diff options
author | Hugh Dickins <hughd@google.com> | 2013-02-22 16:35:08 -0800 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2013-02-23 17:50:19 -0800 |
commit | cbf86cfe04a66471f23b9e62e5eba4e525f38855 (patch) | |
tree | 5572b238db52f238e3291354a4bba161f4495627 /mm | |
parent | 8aafa6a485ae77ce4a49eb1280f3d2c6074a03fb (diff) | |
download | talos-obmc-linux-cbf86cfe04a66471f23b9e62e5eba4e525f38855.tar.gz talos-obmc-linux-cbf86cfe04a66471f23b9e62e5eba4e525f38855.zip |
ksm: remove old stable nodes more thoroughly
Switching merge_across_nodes after running KSM is liable to oops on stale
nodes still left over from the previous stable tree. It's not something
that people will often want to do, but it would be lame to demand a reboot
when they're trying to determine which merge_across_nodes setting is best.
How can this happen? We only permit switching merge_across_nodes when
pages_shared is 0, and usually set run 2 to force that beforehand, which
ought to unmerge everything: yet oopses still occur when you then run 1.
Three causes:
1. The old stable tree (built according to the inverse
merge_across_nodes) has not been fully torn down. A stable node
lingers until get_ksm_page() notices that the page it references no
longer references it: but the page is not necessarily freed as soon as
expected, particularly when swapcache.
Fix this with a pass through the old stable tree, applying
get_ksm_page() to each of the remaining nodes (most found stale and
removed immediately), with forced removal of any left over. Unless the
page is still mapped: I've not seen that case, it shouldn't occur, but
better to WARN_ON_ONCE and EBUSY than BUG.
2. __ksm_enter() has a nice little optimization, to insert the new mm
just behind ksmd's cursor, so there's a full pass for it to stabilize
(or be removed) before ksmd addresses it. Nice when ksmd is running,
but not so nice when we're trying to unmerge all mms: we were missing
those mms forked and inserted behind the unmerge cursor. Easily fixed
by inserting at the end when KSM_RUN_UNMERGE.
3. It is possible for a KSM page to be faulted back from swapcache
into an mm, just after unmerge_and_remove_all_rmap_items() scanned past
it. Fix this by copying on fault when KSM_RUN_UNMERGE: but that is
private to ksm.c, so dissolve the distinction between
ksm_might_need_to_copy() and ksm_does_need_to_copy(), doing it all in
the one call into ksm.c.
A long outstanding, unrelated bugfix sneaks in with that third fix:
ksm_does_need_to_copy() would copy from a !PageUptodate page (implying I/O
error when read in from swap) to a page which it then marks Uptodate. Fix
this case by not copying, letting do_swap_page() discover the error.
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'mm')
-rw-r--r-- | mm/ksm.c | 83 | ||||
-rw-r--r-- | mm/memory.c | 19 |
2 files changed, 88 insertions, 14 deletions
@@ -644,6 +644,57 @@ static int unmerge_ksm_pages(struct vm_area_struct *vma, /* * Only called through the sysfs control interface: */ +static int remove_stable_node(struct stable_node *stable_node) +{ + struct page *page; + int err; + + page = get_ksm_page(stable_node, true); + if (!page) { + /* + * get_ksm_page did remove_node_from_stable_tree itself. + */ + return 0; + } + + if (WARN_ON_ONCE(page_mapped(page))) + err = -EBUSY; + else { + /* + * This page might be in a pagevec waiting to be freed, + * or it might be PageSwapCache (perhaps under writeback), + * or it might have been removed from swapcache a moment ago. + */ + set_page_stable_node(page, NULL); + remove_node_from_stable_tree(stable_node); + err = 0; + } + + unlock_page(page); + put_page(page); + return err; +} + +static int remove_all_stable_nodes(void) +{ + struct stable_node *stable_node; + int nid; + int err = 0; + + for (nid = 0; nid < nr_node_ids; nid++) { + while (root_stable_tree[nid].rb_node) { + stable_node = rb_entry(root_stable_tree[nid].rb_node, + struct stable_node, node); + if (remove_stable_node(stable_node)) { + err = -EBUSY; + break; /* proceed to next nid */ + } + cond_resched(); + } + } + return err; +} + static int unmerge_and_remove_all_rmap_items(void) { struct mm_slot *mm_slot; @@ -691,6 +742,8 @@ static int unmerge_and_remove_all_rmap_items(void) } } + /* Clean up stable nodes, but don't worry if some are still busy */ + remove_all_stable_nodes(); ksm_scan.seqnr = 0; return 0; @@ -1586,11 +1639,19 @@ int __ksm_enter(struct mm_struct *mm) spin_lock(&ksm_mmlist_lock); insert_to_mm_slots_hash(mm, mm_slot); /* - * Insert just behind the scanning cursor, to let the area settle + * When KSM_RUN_MERGE (or KSM_RUN_STOP), + * insert just behind the scanning cursor, to let the area settle * down a little; when fork is followed by immediate exec, we don't * want ksmd to waste time setting up and tearing down an rmap_list. + * + * But when KSM_RUN_UNMERGE, it's important to insert ahead of its + * scanning cursor, otherwise KSM pages in newly forked mms will be + * missed: then we might as well insert at the end of the list. */ - list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); + if (ksm_run & KSM_RUN_UNMERGE) + list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list); + else + list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list); spin_unlock(&ksm_mmlist_lock); set_bit(MMF_VM_MERGEABLE, &mm->flags); @@ -1640,11 +1701,25 @@ void __ksm_exit(struct mm_struct *mm) } } -struct page *ksm_does_need_to_copy(struct page *page, +struct page *ksm_might_need_to_copy(struct page *page, struct vm_area_struct *vma, unsigned long address) { + struct anon_vma *anon_vma = page_anon_vma(page); struct page *new_page; + if (PageKsm(page)) { + if (page_stable_node(page) && + !(ksm_run & KSM_RUN_UNMERGE)) + return page; /* no need to copy it */ + } else if (!anon_vma) { + return page; /* no need to copy it */ + } else if (anon_vma->root == vma->anon_vma->root && + page->index == linear_page_index(vma, address)) { + return page; /* still no need to copy it */ + } + if (!PageUptodate(page)) + return page; /* let do_swap_page report the error */ + new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); if (new_page) { copy_user_highpage(new_page, page, address, vma); @@ -2024,7 +2099,7 @@ static ssize_t merge_across_nodes_store(struct kobject *kobj, mutex_lock(&ksm_thread_mutex); if (ksm_merge_across_nodes != knob) { - if (ksm_pages_shared) + if (ksm_pages_shared || remove_all_stable_nodes()) err = -EBUSY; else ksm_merge_across_nodes = knob; diff --git a/mm/memory.c b/mm/memory.c index 054250ee4a68..7bd22a621817 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -2994,17 +2994,16 @@ static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) goto out_page; - if (ksm_might_need_to_copy(page, vma, address)) { - swapcache = page; - page = ksm_does_need_to_copy(page, vma, address); - - if (unlikely(!page)) { - ret = VM_FAULT_OOM; - page = swapcache; - swapcache = NULL; - goto out_page; - } + swapcache = page; + page = ksm_might_need_to_copy(page, vma, address); + if (unlikely(!page)) { + ret = VM_FAULT_OOM; + page = swapcache; + swapcache = NULL; + goto out_page; } + if (page == swapcache) + swapcache = NULL; if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { ret = VM_FAULT_OOM; |