summaryrefslogtreecommitdiffstats
path: root/fs/cifs/cifssmb.c
diff options
context:
space:
mode:
authorJeff Layton <jlayton@redhat.com>2012-07-11 09:09:36 -0400
committerSteve French <smfrench@gmail.com>2012-07-16 23:57:14 -0500
commit3cf003c08be785af4bee9ac05891a15bcbff856a (patch)
treef54e5a39dd782af881a4e5927225f2fd3a704889 /fs/cifs/cifssmb.c
parent3ae629d98bd5ed77585a878566f04f310adbc591 (diff)
downloadtalos-obmc-linux-3cf003c08be785af4bee9ac05891a15bcbff856a.tar.gz
talos-obmc-linux-3cf003c08be785af4bee9ac05891a15bcbff856a.zip
cifs: when CONFIG_HIGHMEM is set, serialize the read/write kmaps
Jian found that when he ran fsx on a 32 bit arch with a large wsize the process and one of the bdi writeback kthreads would sometimes deadlock with a stack trace like this: crash> bt PID: 2789 TASK: f02edaa0 CPU: 3 COMMAND: "fsx" #0 [eed63cbc] schedule at c083c5b3 #1 [eed63d80] kmap_high at c0500ec8 #2 [eed63db0] cifs_async_writev at f7fabcd7 [cifs] #3 [eed63df0] cifs_writepages at f7fb7f5c [cifs] #4 [eed63e50] do_writepages at c04f3e32 #5 [eed63e54] __filemap_fdatawrite_range at c04e152a #6 [eed63ea4] filemap_fdatawrite at c04e1b3e #7 [eed63eb4] cifs_file_aio_write at f7fa111a [cifs] #8 [eed63ecc] do_sync_write at c052d202 #9 [eed63f74] vfs_write at c052d4ee #10 [eed63f94] sys_write at c052df4c #11 [eed63fb0] ia32_sysenter_target at c0409a98 EAX: 00000004 EBX: 00000003 ECX: abd73b73 EDX: 012a65c6 DS: 007b ESI: 012a65c6 ES: 007b EDI: 00000000 SS: 007b ESP: bf8db178 EBP: bf8db1f8 GS: 0033 CS: 0073 EIP: 40000424 ERR: 00000004 EFLAGS: 00000246 Each task would kmap part of its address array before getting stuck, but not enough to actually issue the write. This patch fixes this by serializing the marshal_iov operations for async reads and writes. The idea here is to ensure that cifs aggressively tries to populate a request before attempting to fulfill another one. As soon as all of the pages are kmapped for a request, then we can unlock and allow another one to proceed. There's no need to do this serialization on non-CONFIG_HIGHMEM arches however, so optimize all of this out when CONFIG_HIGHMEM isn't set. Cc: <stable@vger.kernel.org> Reported-by: Jian Li <jiali@redhat.com> Signed-off-by: Jeff Layton <jlayton@redhat.com> Signed-off-by: Steve French <smfrench@gmail.com>
Diffstat (limited to 'fs/cifs/cifssmb.c')
-rw-r--r--fs/cifs/cifssmb.c30
1 files changed, 29 insertions, 1 deletions
diff --git a/fs/cifs/cifssmb.c b/fs/cifs/cifssmb.c
index 5b400730c213..4ee522b3f66f 100644
--- a/fs/cifs/cifssmb.c
+++ b/fs/cifs/cifssmb.c
@@ -86,7 +86,31 @@ static struct {
#endif /* CONFIG_CIFS_WEAK_PW_HASH */
#endif /* CIFS_POSIX */
-/* Forward declarations */
+#ifdef CONFIG_HIGHMEM
+/*
+ * On arches that have high memory, kmap address space is limited. By
+ * serializing the kmap operations on those arches, we ensure that we don't
+ * end up with a bunch of threads in writeback with partially mapped page
+ * arrays, stuck waiting for kmap to come back. That situation prevents
+ * progress and can deadlock.
+ */
+static DEFINE_MUTEX(cifs_kmap_mutex);
+
+static inline void
+cifs_kmap_lock(void)
+{
+ mutex_lock(&cifs_kmap_mutex);
+}
+
+static inline void
+cifs_kmap_unlock(void)
+{
+ mutex_unlock(&cifs_kmap_mutex);
+}
+#else /* !CONFIG_HIGHMEM */
+#define cifs_kmap_lock() do { ; } while(0)
+#define cifs_kmap_unlock() do { ; } while(0)
+#endif /* CONFIG_HIGHMEM */
/* Mark as invalid, all open files on tree connections since they
were closed when session to server was lost */
@@ -1503,7 +1527,9 @@ cifs_readv_receive(struct TCP_Server_Info *server, struct mid_q_entry *mid)
}
/* marshal up the page array */
+ cifs_kmap_lock();
len = rdata->marshal_iov(rdata, data_len);
+ cifs_kmap_unlock();
data_len -= len;
/* issue the read if we have any iovecs left to fill */
@@ -2069,7 +2095,9 @@ cifs_async_writev(struct cifs_writedata *wdata)
* and set the iov_len properly for each one. It may also set
* wdata->bytes too.
*/
+ cifs_kmap_lock();
wdata->marshal_iov(iov, wdata);
+ cifs_kmap_unlock();
cFYI(1, "async write at %llu %u bytes", wdata->offset, wdata->bytes);
OpenPOWER on IntegriCloud