struct msr_data msr;
- gpa_t gpa;
- u32 i, j;
-
- vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
-
- if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
- /*
- * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
- * as vmcs01.GUEST_DR7 contains a userspace defined value
- * and vcpu->arch.dr7 is not squirreled away before the
- * nested VMENTER (not worth adding a variable in nested_vmx).
- */
- if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
- kvm_set_dr(vcpu, 7, DR7_FIXED_1);
- else
- WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
- }
-
- /*
- * Note that calling vmx_set_{efer,cr0,cr4} is important as they
- * handle a variety of side effects to KVM's software model.
- */
- vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
-
- vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
- vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
-
- vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
- vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
-
- nested_ept_uninit_mmu_context(vcpu);
- vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
- __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
-
- /*
- * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
- * from vmcs01 (if necessary). The PDPTRs are not loaded on
- * VMFail, like everything else we just need to ensure our
- * software model is up-to-date.
- */
- ept_save_pdptrs(vcpu);
-
- kvm_mmu_reset_context(vcpu);
-
- if (cpu_has_vmx_msr_bitmap())
- vmx_update_msr_bitmap(vcpu);
-
- /*
- * This nasty bit of open coding is a compromise between blindly
- * loading L1's MSRs using the exit load lists (incorrect emulation
- * of VMFail), leaving the nested VM's MSRs in the software model
- * (incorrect behavior) and snapshotting the modified MSRs (too
- * expensive since the lists are unbound by hardware). For each
- * MSR that was (prematurely) loaded from the nested VMEntry load
- * list, reload it from the exit load list if it exists and differs
- * from the guest value. The intent is to stuff host state as
- * silently as possible, not to fully process the exit load list.
- */
- msr.host_initiated = false;
- for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
- gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
- if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
- pr_debug_ratelimited(
- "%s read MSR index failed (%u, 0x%08llx)\n",
- __func__, i, gpa);
- goto vmabort;
- }
-
- for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
- gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
- if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
- pr_debug_ratelimited(
- "%s read MSR failed (%u, 0x%08llx)\n",
- __func__, j, gpa);
- goto vmabort;
- }
- if (h.index != g.index)
- continue;
- if (h.value == g.value)
- break;
-
- if (nested_vmx_load_msr_check(vcpu, &h)) {
- pr_debug_ratelimited(
- "%s check failed (%u, 0x%x, 0x%x)\n",
- __func__, j, h.index, h.reserved);
- goto vmabort;
- }
-
- msr.index = h.index;
- msr.data = h.value;
- if (kvm_set_msr(vcpu, &msr)) {
- pr_debug_ratelimited(
- "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
- __func__, j, h.index, h.value);
- goto vmabort;
- }
- }
- }
-
- return;
-
-vmabort:
- nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
-}
-
-/*
- * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
- * and modify vmcs12 to make it see what it would expect to see there if
- * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
- */
-static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
- u32 exit_intr_info,
- unsigned long exit_qualification)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- /* trying to cancel vmlaunch/vmresume is a bug */
- WARN_ON_ONCE(vmx->nested.nested_run_pending);
-
- leave_guest_mode(vcpu);
-
- if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
- vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
-
- if (likely(!vmx->fail)) {
- if (exit_reason == -1)
- sync_vmcs12(vcpu, vmcs12);
- else
- prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
- exit_qualification);
-
- /*
- * Must happen outside of sync_vmcs12() as it will
- * also be used to capture vmcs12 cache as part of
- * capturing nVMX state for snapshot (migration).
- *
- * Otherwise, this flush will dirty guest memory at a
- * point it is already assumed by user-space to be
- * immutable.
- */
- nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
-
- if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
- vmcs12->vm_exit_msr_store_count))
- nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
- } else {
- /*
- * The only expected VM-instruction error is "VM entry with
- * invalid control field(s)." Anything else indicates a
- * problem with L0. And we should never get here with a
- * VMFail of any type if early consistency checks are enabled.
- */
- WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
- VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- WARN_ON_ONCE(nested_early_check);
- }
-
- vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-
- /* Update any VMCS fields that might have changed while L2 ran */
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
- vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
-
- if (kvm_has_tsc_control)
- decache_tsc_multiplier(vmx);
-
- if (vmx->nested.change_vmcs01_virtual_apic_mode) {
- vmx->nested.change_vmcs01_virtual_apic_mode = false;
- vmx_set_virtual_apic_mode(vcpu);
- } else if (!nested_cpu_has_ept(vmcs12) &&
- nested_cpu_has2(vmcs12,
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
- vmx_flush_tlb(vcpu, true);
- }
-
- /* This is needed for same reason as it was needed in prepare_vmcs02 */
- vmx->host_rsp = 0;
-
- /* Unpin physical memory we referred to in vmcs02 */
- if (vmx->nested.apic_access_page) {
- kvm_release_page_dirty(vmx->nested.apic_access_page);
- vmx->nested.apic_access_page = NULL;
- }
- if (vmx->nested.virtual_apic_page) {
- kvm_release_page_dirty(vmx->nested.virtual_apic_page);
- vmx->nested.virtual_apic_page = NULL;
- }
- if (vmx->nested.pi_desc_page) {
- kunmap(vmx->nested.pi_desc_page);
- kvm_release_page_dirty(vmx->nested.pi_desc_page);
- vmx->nested.pi_desc_page = NULL;
- vmx->nested.pi_desc = NULL;
- }
-
- /*
- * We are now running in L2, mmu_notifier will force to reload the
- * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
- */
- kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
-
- if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
- vmx->nested.need_vmcs12_sync = true;
-
- /* in case we halted in L2 */
- vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
-
- if (likely(!vmx->fail)) {
- /*
- * TODO: SDM says that with acknowledge interrupt on
- * exit, bit 31 of the VM-exit interrupt information
- * (valid interrupt) is always set to 1 on
- * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
- * need kvm_cpu_has_interrupt(). See the commit
- * message for details.
- */
- if (nested_exit_intr_ack_set(vcpu) &&
- exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
- kvm_cpu_has_interrupt(vcpu)) {
- int irq = kvm_cpu_get_interrupt(vcpu);
- WARN_ON(irq < 0);
- vmcs12->vm_exit_intr_info = irq |
- INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
- }
-
- if (exit_reason != -1)
- trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
- vmcs12->exit_qualification,
- vmcs12->idt_vectoring_info_field,
- vmcs12->vm_exit_intr_info,
- vmcs12->vm_exit_intr_error_code,
- KVM_ISA_VMX);
-
- load_vmcs12_host_state(vcpu, vmcs12);
-
- return;
- }
-
- /*
- * After an early L2 VM-entry failure, we're now back
- * in L1 which thinks it just finished a VMLAUNCH or
- * VMRESUME instruction, so we need to set the failure
- * flag and the VM-instruction error field of the VMCS
- * accordingly, and skip the emulated instruction.
- */
- (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
-
- /*
- * Restore L1's host state to KVM's software model. We're here
- * because a consistency check was caught by hardware, which
- * means some amount of guest state has been propagated to KVM's
- * model and needs to be unwound to the host's state.
- */
- nested_vmx_restore_host_state(vcpu);
-
- vmx->fail = 0;
-}
-
-/*
- * Forcibly leave nested mode in order to be able to reset the VCPU later on.
- */
-static void vmx_leave_nested(struct kvm_vcpu *vcpu)
-{
- if (is_guest_mode(vcpu)) {
- to_vmx(vcpu)->nested.nested_run_pending = 0;
- nested_vmx_vmexit(vcpu, -1, 0, 0);
- }
- free_nested(vcpu);
-}
-
static int vmx_check_intercept(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage)
@@ -12735,289 +7103,6 @@ static int enable_smi_window(struct kvm_vcpu *vcpu)
return 0;
}
-static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * In case we do two consecutive get/set_nested_state()s while L2 was
- * running hv_evmcs may end up not being mapped (we map it from
- * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always
- * have vmcs12 if it is true.
- */
- return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull ||
- vmx->nested.hv_evmcs;
-}
-
-static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
- struct kvm_nested_state __user *user_kvm_nested_state,
- u32 user_data_size)
-{
- struct vcpu_vmx *vmx;
- struct vmcs12 *vmcs12;
- struct kvm_nested_state kvm_state = {
- .flags = 0,
- .format = 0,
- .size = sizeof(kvm_state),
- .vmx.vmxon_pa = -1ull,
- .vmx.vmcs_pa = -1ull,
- };
-
- if (!vcpu)
- return kvm_state.size + 2 * VMCS12_SIZE;
-
- vmx = to_vmx(vcpu);
- vmcs12 = get_vmcs12(vcpu);
-
- if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
- kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
-
- if (nested_vmx_allowed(vcpu) &&
- (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
- kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
- kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
-
- if (vmx_has_valid_vmcs12(vcpu)) {
- kvm_state.size += VMCS12_SIZE;
-
- if (is_guest_mode(vcpu) &&
- nested_cpu_has_shadow_vmcs(vmcs12) &&
- vmcs12->vmcs_link_pointer != -1ull)
- kvm_state.size += VMCS12_SIZE;
- }
-
- if (vmx->nested.smm.vmxon)
- kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
-
- if (vmx->nested.smm.guest_mode)
- kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
-
- if (is_guest_mode(vcpu)) {
- kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
-
- if (vmx->nested.nested_run_pending)
- kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
- }
- }
-
- if (user_data_size < kvm_state.size)
- goto out;
-
- if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
- return -EFAULT;
-
- if (!vmx_has_valid_vmcs12(vcpu))
- goto out;
-
- /*
- * When running L2, the authoritative vmcs12 state is in the
- * vmcs02. When running L1, the authoritative vmcs12 state is
- * in the shadow or enlightened vmcs linked to vmcs01, unless
- * need_vmcs12_sync is set, in which case, the authoritative
- * vmcs12 state is in the vmcs12 already.
- */
- if (is_guest_mode(vcpu)) {
- sync_vmcs12(vcpu, vmcs12);
- } else if (!vmx->nested.need_vmcs12_sync) {
- if (vmx->nested.hv_evmcs)
- copy_enlightened_to_vmcs12(vmx);
- else if (enable_shadow_vmcs)
- copy_shadow_to_vmcs12(vmx);
- }
-
- if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
- return -EFAULT;
-
- if (nested_cpu_has_shadow_vmcs(vmcs12) &&
- vmcs12->vmcs_link_pointer != -1ull) {
- if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
- get_shadow_vmcs12(vcpu), sizeof(*vmcs12)))
- return -EFAULT;
- }
-
-out:
- return kvm_state.size;
-}
-
-static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
- struct kvm_nested_state __user *user_kvm_nested_state,
- struct kvm_nested_state *kvm_state)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12;
- u32 exit_qual;
- int ret;
-
- if (kvm_state->format != 0)
- return -EINVAL;
-
- if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
- nested_enable_evmcs(vcpu, NULL);
-
- if (!nested_vmx_allowed(vcpu))
- return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
-
- if (kvm_state->vmx.vmxon_pa == -1ull) {
- if (kvm_state->vmx.smm.flags)
- return -EINVAL;
-
- if (kvm_state->vmx.vmcs_pa != -1ull)
- return -EINVAL;
-
- vmx_leave_nested(vcpu);
- return 0;
- }
-
- if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
- return -EINVAL;
-
- if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
- (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
- return -EINVAL;
-
- if (kvm_state->vmx.smm.flags &
- ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
- return -EINVAL;
-
- /*
- * SMM temporarily disables VMX, so we cannot be in guest mode,
- * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
- * must be zero.
- */
- if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
- return -EINVAL;
-
- if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
- !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
- return -EINVAL;
-
- vmx_leave_nested(vcpu);
- if (kvm_state->vmx.vmxon_pa == -1ull)
- return 0;
-
- vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
- ret = enter_vmx_operation(vcpu);
- if (ret)
- return ret;
-
- /* Empty 'VMXON' state is permitted */
- if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
- return 0;
-
- if (kvm_state->vmx.vmcs_pa != -1ull) {
- if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
- !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
- return -EINVAL;
-
- set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
- } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
- /*
- * Sync eVMCS upon entry as we may not have
- * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
- */
- vmx->nested.need_vmcs12_sync = true;
- } else {
- return -EINVAL;
- }
-
- if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
- vmx->nested.smm.vmxon = true;
- vmx->nested.vmxon = false;
-
- if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
- vmx->nested.smm.guest_mode = true;
- }
-
- vmcs12 = get_vmcs12(vcpu);
- if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
- return -EFAULT;
-
- if (vmcs12->hdr.revision_id != VMCS12_REVISION)
- return -EINVAL;
-
- if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
- return 0;
-
- vmx->nested.nested_run_pending =
- !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
-
- if (nested_cpu_has_shadow_vmcs(vmcs12) &&
- vmcs12->vmcs_link_pointer != -1ull) {
- struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
- if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
- return -EINVAL;
-
- if (copy_from_user(shadow_vmcs12,
- user_kvm_nested_state->data + VMCS12_SIZE,
- sizeof(*vmcs12)))
- return -EFAULT;
-
- if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
- !shadow_vmcs12->hdr.shadow_vmcs)
- return -EINVAL;
- }
-
- if (check_vmentry_prereqs(vcpu, vmcs12) ||
- check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
- return -EINVAL;
-
- vmx->nested.dirty_vmcs12 = true;
- ret = nested_vmx_enter_non_root_mode(vcpu, false);
- if (ret)
- return -EINVAL;
-
- return 0;
-}
-
-static __exit void nested_vmx_hardware_unsetup(void)
-{
- int i;
-
- if (enable_shadow_vmcs) {
- for (i = 0; i < VMX_BITMAP_NR; i++)
- free_page((unsigned long)vmx_bitmap[i]);
- }
-}
-
-static __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
-{
- int i;
-
- if (enable_shadow_vmcs) {
- for (i = 0; i < VMX_BITMAP_NR; i++) {
- vmx_bitmap[i] = (unsigned long *)
- __get_free_page(GFP_KERNEL);
- if (!vmx_bitmap[i]) {
- nested_vmx_hardware_unsetup();
- return -ENOMEM;
- }
- }
-
- init_vmcs_shadow_fields();
- }
-
- exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear,
- exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
- exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld,
- exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst,
- exit_handlers[EXIT_REASON_VMREAD] = handle_vmread,
- exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume,
- exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite,
- exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff,
- exit_handlers[EXIT_REASON_VMON] = handle_vmon,
- exit_handlers[EXIT_REASON_INVEPT] = handle_invept,
- exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid,
- exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc,
-
- kvm_x86_ops->check_nested_events = vmx_check_nested_events;
- kvm_x86_ops->get_nested_state = vmx_get_nested_state;
- kvm_x86_ops->set_nested_state = vmx_set_nested_state;
- kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
- kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
-
- return 0;
-}
-
static __init int hardware_setup(void)
{
unsigned long host_bndcfgs;
@@ -13138,9 +7223,6 @@ static __init int hardware_setup(void)
kvm_x86_ops->cancel_hv_timer = NULL;
}
- if (!cpu_has_vmx_shadow_vmcs() || !nested)
- enable_shadow_vmcs = 0;
-
kvm_set_posted_intr_wakeup_handler(wakeup_handler);
kvm_mce_cap_supported |= MCG_LMCE_P;
OpenPOWER on IntegriCloud