summaryrefslogtreecommitdiffstats
path: root/board/xilinx/xilinx_enet/xemac.h
diff options
context:
space:
mode:
authorwdenk <wdenk>2004-02-23 23:54:43 +0000
committerwdenk <wdenk>2004-02-23 23:54:43 +0000
commit028ab6b598b628326116acd88e0f35aa9f526d12 (patch)
tree0d54315bd92d713a405004b6e36fca8d2b7c53e3 /board/xilinx/xilinx_enet/xemac.h
parent63e73c9a8ed5b32d9c4067ffaad953e9a8fe8f0a (diff)
downloadtalos-obmc-uboot-028ab6b598b628326116acd88e0f35aa9f526d12.tar.gz
talos-obmc-uboot-028ab6b598b628326116acd88e0f35aa9f526d12.zip
* Patch by Peter Ryser, 20 Feb 2004:
Add support for the Xilinx ML300 platform * Patch by Stephan Linz, 17 Feb 2004: Fix watchdog support for NIOS * Patch by Josh Fryman, 16 Feb 2004: Fix byte-swapping for cfi_flash.c for different bus widths * Patch by Jon Diekema, 14 Jeb 2004: Remove duplicate "FPGA Support" notes from the README file
Diffstat (limited to 'board/xilinx/xilinx_enet/xemac.h')
-rw-r--r--board/xilinx/xilinx_enet/xemac.h673
1 files changed, 673 insertions, 0 deletions
diff --git a/board/xilinx/xilinx_enet/xemac.h b/board/xilinx/xilinx_enet/xemac.h
new file mode 100644
index 0000000000..ed704bf29b
--- /dev/null
+++ b/board/xilinx/xilinx_enet/xemac.h
@@ -0,0 +1,673 @@
+/******************************************************************************
+*
+* Author: Xilinx, Inc.
+*
+*
+* This program is free software; you can redistribute it and/or modify it
+* under the terms of the GNU General Public License as published by the
+* Free Software Foundation; either version 2 of the License, or (at your
+* option) any later version.
+*
+*
+* XILINX IS PROVIDING THIS DESIGN, CODE, OR INFORMATION "AS IS" AS A
+* COURTESY TO YOU. BY PROVIDING THIS DESIGN, CODE, OR INFORMATION AS
+* ONE POSSIBLE IMPLEMENTATION OF THIS FEATURE, APPLICATION OR STANDARD,
+* XILINX IS MAKING NO REPRESENTATION THAT THIS IMPLEMENTATION IS FREE
+* FROM ANY CLAIMS OF INFRINGEMENT, AND YOU ARE RESPONSIBLE FOR OBTAINING
+* ANY THIRD PARTY RIGHTS YOU MAY REQUIRE FOR YOUR IMPLEMENTATION.
+* XILINX EXPRESSLY DISCLAIMS ANY WARRANTY WHATSOEVER WITH RESPECT TO
+* THE ADEQUACY OF THE IMPLEMENTATION, INCLUDING BUT NOT LIMITED TO ANY
+* WARRANTIES OR REPRESENTATIONS THAT THIS IMPLEMENTATION IS FREE FROM
+* CLAIMS OF INFRINGEMENT, IMPLIED WARRANTIES OF MERCHANTABILITY AND
+* FITNESS FOR A PARTICULAR PURPOSE.
+*
+*
+* Xilinx hardware products are not intended for use in life support
+* appliances, devices, or systems. Use in such applications is
+* expressly prohibited.
+*
+*
+* (c) Copyright 2002-2004 Xilinx Inc.
+* All rights reserved.
+*
+*
+* You should have received a copy of the GNU General Public License along
+* with this program; if not, write to the Free Software Foundation, Inc.,
+* 675 Mass Ave, Cambridge, MA 02139, USA.
+*
+******************************************************************************/
+/*****************************************************************************/
+/**
+*
+* @file xemac.h
+*
+* The Xilinx Ethernet driver component. This component supports the Xilinx
+* Ethernet 10/100 MAC (EMAC).
+*
+* The Xilinx Ethernet 10/100 MAC supports the following features:
+* - Simple and scatter-gather DMA operations, as well as simple memory
+* mapped direct I/O interface (FIFOs).
+* - Media Independent Interface (MII) for connection to external
+* 10/100 Mbps PHY transceivers.
+* - MII management control reads and writes with MII PHYs
+* - Independent internal transmit and receive FIFOs
+* - CSMA/CD compliant operations for half-duplex modes
+* - Programmable PHY reset signal
+* - Unicast, broadcast, and promiscuous address filtering (no multicast yet)
+* - Internal loopback
+* - Automatic source address insertion or overwrite (programmable)
+* - Automatic FCS insertion and stripping (programmable)
+* - Automatic pad insertion and stripping (programmable)
+* - Pause frame (flow control) detection in full-duplex mode
+* - Programmable interframe gap
+* - VLAN frame support.
+* - Pause frame support
+*
+* The device driver supports all the features listed above.
+*
+* <b>Driver Description</b>
+*
+* The device driver enables higher layer software (e.g., an application) to
+* communicate to the EMAC. The driver handles transmission and reception of
+* Ethernet frames, as well as configuration of the controller. It does not
+* handle protocol stack functionality such as Link Layer Control (LLC) or the
+* Address Resolution Protocol (ARP). The protocol stack that makes use of the
+* driver handles this functionality. This implies that the driver is simply a
+* pass-through mechanism between a protocol stack and the EMAC. A single device
+* driver can support multiple EMACs.
+*
+* The driver is designed for a zero-copy buffer scheme. That is, the driver will
+* not copy buffers. This avoids potential throughput bottlenecks within the
+* driver.
+*
+* Since the driver is a simple pass-through mechanism between a protocol stack
+* and the EMAC, no assembly or disassembly of Ethernet frames is done at the
+* driver-level. This assumes that the protocol stack passes a correctly
+* formatted Ethernet frame to the driver for transmission, and that the driver
+* does not validate the contents of an incoming frame
+*
+* <b>PHY Communication</b>
+*
+* The driver provides rudimentary read and write functions to allow the higher
+* layer software to access the PHY. The EMAC provides MII registers for the
+* driver to access. This management interface can be parameterized away in the
+* FPGA implementation process. If this is the case, the PHY read and write
+* functions of the driver return XST_NO_FEATURE.
+*
+* External loopback is usually supported at the PHY. It is up to the user to
+* turn external loopback on or off at the PHY. The driver simply provides pass-
+* through functions for configuring the PHY. The driver does not read, write,
+* or reset the PHY on its own. All control of the PHY must be done by the user.
+*
+* <b>Asynchronous Callbacks</b>
+*
+* The driver services interrupts and passes Ethernet frames to the higher layer
+* software through asynchronous callback functions. When using the driver
+* directly (i.e., not with the RTOS protocol stack), the higher layer
+* software must register its callback functions during initialization. The
+* driver requires callback functions for received frames, for confirmation of
+* transmitted frames, and for asynchronous errors.
+*
+* <b>Interrupts</b>
+*
+* The driver has no dependencies on the interrupt controller. The driver
+* provides two interrupt handlers. XEmac_IntrHandlerDma() handles interrupts
+* when the EMAC is configured with scatter-gather DMA. XEmac_IntrHandlerFifo()
+* handles interrupts when the EMAC is configured for direct FIFO I/O or simple
+* DMA. Either of these routines can be connected to the system interrupt
+* controller by the user.
+*
+* <b>Interrupt Frequency</b>
+*
+* When the EMAC is configured with scatter-gather DMA, the frequency of
+* interrupts can be controlled with the interrupt coalescing features of the
+* scatter-gather DMA engine. The frequency of interrupts can be adjusted using
+* the driver API functions for setting the packet count threshold and the packet
+* wait bound values.
+*
+* The scatter-gather DMA engine only interrupts when the packet count threshold
+* is reached, instead of interrupting for each packet. A packet is a generic
+* term used by the scatter-gather DMA engine, and is equivalent to an Ethernet
+* frame in our case.
+*
+* The packet wait bound is a timer value used during interrupt coalescing to
+* trigger an interrupt when not enough packets have been received to reach the
+* packet count threshold.
+*
+* These values can be tuned by the user to meet their needs. If there appear to
+* be interrupt latency problems or delays in packet arrival that are longer than
+* might be expected, the user should verify that the packet count threshold is
+* set low enough to receive interrupts before the wait bound timer goes off.
+*
+* <b>Device Reset</b>
+*
+* Some errors that can occur in the device require a device reset. These errors
+* are listed in the XEmac_SetErrorHandler() function header. The user's error
+* handler is responsible for resetting the device and re-configuring it based on
+* its needs (the driver does not save the current configuration). When
+* integrating into an RTOS, these reset and re-configure obligations are
+* taken care of by the Xilinx adapter software if it exists for that RTOS.
+*
+* <b>Device Configuration</b>
+*
+* The device can be configured in various ways during the FPGA implementation
+* process. Configuration parameters are stored in the xemac_g.c files.
+* A table is defined where each entry contains configuration information
+* for an EMAC device. This information includes such things as the base address
+* of the memory-mapped device, the base addresses of IPIF, DMA, and FIFO modules
+* within the device, and whether the device has DMA, counter registers,
+* multicast support, MII support, and flow control.
+*
+* The driver tries to use the features built into the device. So if, for
+* example, the hardware is configured with scatter-gather DMA, the driver
+* expects to start the scatter-gather channels and expects that the user has set
+* up the buffer descriptor lists already. If the user expects to use the driver
+* in a mode different than how the hardware is configured, the user should
+* modify the configuration table to reflect the mode to be used. Modifying the
+* configuration table is a workaround for now until we get some experience with
+* how users are intending to use the hardware in its different configurations.
+* For example, if the hardware is built with scatter-gather DMA but the user is
+* intending to use only simple DMA, the user either needs to modify the config
+* table as a workaround or rebuild the hardware with only simple DMA. The
+* recommendation at this point is to build the hardware with the features you
+* intend to use. If you're inclined to modify the table, do so before the call
+* to XEmac_Initialize(). Here is a snippet of code that changes a device to
+* simple DMA (the hardware needs to have DMA for this to work of course):
+* <pre>
+* XEmac_Config *ConfigPtr;
+*
+* ConfigPtr = XEmac_LookupConfig(DeviceId);
+* ConfigPtr->IpIfDmaConfig = XEM_CFG_SIMPLE_DMA;
+* </pre>
+*
+* <b>Simple DMA</b>
+*
+* Simple DMA is supported through the FIFO functions, FifoSend and FifoRecv, of
+* the driver (i.e., there is no separate interface for it). The driver makes use
+* of the DMA engine for a simple DMA transfer if the device is configured with
+* DMA, otherwise it uses the FIFOs directly. While the simple DMA interface is
+* therefore transparent to the user, the caching of network buffers is not.
+* If the device is configured with DMA and the FIFO interface is used, the user
+* must ensure that the network buffers are not cached or are cache coherent,
+* since DMA will be used to transfer to and from the Emac device. If the device
+* is configured with DMA and the user really wants to use the FIFOs directly,
+* the user should rebuild the hardware without DMA. If unable to do this, there
+* is a workaround (described above in Device Configuration) to modify the
+* configuration table of the driver to fake the driver into thinking the device
+* has no DMA. A code snippet follows:
+* <pre>
+* XEmac_Config *ConfigPtr;
+*
+* ConfigPtr = XEmac_LookupConfig(DeviceId);
+* ConfigPtr->IpIfDmaConfig = XEM_CFG_NO_DMA;
+* </pre>
+*
+* <b>Asserts</b>
+*
+* Asserts are used within all Xilinx drivers to enforce constraints on argument
+* values. Asserts can be turned off on a system-wide basis by defining, at
+* compile time, the NDEBUG identifier. By default, asserts are turned on and it
+* is recommended that users leave asserts on during development.
+*
+* <b>Building the driver</b>
+*
+* The XEmac driver is composed of several source files. Why so many? This
+* allows the user to build and link only those parts of the driver that are
+* necessary. Since the EMAC hardware can be configured in various ways (e.g.,
+* with or without DMA), the driver too can be built with varying features.
+* For the most part, this means that besides always linking in xemac.c, you
+* link in only the driver functionality you want. Some of the choices you have
+* are polled vs. interrupt, interrupt with FIFOs only vs. interrupt with DMA,
+* self-test diagnostics, and driver statistics. Note that currently the DMA code
+* must be linked in, even if you don't have DMA in the device.
+*
+* @note
+*
+* Xilinx drivers are typically composed of two components, one is the driver
+* and the other is the adapter. The driver is independent of OS and processor
+* and is intended to be highly portable. The adapter is OS-specific and
+* facilitates communication between the driver and an OS.
+* <br><br>
+* This driver is intended to be RTOS and processor independent. It works
+* with physical addresses only. Any needs for dynamic memory management,
+* threads or thread mutual exclusion, virtual memory, or cache control must
+* be satisfied by the layer above this driver.
+*
+* <pre>
+* MODIFICATION HISTORY:
+*
+* Ver Who Date Changes
+* ----- ---- -------- -------------------------------------------------------
+* 1.00a rpm 07/31/01 First release
+* 1.00b rpm 02/20/02 Repartitioned files and functions
+* 1.00b rpm 10/08/02 Replaced HasSgDma boolean with IpifDmaConfig enumerated
+* configuration parameter
+* 1.00c rpm 12/05/02 New version includes support for simple DMA and the delay
+* argument to SgSend
+* 1.00c rpm 02/03/03 The XST_DMA_SG_COUNT_EXCEEDED return code was removed
+* from SetPktThreshold in the internal DMA driver. Also
+* avoided compiler warnings by initializing Result in the
+* DMA interrupt service routines.
+* </pre>
+*
+******************************************************************************/
+
+#ifndef XEMAC_H /* prevent circular inclusions */
+#define XEMAC_H /* by using protection macros */
+
+/***************************** Include Files *********************************/
+
+#include "xbasic_types.h"
+#include "xstatus.h"
+#include "xparameters.h"
+#include "xpacket_fifo_v1_00_b.h" /* Uses v1.00b of Packet Fifo */
+#include "xdma_channel.h"
+
+/************************** Constant Definitions *****************************/
+
+/*
+ * Device information
+ */
+#define XEM_DEVICE_NAME "xemac"
+#define XEM_DEVICE_DESC "Xilinx Ethernet 10/100 MAC"
+
+/** @name Configuration options
+ *
+ * Device configuration options (see the XEmac_SetOptions() and
+ * XEmac_GetOptions() for information on how to use these options)
+ * @{
+ */
+/**
+ * <pre>
+ * XEM_BROADCAST_OPTION Broadcast addressing on or off (default is on)
+ * XEM_UNICAST_OPTION Unicast addressing on or off (default is on)
+ * XEM_PROMISC_OPTION Promiscuous addressing on or off (default is off)
+ * XEM_FDUPLEX_OPTION Full duplex on or off (default is off)
+ * XEM_POLLED_OPTION Polled mode on or off (default is off)
+ * XEM_LOOPBACK_OPTION Internal loopback on or off (default is off)
+ * XEM_FLOW_CONTROL_OPTION Interpret pause frames in full duplex mode
+ * (default is off)
+ * XEM_INSERT_PAD_OPTION Pad short frames on transmit (default is on)
+ * XEM_INSERT_FCS_OPTION Insert FCS (CRC) on transmit (default is on)
+ * XEM_INSERT_ADDR_OPTION Insert source address on transmit (default is on)
+ * XEM_OVWRT_ADDR_OPTION Overwrite source address on transmit. This is
+ * only used if source address insertion is on.
+ * (default is on)
+ * XEM_STRIP_PAD_FCS_OPTION Strip FCS and padding from received frames
+ * (default is off)
+ * </pre>
+ */
+#define XEM_UNICAST_OPTION 0x00000001UL
+#define XEM_BROADCAST_OPTION 0x00000002UL
+#define XEM_PROMISC_OPTION 0x00000004UL
+#define XEM_FDUPLEX_OPTION 0x00000008UL
+#define XEM_POLLED_OPTION 0x00000010UL
+#define XEM_LOOPBACK_OPTION 0x00000020UL
+#define XEM_FLOW_CONTROL_OPTION 0x00000080UL
+#define XEM_INSERT_PAD_OPTION 0x00000100UL
+#define XEM_INSERT_FCS_OPTION 0x00000200UL
+#define XEM_INSERT_ADDR_OPTION 0x00000400UL
+#define XEM_OVWRT_ADDR_OPTION 0x00000800UL
+#define XEM_STRIP_PAD_FCS_OPTION 0x00002000UL
+/*@}*/
+/*
+ * Not supported yet:
+ * XEM_MULTICAST_OPTION Multicast addressing on or off (default is off)
+ */
+/* NOT SUPPORTED YET... */
+#define XEM_MULTICAST_OPTION 0x00000040UL
+
+/*
+ * Some default values for interrupt coalescing within the scatter-gather
+ * DMA engine.
+ */
+#define XEM_SGDMA_DFT_THRESHOLD 1 /* Default pkt threshold */
+#define XEM_SGDMA_MAX_THRESHOLD 255 /* Maximum pkt theshold */
+#define XEM_SGDMA_DFT_WAITBOUND 5 /* Default pkt wait bound (msec) */
+#define XEM_SGDMA_MAX_WAITBOUND 1023 /* Maximum pkt wait bound (msec) */
+
+/*
+ * Direction identifiers. These are used for setting values like packet
+ * thresholds and wait bound for specific channels
+ */
+#define XEM_SEND 1
+#define XEM_RECV 2
+
+/*
+ * Arguments to SgSend function to indicate whether to hold off starting
+ * the scatter-gather engine.
+ */
+#define XEM_SGDMA_NODELAY 0 /* start SG DMA immediately */
+#define XEM_SGDMA_DELAY 1 /* do not start SG DMA */
+
+/*
+ * Constants to determine the configuration of the hardware device. They are
+ * used to allow the driver to verify it can operate with the hardware.
+ */
+#define XEM_CFG_NO_IPIF 0 /* Not supported by the driver */
+#define XEM_CFG_NO_DMA 1 /* No DMA */
+#define XEM_CFG_SIMPLE_DMA 2 /* Simple DMA */
+#define XEM_CFG_DMA_SG 3 /* DMA scatter gather */
+
+/*
+ * The next few constants help upper layers determine the size of memory
+ * pools used for Ethernet buffers and descriptor lists.
+ */
+#define XEM_MAC_ADDR_SIZE 6 /* six-byte MAC address */
+#define XEM_MTU 1500 /* max size of Ethernet frame */
+#define XEM_HDR_SIZE 14 /* size of Ethernet header */
+#define XEM_HDR_VLAN_SIZE 18 /* size of Ethernet header with VLAN */
+#define XEM_TRL_SIZE 4 /* size of Ethernet trailer (FCS) */
+#define XEM_MAX_FRAME_SIZE (XEM_MTU + XEM_HDR_SIZE + XEM_TRL_SIZE)
+#define XEM_MAX_VLAN_FRAME_SIZE (XEM_MTU + XEM_HDR_VLAN_SIZE + XEM_TRL_SIZE)
+
+/*
+ * Define a default number of send and receive buffers
+ */
+#define XEM_MIN_RECV_BUFS 32 /* minimum # of recv buffers */
+#define XEM_DFT_RECV_BUFS 64 /* default # of recv buffers */
+
+#define XEM_MIN_SEND_BUFS 16 /* minimum # of send buffers */
+#define XEM_DFT_SEND_BUFS 32 /* default # of send buffers */
+
+#define XEM_MIN_BUFFERS (XEM_MIN_RECV_BUFS + XEM_MIN_SEND_BUFS)
+#define XEM_DFT_BUFFERS (XEM_DFT_RECV_BUFS + XEM_DFT_SEND_BUFS)
+
+/*
+ * Define the number of send and receive buffer descriptors, used for
+ * scatter-gather DMA
+ */
+#define XEM_MIN_RECV_DESC 16 /* minimum # of recv descriptors */
+#define XEM_DFT_RECV_DESC 32 /* default # of recv descriptors */
+
+#define XEM_MIN_SEND_DESC 8 /* minimum # of send descriptors */
+#define XEM_DFT_SEND_DESC 16 /* default # of send descriptors */
+
+/**************************** Type Definitions *******************************/
+
+/**
+ * Ethernet statistics (see XEmac_GetStats() and XEmac_ClearStats())
+ */
+typedef struct {
+ u32 XmitFrames; /**< Number of frames transmitted */
+ u32 XmitBytes; /**< Number of bytes transmitted */
+ u32 XmitLateCollisionErrors;
+ /**< Number of transmission failures
+ due to late collisions */
+ u32 XmitExcessDeferral; /**< Number of transmission failures
+ due o excess collision deferrals */
+ u32 XmitOverrunErrors; /**< Number of transmit overrun errors */
+ u32 XmitUnderrunErrors; /**< Number of transmit underrun errors */
+ u32 RecvFrames; /**< Number of frames received */
+ u32 RecvBytes; /**< Number of bytes received */
+ u32 RecvFcsErrors; /**< Number of frames discarded due
+ to FCS errors */
+ u32 RecvAlignmentErrors; /**< Number of frames received with
+ alignment errors */
+ u32 RecvOverrunErrors; /**< Number of frames discarded due
+ to overrun errors */
+ u32 RecvUnderrunErrors; /**< Number of recv underrun errors */
+ u32 RecvMissedFrameErrors;
+ /**< Number of frames missed by MAC */
+ u32 RecvCollisionErrors; /**< Number of frames discarded due
+ to collisions */
+ u32 RecvLengthFieldErrors;
+ /**< Number of frames discarded with
+ invalid length field */
+ u32 RecvShortErrors; /**< Number of short frames discarded */
+ u32 RecvLongErrors; /**< Number of long frames discarded */
+ u32 DmaErrors; /**< Number of DMA errors since init */
+ u32 FifoErrors; /**< Number of FIFO errors since init */
+ u32 RecvInterrupts; /**< Number of receive interrupts */
+ u32 XmitInterrupts; /**< Number of transmit interrupts */
+ u32 EmacInterrupts; /**< Number of MAC (device) interrupts */
+ u32 TotalIntrs; /**< Total interrupts */
+} XEmac_Stats;
+
+/**
+ * This typedef contains configuration information for a device.
+ */
+typedef struct {
+ u16 DeviceId; /**< Unique ID of device */
+ u32 BaseAddress; /**< Register base address */
+ u32 HasCounters; /**< Does device have counters? */
+ u8 IpIfDmaConfig; /**< IPIF/DMA hardware configuration */
+ u32 HasMii; /**< Does device support MII? */
+
+} XEmac_Config;
+
+/** @name Typedefs for callbacks
+ * Callback functions.
+ * @{
+ */
+/**
+ * Callback when data is sent or received with scatter-gather DMA.
+ *
+ * @param CallBackRef is a callback reference passed in by the upper layer
+ * when setting the callback functions, and passed back to the upper
+ * layer when the callback is invoked.
+ * @param BdPtr is a pointer to the first buffer descriptor in a list of
+ * buffer descriptors.
+ * @param NumBds is the number of buffer descriptors in the list pointed
+ * to by BdPtr.
+ */
+typedef void (*XEmac_SgHandler) (void *CallBackRef, XBufDescriptor * BdPtr,
+ u32 NumBds);
+
+/**
+ * Callback when data is sent or received with direct FIFO communication or
+ * simple DMA. The user typically defines two callacks, one for send and one
+ * for receive.
+ *
+ * @param CallBackRef is a callback reference passed in by the upper layer
+ * when setting the callback functions, and passed back to the upper
+ * layer when the callback is invoked.
+ */
+typedef void (*XEmac_FifoHandler) (void *CallBackRef);
+
+/**
+ * Callback when an asynchronous error occurs.
+ *
+ * @param CallBackRef is a callback reference passed in by the upper layer
+ * when setting the callback functions, and passed back to the upper
+ * layer when the callback is invoked.
+ * @param ErrorCode is a Xilinx error code defined in xstatus.h. Also see
+ * XEmac_SetErrorHandler() for a description of possible errors.
+ */
+typedef void (*XEmac_ErrorHandler) (void *CallBackRef, XStatus ErrorCode);
+/*@}*/
+
+/**
+ * The XEmac driver instance data. The user is required to allocate a
+ * variable of this type for every EMAC device in the system. A pointer
+ * to a variable of this type is then passed to the driver API functions.
+ */
+typedef struct {
+ u32 BaseAddress; /* Base address (of IPIF) */
+ u32 IsStarted; /* Device is currently started */
+ u32 IsReady; /* Device is initialized and ready */
+ u32 IsPolled; /* Device is in polled mode */
+ u8 IpIfDmaConfig; /* IPIF/DMA hardware configuration */
+ u32 HasMii; /* Does device support MII? */
+ u32 HasMulticastHash; /* Does device support multicast hash table? */
+
+ XEmac_Stats Stats;
+ XPacketFifoV100b RecvFifo; /* FIFO used to receive frames */
+ XPacketFifoV100b SendFifo; /* FIFO used to send frames */
+
+ /*
+ * Callbacks
+ */
+ XEmac_FifoHandler FifoRecvHandler; /* for non-DMA/simple DMA interrupts */
+ void *FifoRecvRef;
+ XEmac_FifoHandler FifoSendHandler; /* for non-DMA/simple DMA interrupts */
+ void *FifoSendRef;
+ XEmac_ErrorHandler ErrorHandler; /* for asynchronous errors */
+ void *ErrorRef;
+
+ XDmaChannel RecvChannel; /* DMA receive channel driver */
+ XDmaChannel SendChannel; /* DMA send channel driver */
+
+ XEmac_SgHandler SgRecvHandler; /* callback for scatter-gather DMA */
+ void *SgRecvRef;
+ XEmac_SgHandler SgSendHandler; /* callback for scatter-gather DMA */
+ void *SgSendRef;
+} XEmac;
+
+/***************** Macros (Inline Functions) Definitions *********************/
+
+/*****************************************************************************/
+/**
+*
+* This macro determines if the device is currently configured for
+* scatter-gather DMA.
+*
+* @param InstancePtr is a pointer to the XEmac instance to be worked on.
+*
+* @return
+*
+* Boolean TRUE if the device is configured for scatter-gather DMA, or FALSE
+* if it is not.
+*
+* @note
+*
+* Signature: u32 XEmac_mIsSgDma(XEmac *InstancePtr)
+*
+******************************************************************************/
+#define XEmac_mIsSgDma(InstancePtr) \
+ ((InstancePtr)->IpIfDmaConfig == XEM_CFG_DMA_SG)
+
+/*****************************************************************************/
+/**
+*
+* This macro determines if the device is currently configured for simple DMA.
+*
+* @param InstancePtr is a pointer to the XEmac instance to be worked on.
+*
+* @return
+*
+* Boolean TRUE if the device is configured for simple DMA, or FALSE otherwise
+*
+* @note
+*
+* Signature: u32 XEmac_mIsSimpleDma(XEmac *InstancePtr)
+*
+******************************************************************************/
+#define XEmac_mIsSimpleDma(InstancePtr) \
+ ((InstancePtr)->IpIfDmaConfig == XEM_CFG_SIMPLE_DMA)
+
+/*****************************************************************************/
+/**
+*
+* This macro determines if the device is currently configured with DMA (either
+* simple DMA or scatter-gather DMA)
+*
+* @param InstancePtr is a pointer to the XEmac instance to be worked on.
+*
+* @return
+*
+* Boolean TRUE if the device is configured with DMA, or FALSE otherwise
+*
+* @note
+*
+* Signature: u32 XEmac_mIsDma(XEmac *InstancePtr)
+*
+******************************************************************************/
+#define XEmac_mIsDma(InstancePtr) \
+ (XEmac_mIsSimpleDma(InstancePtr) || XEmac_mIsSgDma(InstancePtr))
+
+/************************** Function Prototypes ******************************/
+
+/*
+ * Initialization functions in xemac.c
+ */
+XStatus XEmac_Initialize(XEmac * InstancePtr, u16 DeviceId);
+XStatus XEmac_Start(XEmac * InstancePtr);
+XStatus XEmac_Stop(XEmac * InstancePtr);
+void XEmac_Reset(XEmac * InstancePtr);
+XEmac_Config *XEmac_LookupConfig(u16 DeviceId);
+
+/*
+ * Diagnostic functions in xemac_selftest.c
+ */
+XStatus XEmac_SelfTest(XEmac * InstancePtr);
+
+/*
+ * Polled functions in xemac_polled.c
+ */
+XStatus XEmac_PollSend(XEmac * InstancePtr, u8 * BufPtr, u32 ByteCount);
+XStatus XEmac_PollRecv(XEmac * InstancePtr, u8 * BufPtr, u32 * ByteCountPtr);
+
+/*
+ * Interrupts with scatter-gather DMA functions in xemac_intr_dma.c
+ */
+XStatus XEmac_SgSend(XEmac * InstancePtr, XBufDescriptor * BdPtr, int Delay);
+XStatus XEmac_SgRecv(XEmac * InstancePtr, XBufDescriptor * BdPtr);
+XStatus XEmac_SetPktThreshold(XEmac * InstancePtr, u32 Direction, u8 Threshold);
+XStatus XEmac_GetPktThreshold(XEmac * InstancePtr, u32 Direction,
+ u8 * ThreshPtr);
+XStatus XEmac_SetPktWaitBound(XEmac * InstancePtr, u32 Direction,
+ u32 TimerValue);
+XStatus XEmac_GetPktWaitBound(XEmac * InstancePtr, u32 Direction,
+ u32 * WaitPtr);
+XStatus XEmac_SetSgRecvSpace(XEmac * InstancePtr, u32 * MemoryPtr,
+ u32 ByteCount);
+XStatus XEmac_SetSgSendSpace(XEmac * InstancePtr, u32 * MemoryPtr,
+ u32 ByteCount);
+void XEmac_SetSgRecvHandler(XEmac * InstancePtr, void *CallBackRef,
+ XEmac_SgHandler FuncPtr);
+void XEmac_SetSgSendHandler(XEmac * InstancePtr, void *CallBackRef,
+ XEmac_SgHandler FuncPtr);
+
+void XEmac_IntrHandlerDma(void *InstancePtr); /* interrupt handler */
+
+/*
+ * Interrupts with direct FIFO functions in xemac_intr_fifo.c. Also used
+ * for simple DMA.
+ */
+XStatus XEmac_FifoSend(XEmac * InstancePtr, u8 * BufPtr, u32 ByteCount);
+XStatus XEmac_FifoRecv(XEmac * InstancePtr, u8 * BufPtr, u32 * ByteCountPtr);
+void XEmac_SetFifoRecvHandler(XEmac * InstancePtr, void *CallBackRef,
+ XEmac_FifoHandler FuncPtr);
+void XEmac_SetFifoSendHandler(XEmac * InstancePtr, void *CallBackRef,
+ XEmac_FifoHandler FuncPtr);
+
+void XEmac_IntrHandlerFifo(void *InstancePtr); /* interrupt handler */
+
+/*
+ * General interrupt-related functions in xemac_intr.c
+ */
+void XEmac_SetErrorHandler(XEmac * InstancePtr, void *CallBackRef,
+ XEmac_ErrorHandler FuncPtr);
+
+/*
+ * MAC configuration in xemac_options.c
+ */
+XStatus XEmac_SetOptions(XEmac * InstancePtr, u32 OptionFlag);
+u32 XEmac_GetOptions(XEmac * InstancePtr);
+XStatus XEmac_SetMacAddress(XEmac * InstancePtr, u8 * AddressPtr);
+void XEmac_GetMacAddress(XEmac * InstancePtr, u8 * BufferPtr);
+XStatus XEmac_SetInterframeGap(XEmac * InstancePtr, u8 Part1, u8 Part2);
+void XEmac_GetInterframeGap(XEmac * InstancePtr, u8 * Part1Ptr, u8 * Part2Ptr);
+
+/*
+ * Multicast functions in xemac_multicast.c (not supported by EMAC yet)
+ */
+XStatus XEmac_MulticastAdd(XEmac * InstancePtr, u8 * AddressPtr);
+XStatus XEmac_MulticastClear(XEmac * InstancePtr);
+
+/*
+ * PHY configuration in xemac_phy.c
+ */
+XStatus XEmac_PhyRead(XEmac * InstancePtr, u32 PhyAddress,
+ u32 RegisterNum, u16 * PhyDataPtr);
+XStatus XEmac_PhyWrite(XEmac * InstancePtr, u32 PhyAddress,
+ u32 RegisterNum, u16 PhyData);
+
+/*
+ * Statistics in xemac_stats.c
+ */
+void XEmac_GetStats(XEmac * InstancePtr, XEmac_Stats * StatsPtr);
+void XEmac_ClearStats(XEmac * InstancePtr);
+
+#endif /* end of protection macro */
OpenPOWER on IntegriCloud