diff options
Diffstat (limited to 'fs/btrfs/file.c')
-rw-r--r-- | fs/btrfs/file.c | 87 |
1 files changed, 56 insertions, 31 deletions
diff --git a/fs/btrfs/file.c b/fs/btrfs/file.c index b78bbbac900d..30982bbd31c3 100644 --- a/fs/btrfs/file.c +++ b/fs/btrfs/file.c @@ -1811,22 +1811,10 @@ static ssize_t btrfs_file_write_iter(struct kiocb *iocb, mutex_unlock(&inode->i_mutex); /* - * we want to make sure fsync finds this change - * but we haven't joined a transaction running right now. - * - * Later on, someone is sure to update the inode and get the - * real transid recorded. - * - * We set last_trans now to the fs_info generation + 1, - * this will either be one more than the running transaction - * or the generation used for the next transaction if there isn't - * one running right now. - * * We also have to set last_sub_trans to the current log transid, * otherwise subsequent syncs to a file that's been synced in this * transaction will appear to have already occured. */ - BTRFS_I(inode)->last_trans = root->fs_info->generation + 1; BTRFS_I(inode)->last_sub_trans = root->log_transid; if (num_written > 0) { err = generic_write_sync(file, pos, num_written); @@ -1959,25 +1947,37 @@ int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync) atomic_inc(&root->log_batch); /* - * check the transaction that last modified this inode - * and see if its already been committed - */ - if (!BTRFS_I(inode)->last_trans) { - mutex_unlock(&inode->i_mutex); - goto out; - } - - /* - * if the last transaction that changed this file was before - * the current transaction, we can bail out now without any - * syncing + * If the last transaction that changed this file was before the current + * transaction and we have the full sync flag set in our inode, we can + * bail out now without any syncing. + * + * Note that we can't bail out if the full sync flag isn't set. This is + * because when the full sync flag is set we start all ordered extents + * and wait for them to fully complete - when they complete they update + * the inode's last_trans field through: + * + * btrfs_finish_ordered_io() -> + * btrfs_update_inode_fallback() -> + * btrfs_update_inode() -> + * btrfs_set_inode_last_trans() + * + * So we are sure that last_trans is up to date and can do this check to + * bail out safely. For the fast path, when the full sync flag is not + * set in our inode, we can not do it because we start only our ordered + * extents and don't wait for them to complete (that is when + * btrfs_finish_ordered_io runs), so here at this point their last_trans + * value might be less than or equals to fs_info->last_trans_committed, + * and setting a speculative last_trans for an inode when a buffered + * write is made (such as fs_info->generation + 1 for example) would not + * be reliable since after setting the value and before fsync is called + * any number of transactions can start and commit (transaction kthread + * commits the current transaction periodically), and a transaction + * commit does not start nor waits for ordered extents to complete. */ smp_mb(); if (btrfs_inode_in_log(inode, root->fs_info->generation) || - BTRFS_I(inode)->last_trans <= - root->fs_info->last_trans_committed) { - BTRFS_I(inode)->last_trans = 0; - + (full_sync && BTRFS_I(inode)->last_trans <= + root->fs_info->last_trans_committed)) { /* * We'v had everything committed since the last time we were * modified so clear this flag in case it was set for whatever @@ -2275,6 +2275,8 @@ static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) bool same_page; bool no_holes = btrfs_fs_incompat(root->fs_info, NO_HOLES); u64 ino_size; + bool truncated_page = false; + bool updated_inode = false; ret = btrfs_wait_ordered_range(inode, offset, len); if (ret) @@ -2306,13 +2308,18 @@ static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) * entire page. */ if (same_page && len < PAGE_CACHE_SIZE) { - if (offset < ino_size) + if (offset < ino_size) { + truncated_page = true; ret = btrfs_truncate_page(inode, offset, len, 0); + } else { + ret = 0; + } goto out_only_mutex; } /* zero back part of the first page */ if (offset < ino_size) { + truncated_page = true; ret = btrfs_truncate_page(inode, offset, 0, 0); if (ret) { mutex_unlock(&inode->i_mutex); @@ -2348,6 +2355,7 @@ static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) if (!ret) { /* zero the front end of the last page */ if (tail_start + tail_len < ino_size) { + truncated_page = true; ret = btrfs_truncate_page(inode, tail_start + tail_len, 0, 1); if (ret) @@ -2357,8 +2365,8 @@ static int btrfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) } if (lockend < lockstart) { - mutex_unlock(&inode->i_mutex); - return 0; + ret = 0; + goto out_only_mutex; } while (1) { @@ -2506,6 +2514,7 @@ out_trans: trans->block_rsv = &root->fs_info->trans_block_rsv; ret = btrfs_update_inode(trans, root, inode); + updated_inode = true; btrfs_end_transaction(trans, root); btrfs_btree_balance_dirty(root); out_free: @@ -2515,6 +2524,22 @@ out: unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend, &cached_state, GFP_NOFS); out_only_mutex: + if (!updated_inode && truncated_page && !ret && !err) { + /* + * If we only end up zeroing part of a page, we still need to + * update the inode item, so that all the time fields are + * updated as well as the necessary btrfs inode in memory fields + * for detecting, at fsync time, if the inode isn't yet in the + * log tree or it's there but not up to date. + */ + trans = btrfs_start_transaction(root, 1); + if (IS_ERR(trans)) { + err = PTR_ERR(trans); + } else { + err = btrfs_update_inode(trans, root, inode); + ret = btrfs_end_transaction(trans, root); + } + } mutex_unlock(&inode->i_mutex); if (ret && !err) err = ret; |