summaryrefslogtreecommitdiffstats
path: root/include/linux/log2.h
blob: 99922bedfcc90acaef644369aee3d5e126b7d46d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
/* Integer base 2 logarithm calculation
 *
 * Copyright (C) 2006 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version
 * 2 of the License, or (at your option) any later version.
 */

#ifndef _LINUX_LOG2_H
#define _LINUX_LOG2_H

#include <linux/types.h>
#include <linux/bitops.h>

/*
 * deal with unrepresentable constant logarithms
 */
extern __attribute__((const, noreturn))
int ____ilog2_NaN(void);

/*
 * non-constant log of base 2 calculators
 * - the arch may override these in asm/bitops.h if they can be implemented
 *   more efficiently than using fls() and fls64()
 * - the arch is not required to handle n==0 if implementing the fallback
 */
#ifndef CONFIG_ARCH_HAS_ILOG2_U32
static inline __attribute__((const))
int __ilog2_u32(u32 n)
{
	return fls(n) - 1;
}
#endif

#ifndef CONFIG_ARCH_HAS_ILOG2_U64
static inline __attribute__((const))
int __ilog2_u64(u64 n)
{
	return fls64(n) - 1;
}
#endif

/*
 *  Determine whether some value is a power of two, where zero is
 * *not* considered a power of two.
 */

static inline __attribute__((const))
bool is_power_of_2(unsigned long n)
{
	return (n != 0 && ((n & (n - 1)) == 0));
}

/*
 * round up to nearest power of two
 */
static inline __attribute__((const))
unsigned long __roundup_pow_of_two(unsigned long n)
{
	return 1UL << fls_long(n - 1);
}

/**
 * ilog2 - log of base 2 of 32-bit or a 64-bit unsigned value
 * @n - parameter
 *
 * constant-capable log of base 2 calculation
 * - this can be used to initialise global variables from constant data, hence
 *   the massive ternary operator construction
 *
 * selects the appropriately-sized optimised version depending on sizeof(n)
 */
#define ilog2(n)				\
(						\
	__builtin_constant_p(n) ? (		\
		(n) < 1 ? ____ilog2_NaN() :	\
		(n) & (1ULL << 63) ? 63 :	\
		(n) & (1ULL << 62) ? 62 :	\
		(n) & (1ULL << 61) ? 61 :	\
		(n) & (1ULL << 60) ? 60 :	\
		(n) & (1ULL << 59) ? 59 :	\
		(n) & (1ULL << 58) ? 58 :	\
		(n) & (1ULL << 57) ? 57 :	\
		(n) & (1ULL << 56) ? 56 :	\
		(n) & (1ULL << 55) ? 55 :	\
		(n) & (1ULL << 54) ? 54 :	\
		(n) & (1ULL << 53) ? 53 :	\
		(n) & (1ULL << 52) ? 52 :	\
		(n) & (1ULL << 51) ? 51 :	\
		(n) & (1ULL << 50) ? 50 :	\
		(n) & (1ULL << 49) ? 49 :	\
		(n) & (1ULL << 48) ? 48 :	\
		(n) & (1ULL << 47) ? 47 :	\
		(n) & (1ULL << 46) ? 46 :	\
		(n) & (1ULL << 45) ? 45 :	\
		(n) & (1ULL << 44) ? 44 :	\
		(n) & (1ULL << 43) ? 43 :	\
		(n) & (1ULL << 42) ? 42 :	\
		(n) & (1ULL << 41) ? 41 :	\
		(n) & (1ULL << 40) ? 40 :	\
		(n) & (1ULL << 39) ? 39 :	\
		(n) & (1ULL << 38) ? 38 :	\
		(n) & (1ULL << 37) ? 37 :	\
		(n) & (1ULL << 36) ? 36 :	\
		(n) & (1ULL << 35) ? 35 :	\
		(n) & (1ULL << 34) ? 34 :	\
		(n) & (1ULL << 33) ? 33 :	\
		(n) & (1ULL << 32) ? 32 :	\
		(n) & (1ULL << 31) ? 31 :	\
		(n) & (1ULL << 30) ? 30 :	\
		(n) & (1ULL << 29) ? 29 :	\
		(n) & (1ULL << 28) ? 28 :	\
		(n) & (1ULL << 27) ? 27 :	\
		(n) & (1ULL << 26) ? 26 :	\
		(n) & (1ULL << 25) ? 25 :	\
		(n) & (1ULL << 24) ? 24 :	\
		(n) & (1ULL << 23) ? 23 :	\
		(n) & (1ULL << 22) ? 22 :	\
		(n) & (1ULL << 21) ? 21 :	\
		(n) & (1ULL << 20) ? 20 :	\
		(n) & (1ULL << 19) ? 19 :	\
		(n) & (1ULL << 18) ? 18 :	\
		(n) & (1ULL << 17) ? 17 :	\
		(n) & (1ULL << 16) ? 16 :	\
		(n) & (1ULL << 15) ? 15 :	\
		(n) & (1ULL << 14) ? 14 :	\
		(n) & (1ULL << 13) ? 13 :	\
		(n) & (1ULL << 12) ? 12 :	\
		(n) & (1ULL << 11) ? 11 :	\
		(n) & (1ULL << 10) ? 10 :	\
		(n) & (1ULL <<  9) ?  9 :	\
		(n) & (1ULL <<  8) ?  8 :	\
		(n) & (1ULL <<  7) ?  7 :	\
		(n) & (1ULL <<  6) ?  6 :	\
		(n) & (1ULL <<  5) ?  5 :	\
		(n) & (1ULL <<  4) ?  4 :	\
		(n) & (1ULL <<  3) ?  3 :	\
		(n) & (1ULL <<  2) ?  2 :	\
		(n) & (1ULL <<  1) ?  1 :	\
		(n) & (1ULL <<  0) ?  0 :	\
		____ilog2_NaN()			\
				   ) :		\
	(sizeof(n) <= 4) ?			\
	__ilog2_u32(n) :			\
	__ilog2_u64(n)				\
 )

/**
 * roundup_pow_of_two - round the given value up to nearest power of two
 * @n - parameter
 *
 * round the given balue up to the nearest power of two
 * - the result is undefined when n == 0
 * - this can be used to initialise global variables from constant data
 */
#define roundup_pow_of_two(n)			\
(						\
	__builtin_constant_p(n) ? (		\
		(n == 1) ? 0 :			\
		(1UL << (ilog2((n) - 1) + 1))	\
				   ) :		\
	__roundup_pow_of_two(n)			\
 )

#endif /* _LINUX_LOG2_H */
OpenPOWER on IntegriCloud