summaryrefslogtreecommitdiffstats
path: root/Documentation
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2018-06-05 16:20:22 -0700
committerLinus Torvalds <torvalds@linux-foundation.org>2018-06-05 16:20:22 -0700
commitabf7dba7c4f77d781f6df50fefb19a64c5dc331f (patch)
tree38648731b502d5aec508f3b33f6616190e598eb6 /Documentation
parent07c4dd3435aa387d3b58f4e941dc516513f14507 (diff)
parentb23220fe054e92f616b82450fae8cd3ab176cc60 (diff)
downloadtalos-obmc-linux-abf7dba7c4f77d781f6df50fefb19a64c5dc331f.tar.gz
talos-obmc-linux-abf7dba7c4f77d781f6df50fefb19a64c5dc331f.zip
Merge tag 'char-misc-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH: "Here is the "big" char and misc driver patches for 4.18-rc1. It's not a lot of stuff here, but there are some highlights: - coreboot driver updates - soundwire driver updates - android binder updates - fpga big sync, mostly documentation - lots of minor driver updates All of these have been in linux-next for a while with no reported issues" * tag 'char-misc-4.18-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (81 commits) vmw_balloon: fixing double free when batching mode is off MAINTAINERS: Add driver-api/fpga path fpga: clarify that unregister functions also free documentation: fpga: move fpga-region.txt to driver-api documentation: fpga: add bridge document to driver-api documentation: fpga: move fpga-mgr.txt to driver-api Documentation: fpga: move fpga overview to driver-api fpga: region: kernel-doc fixes fpga: bridge: kernel-doc fixes fpga: mgr: kernel-doc fixes fpga: use SPDX fpga: region: change api, add fpga_region_create/free fpga: bridge: change api, don't use drvdata fpga: manager: change api, don't use drvdata fpga: region: don't use drvdata in common fpga code Drivers: hv: vmbus: Removed an unnecessary cast from void * ver_linux: Drop redundant calls to system() to test if file is readable ver_linux: Move stderr redirection from function parameter to function body misc: IBM Virtual Management Channel Driver (VMC) rpmsg: Correct support for MODULE_DEVICE_TABLE() ...
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/stable/sysfs-bus-vmbus40
-rw-r--r--Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt29
-rw-r--r--Documentation/devicetree/bindings/nvmem/zii,rave-sp-eeprom.txt40
-rw-r--r--Documentation/driver-api/fpga/fpga-bridge.rst49
-rw-r--r--Documentation/driver-api/fpga/fpga-mgr.rst220
-rw-r--r--Documentation/driver-api/fpga/fpga-region.rst102
-rw-r--r--Documentation/driver-api/fpga/index.rst13
-rw-r--r--Documentation/driver-api/fpga/intro.rst54
-rw-r--r--Documentation/driver-api/index.rst1
-rw-r--r--Documentation/driver-api/soundwire/error_handling.rst65
-rw-r--r--Documentation/driver-api/soundwire/index.rst3
-rw-r--r--Documentation/driver-api/soundwire/locking.rst106
-rw-r--r--Documentation/driver-api/soundwire/stream.rst372
-rw-r--r--Documentation/fpga/fpga-mgr.txt199
-rw-r--r--Documentation/fpga/fpga-region.txt95
-rw-r--r--Documentation/fpga/overview.txt23
-rw-r--r--Documentation/ioctl/ioctl-number.txt1
-rw-r--r--Documentation/misc-devices/ibmvmc.rst226
-rw-r--r--Documentation/trace/coresight-cpu-debug.txt4
19 files changed, 1303 insertions, 339 deletions
diff --git a/Documentation/ABI/stable/sysfs-bus-vmbus b/Documentation/ABI/stable/sysfs-bus-vmbus
index 0c9d9dcd2151..3eaffbb2d468 100644
--- a/Documentation/ABI/stable/sysfs-bus-vmbus
+++ b/Documentation/ABI/stable/sysfs-bus-vmbus
@@ -1,25 +1,25 @@
-What: /sys/bus/vmbus/devices/vmbus_*/id
+What: /sys/bus/vmbus/devices/<UUID>/id
Date: Jul 2009
KernelVersion: 2.6.31
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The VMBus child_relid of the device's primary channel
Users: tools/hv/lsvmbus
-What: /sys/bus/vmbus/devices/vmbus_*/class_id
+What: /sys/bus/vmbus/devices/<UUID>/class_id
Date: Jul 2009
KernelVersion: 2.6.31
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The VMBus interface type GUID of the device
Users: tools/hv/lsvmbus
-What: /sys/bus/vmbus/devices/vmbus_*/device_id
+What: /sys/bus/vmbus/devices/<UUID>/device_id
Date: Jul 2009
KernelVersion: 2.6.31
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The VMBus interface instance GUID of the device
Users: tools/hv/lsvmbus
-What: /sys/bus/vmbus/devices/vmbus_*/channel_vp_mapping
+What: /sys/bus/vmbus/devices/<UUID>/channel_vp_mapping
Date: Jul 2015
KernelVersion: 4.2.0
Contact: K. Y. Srinivasan <kys@microsoft.com>
@@ -28,112 +28,112 @@ Description: The mapping of which primary/sub channels are bound to which
Format: <channel's child_relid:the bound cpu's number>
Users: tools/hv/lsvmbus
-What: /sys/bus/vmbus/devices/vmbus_*/device
+What: /sys/bus/vmbus/devices/<UUID>/device
Date: Dec. 2015
KernelVersion: 4.5
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The 16 bit device ID of the device
Users: tools/hv/lsvmbus and user level RDMA libraries
-What: /sys/bus/vmbus/devices/vmbus_*/vendor
+What: /sys/bus/vmbus/devices/<UUID>/vendor
Date: Dec. 2015
KernelVersion: 4.5
Contact: K. Y. Srinivasan <kys@microsoft.com>
Description: The 16 bit vendor ID of the device
Users: tools/hv/lsvmbus and user level RDMA libraries
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Directory for per-channel information
NN is the VMBUS relid associtated with the channel.
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/cpu
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/cpu
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: VCPU (sub)channel is affinitized to
Users: tools/hv/lsvmbus and other debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/cpu
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/cpu
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: VCPU (sub)channel is affinitized to
Users: tools/hv/lsvmbus and other debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/in_mask
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/in_mask
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Host to guest channel interrupt mask
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/latency
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/latency
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Channel signaling latency
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/out_mask
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/out_mask
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Guest to host channel interrupt mask
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/pending
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/pending
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Channel interrupt pending state
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/read_avail
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/read_avail
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Bytes available to read
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/write_avail
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/write_avail
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Bytes available to write
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/events
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/events
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Number of times we have signaled the host
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/interrupts
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/interrupts
Date: September. 2017
KernelVersion: 4.14
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Number of times we have taken an interrupt (incoming)
Users: Debugging tools
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/subchannel_id
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/subchannel_id
Date: January. 2018
KernelVersion: 4.16
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Subchannel ID associated with VMBUS channel
Users: Debugging tools and userspace drivers
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/monitor_id
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/monitor_id
Date: January. 2018
KernelVersion: 4.16
Contact: Stephen Hemminger <sthemmin@microsoft.com>
Description: Monitor bit associated with channel
Users: Debugging tools and userspace drivers
-What: /sys/bus/vmbus/devices/vmbus_*/channels/NN/ring
+What: /sys/bus/vmbus/devices/<UUID>/channels/<N>/ring
Date: January. 2018
KernelVersion: 4.16
Contact: Stephen Hemminger <sthemmin@microsoft.com>
diff --git a/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt b/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt
new file mode 100644
index 000000000000..a8c362eb160c
--- /dev/null
+++ b/Documentation/devicetree/bindings/fpga/lattice-machxo2-spi.txt
@@ -0,0 +1,29 @@
+Lattice MachXO2 Slave SPI FPGA Manager
+
+Lattice MachXO2 FPGAs support a method of loading the bitstream over
+'slave SPI' interface.
+
+See 'MachXO2ProgrammingandConfigurationUsageGuide.pdf' on www.latticesemi.com
+
+Required properties:
+- compatible: should contain "lattice,machxo2-slave-spi"
+- reg: spi chip select of the FPGA
+
+Example for full FPGA configuration:
+
+ fpga-region0 {
+ compatible = "fpga-region";
+ fpga-mgr = <&fpga_mgr_spi>;
+ #address-cells = <0x1>;
+ #size-cells = <0x1>;
+ };
+
+ spi1: spi@2000 {
+ ...
+
+ fpga_mgr_spi: fpga-mgr@0 {
+ compatible = "lattice,machxo2-slave-spi";
+ spi-max-frequency = <8000000>;
+ reg = <0>;
+ };
+ };
diff --git a/Documentation/devicetree/bindings/nvmem/zii,rave-sp-eeprom.txt b/Documentation/devicetree/bindings/nvmem/zii,rave-sp-eeprom.txt
new file mode 100644
index 000000000000..d5e22fc67d66
--- /dev/null
+++ b/Documentation/devicetree/bindings/nvmem/zii,rave-sp-eeprom.txt
@@ -0,0 +1,40 @@
+Zodiac Inflight Innovations RAVE EEPROM Bindings
+
+RAVE SP EEPROM device is a "MFD cell" device exposing physical EEPROM
+attached to RAVE Supervisory Processor. It is expected that its Device
+Tree node is specified as a child of the node corresponding to the
+parent RAVE SP device (as documented in
+Documentation/devicetree/bindings/mfd/zii,rave-sp.txt)
+
+Required properties:
+
+- compatible: Should be "zii,rave-sp-eeprom"
+
+Optional properties:
+
+- zii,eeprom-name: Unique EEPROM identifier describing its function in the
+ system. Will be used as created NVMEM deivce's name.
+
+Data cells:
+
+Data cells are child nodes of eerpom node, bindings for which are
+documented in Documentation/bindings/nvmem/nvmem.txt
+
+Example:
+
+ rave-sp {
+ compatible = "zii,rave-sp-rdu1";
+ current-speed = <38400>;
+
+ eeprom@a4 {
+ compatible = "zii,rave-sp-eeprom";
+ reg = <0xa4 0x4000>;
+ #address-cells = <1>;
+ #size-cells = <1>;
+ zii,eeprom-name = "main-eeprom";
+
+ wdt_timeout: wdt-timeout@81 {
+ reg = <0x81 2>;
+ };
+ };
+ }
diff --git a/Documentation/driver-api/fpga/fpga-bridge.rst b/Documentation/driver-api/fpga/fpga-bridge.rst
new file mode 100644
index 000000000000..2c2aaca894bf
--- /dev/null
+++ b/Documentation/driver-api/fpga/fpga-bridge.rst
@@ -0,0 +1,49 @@
+FPGA Bridge
+===========
+
+API to implement a new FPGA bridge
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+.. kernel-doc:: include/linux/fpga/fpga-bridge.h
+ :functions: fpga_bridge
+
+.. kernel-doc:: include/linux/fpga/fpga-bridge.h
+ :functions: fpga_bridge_ops
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_create
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_free
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_register
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_unregister
+
+API to control an FPGA bridge
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+You probably won't need these directly. FPGA regions should handle this.
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: of_fpga_bridge_get
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_get
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_put
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_get_to_list
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: of_fpga_bridge_get_to_list
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_enable
+
+.. kernel-doc:: drivers/fpga/fpga-bridge.c
+ :functions: fpga_bridge_disable
diff --git a/Documentation/driver-api/fpga/fpga-mgr.rst b/Documentation/driver-api/fpga/fpga-mgr.rst
new file mode 100644
index 000000000000..bcf2dd24e179
--- /dev/null
+++ b/Documentation/driver-api/fpga/fpga-mgr.rst
@@ -0,0 +1,220 @@
+FPGA Manager
+============
+
+Overview
+--------
+
+The FPGA manager core exports a set of functions for programming an FPGA with
+an image. The API is manufacturer agnostic. All manufacturer specifics are
+hidden away in a low level driver which registers a set of ops with the core.
+The FPGA image data itself is very manufacturer specific, but for our purposes
+it's just binary data. The FPGA manager core won't parse it.
+
+The FPGA image to be programmed can be in a scatter gather list, a single
+contiguous buffer, or a firmware file. Because allocating contiguous kernel
+memory for the buffer should be avoided, users are encouraged to use a scatter
+gather list instead if possible.
+
+The particulars for programming the image are presented in a structure (struct
+fpga_image_info). This struct contains parameters such as pointers to the
+FPGA image as well as image-specific particulars such as whether the image was
+built for full or partial reconfiguration.
+
+How to support a new FPGA device
+--------------------------------
+
+To add another FPGA manager, write a driver that implements a set of ops. The
+probe function calls fpga_mgr_register(), such as::
+
+ static const struct fpga_manager_ops socfpga_fpga_ops = {
+ .write_init = socfpga_fpga_ops_configure_init,
+ .write = socfpga_fpga_ops_configure_write,
+ .write_complete = socfpga_fpga_ops_configure_complete,
+ .state = socfpga_fpga_ops_state,
+ };
+
+ static int socfpga_fpga_probe(struct platform_device *pdev)
+ {
+ struct device *dev = &pdev->dev;
+ struct socfpga_fpga_priv *priv;
+ struct fpga_manager *mgr;
+ int ret;
+
+ priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
+ if (!priv)
+ return -ENOMEM;
+
+ /*
+ * do ioremaps, get interrupts, etc. and save
+ * them in priv
+ */
+
+ mgr = fpga_mgr_create(dev, "Altera SOCFPGA FPGA Manager",
+ &socfpga_fpga_ops, priv);
+ if (!mgr)
+ return -ENOMEM;
+
+ platform_set_drvdata(pdev, mgr);
+
+ ret = fpga_mgr_register(mgr);
+ if (ret)
+ fpga_mgr_free(mgr);
+
+ return ret;
+ }
+
+ static int socfpga_fpga_remove(struct platform_device *pdev)
+ {
+ struct fpga_manager *mgr = platform_get_drvdata(pdev);
+
+ fpga_mgr_unregister(mgr);
+
+ return 0;
+ }
+
+
+The ops will implement whatever device specific register writes are needed to
+do the programming sequence for this particular FPGA. These ops return 0 for
+success or negative error codes otherwise.
+
+The programming sequence is::
+ 1. .write_init
+ 2. .write or .write_sg (may be called once or multiple times)
+ 3. .write_complete
+
+The .write_init function will prepare the FPGA to receive the image data. The
+buffer passed into .write_init will be atmost .initial_header_size bytes long,
+if the whole bitstream is not immediately available then the core code will
+buffer up at least this much before starting.
+
+The .write function writes a buffer to the FPGA. The buffer may be contain the
+whole FPGA image or may be a smaller chunk of an FPGA image. In the latter
+case, this function is called multiple times for successive chunks. This interface
+is suitable for drivers which use PIO.
+
+The .write_sg version behaves the same as .write except the input is a sg_table
+scatter list. This interface is suitable for drivers which use DMA.
+
+The .write_complete function is called after all the image has been written
+to put the FPGA into operating mode.
+
+The ops include a .state function which will read the hardware FPGA manager and
+return a code of type enum fpga_mgr_states. It doesn't result in a change in
+hardware state.
+
+How to write an image buffer to a supported FPGA
+------------------------------------------------
+
+Some sample code::
+
+ #include <linux/fpga/fpga-mgr.h>
+
+ struct fpga_manager *mgr;
+ struct fpga_image_info *info;
+ int ret;
+
+ /*
+ * Get a reference to FPGA manager. The manager is not locked, so you can
+ * hold onto this reference without it preventing programming.
+ *
+ * This example uses the device node of the manager. Alternatively, use
+ * fpga_mgr_get(dev) instead if you have the device.
+ */
+ mgr = of_fpga_mgr_get(mgr_node);
+
+ /* struct with information about the FPGA image to program. */
+ info = fpga_image_info_alloc(dev);
+
+ /* flags indicates whether to do full or partial reconfiguration */
+ info->flags = FPGA_MGR_PARTIAL_RECONFIG;
+
+ /*
+ * At this point, indicate where the image is. This is pseudo-code; you're
+ * going to use one of these three.
+ */
+ if (image is in a scatter gather table) {
+
+ info->sgt = [your scatter gather table]
+
+ } else if (image is in a buffer) {
+
+ info->buf = [your image buffer]
+ info->count = [image buffer size]
+
+ } else if (image is in a firmware file) {
+
+ info->firmware_name = devm_kstrdup(dev, firmware_name, GFP_KERNEL);
+
+ }
+
+ /* Get exclusive control of FPGA manager */
+ ret = fpga_mgr_lock(mgr);
+
+ /* Load the buffer to the FPGA */
+ ret = fpga_mgr_buf_load(mgr, &info, buf, count);
+
+ /* Release the FPGA manager */
+ fpga_mgr_unlock(mgr);
+ fpga_mgr_put(mgr);
+
+ /* Deallocate the image info if you're done with it */
+ fpga_image_info_free(info);
+
+API for implementing a new FPGA Manager driver
+----------------------------------------------
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_manager
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_manager_ops
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_create
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_free
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_register
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_unregister
+
+API for programming a FPGA
+--------------------------
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_image_info
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_mgr_states
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_image_info_alloc
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_image_info_free
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: of_fpga_mgr_get
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_get
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_put
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_lock
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_unlock
+
+.. kernel-doc:: include/linux/fpga/fpga-mgr.h
+ :functions: fpga_mgr_states
+
+Note - use :c:func:`fpga_region_program_fpga()` instead of :c:func:`fpga_mgr_load()`
+
+.. kernel-doc:: drivers/fpga/fpga-mgr.c
+ :functions: fpga_mgr_load
diff --git a/Documentation/driver-api/fpga/fpga-region.rst b/Documentation/driver-api/fpga/fpga-region.rst
new file mode 100644
index 000000000000..f89e4a311722
--- /dev/null
+++ b/Documentation/driver-api/fpga/fpga-region.rst
@@ -0,0 +1,102 @@
+FPGA Region
+===========
+
+Overview
+--------
+
+This document is meant to be an brief overview of the FPGA region API usage. A
+more conceptual look at regions can be found in the Device Tree binding
+document [#f1]_.
+
+For the purposes of this API document, let's just say that a region associates
+an FPGA Manager and a bridge (or bridges) with a reprogrammable region of an
+FPGA or the whole FPGA. The API provides a way to register a region and to
+program a region.
+
+Currently the only layer above fpga-region.c in the kernel is the Device Tree
+support (of-fpga-region.c) described in [#f1]_. The DT support layer uses regions
+to program the FPGA and then DT to handle enumeration. The common region code
+is intended to be used by other schemes that have other ways of accomplishing
+enumeration after programming.
+
+An fpga-region can be set up to know the following things:
+
+ * which FPGA manager to use to do the programming
+
+ * which bridges to disable before programming and enable afterwards.
+
+Additional info needed to program the FPGA image is passed in the struct
+fpga_image_info including:
+
+ * pointers to the image as either a scatter-gather buffer, a contiguous
+ buffer, or the name of firmware file
+
+ * flags indicating specifics such as whether the image if for partial
+ reconfiguration.
+
+How to program a FPGA using a region
+------------------------------------
+
+First, allocate the info struct::
+
+ info = fpga_image_info_alloc(dev);
+ if (!info)
+ return -ENOMEM;
+
+Set flags as needed, i.e.::
+
+ info->flags |= FPGA_MGR_PARTIAL_RECONFIG;
+
+Point to your FPGA image, such as::
+
+ info->sgt = &sgt;
+
+Add info to region and do the programming::
+
+ region->info = info;
+ ret = fpga_region_program_fpga(region);
+
+:c:func:`fpga_region_program_fpga()` operates on info passed in the
+fpga_image_info (region->info). This function will attempt to:
+
+ * lock the region's mutex
+ * lock the region's FPGA manager
+ * build a list of FPGA bridges if a method has been specified to do so
+ * disable the bridges
+ * program the FPGA
+ * re-enable the bridges
+ * release the locks
+
+Then you will want to enumerate whatever hardware has appeared in the FPGA.
+
+How to add a new FPGA region
+----------------------------
+
+An example of usage can be seen in the probe function of [#f2]_.
+
+.. [#f1] ../devicetree/bindings/fpga/fpga-region.txt
+.. [#f2] ../../drivers/fpga/of-fpga-region.c
+
+API to program a FGPA
+---------------------
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_program_fpga
+
+API to add a new FPGA region
+----------------------------
+
+.. kernel-doc:: include/linux/fpga/fpga-region.h
+ :functions: fpga_region
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_create
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_free
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_register
+
+.. kernel-doc:: drivers/fpga/fpga-region.c
+ :functions: fpga_region_unregister
diff --git a/Documentation/driver-api/fpga/index.rst b/Documentation/driver-api/fpga/index.rst
new file mode 100644
index 000000000000..c51e5ebd544a
--- /dev/null
+++ b/Documentation/driver-api/fpga/index.rst
@@ -0,0 +1,13 @@
+==============
+FPGA Subsystem
+==============
+
+:Author: Alan Tull
+
+.. toctree::
+ :maxdepth: 2
+
+ intro
+ fpga-mgr
+ fpga-bridge
+ fpga-region
diff --git a/Documentation/driver-api/fpga/intro.rst b/Documentation/driver-api/fpga/intro.rst
new file mode 100644
index 000000000000..51cd81dbb4dc
--- /dev/null
+++ b/Documentation/driver-api/fpga/intro.rst
@@ -0,0 +1,54 @@
+Introduction
+============
+
+The FPGA subsystem supports reprogramming FPGAs dynamically under
+Linux. Some of the core intentions of the FPGA subsystems are:
+
+* The FPGA subsystem is vendor agnostic.
+
+* The FPGA subsystem separates upper layers (userspace interfaces and
+ enumeration) from lower layers that know how to program a specific
+ FPGA.
+
+* Code should not be shared between upper and lower layers. This
+ should go without saying. If that seems necessary, there's probably
+ framework functionality that that can be added that will benefit
+ other users. Write the linux-fpga mailing list and maintainers and
+ seek out a solution that expands the framework for broad reuse.
+
+* Generally, when adding code, think of the future. Plan for re-use.
+
+The framework in the kernel is divided into:
+
+FPGA Manager
+------------
+
+If you are adding a new FPGA or a new method of programming a FPGA,
+this is the subsystem for you. Low level FPGA manager drivers contain
+the knowledge of how to program a specific device. This subsystem
+includes the framework in fpga-mgr.c and the low level drivers that
+are registered with it.
+
+FPGA Bridge
+-----------
+
+FPGA Bridges prevent spurious signals from going out of a FPGA or a
+region of a FPGA during programming. They are disabled before
+programming begins and re-enabled afterwards. An FPGA bridge may be
+actual hard hardware that gates a bus to a cpu or a soft ("freeze")
+bridge in FPGA fabric that surrounds a partial reconfiguration region
+of an FPGA. This subsystem includes fpga-bridge.c and the low level
+drivers that are registered with it.
+
+FPGA Region
+-----------
+
+If you are adding a new interface to the FPGA framework, add it on top
+of a FPGA region to allow the most reuse of your interface.
+
+The FPGA Region framework (fpga-region.c) associates managers and
+bridges as reconfigurable regions. A region may refer to the whole
+FPGA in full reconfiguration or to a partial reconfiguration region.
+
+The Device Tree FPGA Region support (of-fpga-region.c) handles
+reprogramming FPGAs when device tree overlays are applied.
diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst
index 5d04296f5ce0..f4180e7c7ed5 100644
--- a/Documentation/driver-api/index.rst
+++ b/Documentation/driver-api/index.rst
@@ -51,6 +51,7 @@ available subsections can be seen below.
dmaengine/index
slimbus
soundwire/index
+ fpga/index
.. only:: subproject and html
diff --git a/Documentation/driver-api/soundwire/error_handling.rst b/Documentation/driver-api/soundwire/error_handling.rst
new file mode 100644
index 000000000000..aa3a0a23a066
--- /dev/null
+++ b/Documentation/driver-api/soundwire/error_handling.rst
@@ -0,0 +1,65 @@
+========================
+SoundWire Error Handling
+========================
+
+The SoundWire PHY was designed with care and errors on the bus are going to
+be very unlikely, and if they happen it should be limited to single bit
+errors. Examples of this design can be found in the synchronization
+mechanism (sync loss after two errors) and short CRCs used for the Bulk
+Register Access.
+
+The errors can be detected with multiple mechanisms:
+
+1. Bus clash or parity errors: This mechanism relies on low-level detectors
+ that are independent of the payload and usages, and they cover both control
+ and audio data. The current implementation only logs such errors.
+ Improvements could be invalidating an entire programming sequence and
+ restarting from a known position. In the case of such errors outside of a
+ control/command sequence, there is no concealment or recovery for audio
+ data enabled by the SoundWire protocol, the location of the error will also
+ impact its audibility (most-significant bits will be more impacted in PCM),
+ and after a number of such errors are detected the bus might be reset. Note
+ that bus clashes due to programming errors (two streams using the same bit
+ slots) or electrical issues during the transmit/receive transition cannot
+ be distinguished, although a recurring bus clash when audio is enabled is a
+ indication of a bus allocation issue. The interrupt mechanism can also help
+ identify Slaves which detected a Bus Clash or a Parity Error, but they may
+ not be responsible for the errors so resetting them individually is not a
+ viable recovery strategy.
+
+2. Command status: Each command is associated with a status, which only
+ covers transmission of the data between devices. The ACK status indicates
+ that the command was received and will be executed by the end of the
+ current frame. A NAK indicates that the command was in error and will not
+ be applied. In case of a bad programming (command sent to non-existent
+ Slave or to a non-implemented register) or electrical issue, no response
+ signals the command was ignored. Some Master implementations allow for a
+ command to be retransmitted several times. If the retransmission fails,
+ backtracking and restarting the entire programming sequence might be a
+ solution. Alternatively some implementations might directly issue a bus
+ reset and re-enumerate all devices.
+
+3. Timeouts: In a number of cases such as ChannelPrepare or
+ ClockStopPrepare, the bus driver is supposed to poll a register field until
+ it transitions to a NotFinished value of zero. The MIPI SoundWire spec 1.1
+ does not define timeouts but the MIPI SoundWire DisCo document adds
+ recommendation on timeouts. If such configurations do not complete, the
+ driver will return a -ETIMEOUT. Such timeouts are symptoms of a faulty
+ Slave device and are likely impossible to recover from.
+
+Errors during global reconfiguration sequences are extremely difficult to
+handle:
+
+1. BankSwitch: An error during the last command issuing a BankSwitch is
+ difficult to backtrack from. Retransmitting the Bank Switch command may be
+ possible in a single segment setup, but this can lead to synchronization
+ problems when enabling multiple bus segments (a command with side effects
+ such as frame reconfiguration would be handled at different times). A global
+ hard-reset might be the best solution.
+
+Note that SoundWire does not provide a mechanism to detect illegal values
+written in valid registers. In a number of cases the standard even mentions
+that the Slave might behave in implementation-defined ways. The bus
+implementation does not provide a recovery mechanism for such errors, Slave
+or Master driver implementers are responsible for writing valid values in
+valid registers and implement additional range checking if needed.
diff --git a/Documentation/driver-api/soundwire/index.rst b/Documentation/driver-api/soundwire/index.rst
index 647e94654752..6db026028f27 100644
--- a/Documentation/driver-api/soundwire/index.rst
+++ b/Documentation/driver-api/soundwire/index.rst
@@ -6,6 +6,9 @@ SoundWire Documentation
:maxdepth: 1
summary
+ stream
+ error_handling
+ locking
.. only:: subproject
diff --git a/Documentation/driver-api/soundwire/locking.rst b/Documentation/driver-api/soundwire/locking.rst
new file mode 100644
index 000000000000..253f73555255
--- /dev/null
+++ b/Documentation/driver-api/soundwire/locking.rst
@@ -0,0 +1,106 @@
+=================
+SoundWire Locking
+=================
+
+This document explains locking mechanism of the SoundWire Bus. Bus uses
+following locks in order to avoid race conditions in Bus operations on
+shared resources.
+
+ - Bus lock
+
+ - Message lock
+
+Bus lock
+========
+
+SoundWire Bus lock is a mutex and is part of Bus data structure
+(sdw_bus) which is used for every Bus instance. This lock is used to
+serialize each of the following operations(s) within SoundWire Bus instance.
+
+ - Addition and removal of Slave(s), changing Slave status.
+
+ - Prepare, Enable, Disable and De-prepare stream operations.
+
+ - Access of Stream data structure.
+
+Message lock
+============
+
+SoundWire message transfer lock. This mutex is part of
+Bus data structure (sdw_bus). This lock is used to serialize the message
+transfers (read/write) within a SoundWire Bus instance.
+
+Below examples show how locks are acquired.
+
+Example 1
+---------
+
+Message transfer.
+
+ 1. For every message transfer
+
+ a. Acquire Message lock.
+
+ b. Transfer message (Read/Write) to Slave1 or broadcast message on
+ Bus in case of bank switch.
+
+ c. Release Message lock ::
+
+ +----------+ +---------+
+ | | | |
+ | Bus | | Master |
+ | | | Driver |
+ | | | |
+ +----+-----+ +----+----+
+ | |
+ | bus->ops->xfer_msg() |
+ <-------------------------------+ a. Acquire Message lock
+ | | b. Transfer message
+ | |
+ +-------------------------------> c. Release Message lock
+ | return success/error | d. Return success/error
+ | |
+ + +
+
+Example 2
+---------
+
+Prepare operation.
+
+ 1. Acquire lock for Bus instance associated with Master 1.
+
+ 2. For every message transfer in Prepare operation
+
+ a. Acquire Message lock.
+
+ b. Transfer message (Read/Write) to Slave1 or broadcast message on
+ Bus in case of bank switch.
+
+ c. Release Message lock.
+
+ 3. Release lock for Bus instance associated with Master 1 ::
+
+ +----------+ +---------+
+ | | | |
+ | Bus | | Master |
+ | | | Driver |
+ | | | |
+ +----+-----+ +----+----+
+ | |
+ | sdw_prepare_stream() |
+ <-------------------------------+ 1. Acquire bus lock
+ | | 2. Perform stream prepare
+ | |
+ | |
+ | bus->ops->xfer_msg() |
+ <-------------------------------+ a. Acquire Message lock
+ | | b. Transfer message
+ | |
+ +-------------------------------> c. Release Message lock
+ | return success/error | d. Return success/error
+ | |
+ | |
+ | return success/error | 3. Release bus lock
+ +-------------------------------> 4. Return success/error
+ | |
+ + +
diff --git a/Documentation/driver-api/soundwire/stream.rst b/Documentation/driver-api/soundwire/stream.rst
new file mode 100644
index 000000000000..29121aa55fb9
--- /dev/null
+++ b/Documentation/driver-api/soundwire/stream.rst
@@ -0,0 +1,372 @@
+=========================
+Audio Stream in SoundWire
+=========================
+
+An audio stream is a logical or virtual connection created between
+
+ (1) System memory buffer(s) and Codec(s)
+
+ (2) DSP memory buffer(s) and Codec(s)
+
+ (3) FIFO(s) and Codec(s)
+
+ (4) Codec(s) and Codec(s)
+
+which is typically driven by a DMA(s) channel through the data link. An
+audio stream contains one or more channels of data. All channels within
+stream must have same sample rate and same sample size.
+
+Assume a stream with two channels (Left & Right) is opened using SoundWire
+interface. Below are some ways a stream can be represented in SoundWire.
+
+Stream Sample in memory (System memory, DSP memory or FIFOs) ::
+
+ -------------------------
+ | L | R | L | R | L | R |
+ -------------------------
+
+Example 1: Stereo Stream with L and R channels is rendered from Master to
+Slave. Both Master and Slave is using single port. ::
+
+ +---------------+ Clock Signal +---------------+
+ | Master +----------------------------------+ Slave |
+ | Interface | | Interface |
+ | | | 1 |
+ | | Data Signal | |
+ | L + R +----------------------------------+ L + R |
+ | (Data) | Data Direction | (Data) |
+ +---------------+ +-----------------------> +---------------+
+
+
+Example 2: Stereo Stream with L and R channels is captured from Slave to
+Master. Both Master and Slave is using single port. ::
+
+
+ +---------------+ Clock Signal +---------------+
+ | Master +----------------------------------+ Slave |
+ | Interface | | Interface |
+ | | | 1 |
+ | | Data Signal | |
+ | L + R +----------------------------------+ L + R |
+ | (Data) | Data Direction | (Data) |
+ +---------------+ <-----------------------+ +---------------+
+
+
+Example 3: Stereo Stream with L and R channels is rendered by Master. Each
+of the L and R channel is received by two different Slaves. Master and both
+Slaves are using single port. ::
+
+ +---------------+ Clock Signal +---------------+
+ | Master +---------+------------------------+ Slave |
+ | Interface | | | Interface |
+ | | | | 1 |
+ | | | Data Signal | |
+ | L + R +---+------------------------------+ L |
+ | (Data) | | | Data Direction | (Data) |
+ +---------------+ | | +-------------> +---------------+
+ | |
+ | |
+ | | +---------------+
+ | +----------------------> | Slave |
+ | | Interface |
+ | | 2 |
+ | | |
+ +----------------------------> | R |
+ | (Data) |
+ +---------------+
+
+
+Example 4: Stereo Stream with L and R channel is rendered by two different
+Ports of the Master and is received by only single Port of the Slave
+interface. ::
+
+ +--------------------+
+ | |
+ | +--------------+ +----------------+
+ | | || | |
+ | | Data Port || L Channel | |
+ | | 1 |------------+ | |
+ | | L Channel || | +-----+----+ |
+ | | (Data) || | L + R Channel || Data | |
+ | Master +----------+ | +---+---------> || Port | |
+ | Interface | | || 1 | |
+ | +--------------+ | || | |
+ | | || | +----------+ |
+ | | Data Port |------------+ | |
+ | | 2 || R Channel | Slave |
+ | | R Channel || | Interface |
+ | | (Data) || | 1 |
+ | +--------------+ Clock Signal | L + R |
+ | +---------------------------> | (Data) |
+ +--------------------+ | |
+ +----------------+
+
+SoundWire Stream Management flow
+================================
+
+Stream definitions
+------------------
+
+ (1) Current stream: This is classified as the stream on which operation has
+ to be performed like prepare, enable, disable, de-prepare etc.
+
+ (2) Active stream: This is classified as the stream which is already active
+ on Bus other than current stream. There can be multiple active streams
+ on the Bus.
+
+SoundWire Bus manages stream operations for each stream getting
+rendered/captured on the SoundWire Bus. This section explains Bus operations
+done for each of the stream allocated/released on Bus. Following are the
+stream states maintained by the Bus for each of the audio stream.
+
+
+SoundWire stream states
+-----------------------
+
+Below shows the SoundWire stream states and state transition diagram. ::
+
+ +-----------+ +------------+ +----------+ +----------+
+ | ALLOCATED +---->| CONFIGURED +---->| PREPARED +---->| ENABLED |
+ | STATE | | STATE | | STATE | | STATE |
+ +-----------+ +------------+ +----------+ +----+-----+
+ ^
+ |
+ |
+ v
+ +----------+ +------------+ +----+-----+
+ | RELEASED |<----------+ DEPREPARED |<-------+ DISABLED |
+ | STATE | | STATE | | STATE |
+ +----------+ +------------+ +----------+
+
+NOTE: State transition between prepare and deprepare is supported in Spec
+but not in the software (subsystem)
+
+NOTE2: Stream state transition checks need to be handled by caller
+framework, for example ALSA/ASoC. No checks for stream transition exist in
+SoundWire subsystem.
+
+Stream State Operations
+-----------------------
+
+Below section explains the operations done by the Bus on Master(s) and
+Slave(s) as part of stream state transitions.
+
+SDW_STREAM_ALLOCATED
+~~~~~~~~~~~~~~~~~~~~
+
+Allocation state for stream. This is the entry state
+of the stream. Operations performed before entering in this state:
+
+ (1) A stream runtime is allocated for the stream. This stream
+ runtime is used as a reference for all the operations performed
+ on the stream.
+
+ (2) The resources required for holding stream runtime information are
+ allocated and initialized. This holds all stream related information
+ such as stream type (PCM/PDM) and parameters, Master and Slave
+ interface associated with the stream, stream state etc.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_ALLOCATED``.
+
+Bus implements below API for allocate a stream which needs to be called once
+per stream. From ASoC DPCM framework, this stream state maybe linked to
+.startup() operation.
+
+ .. code-block:: c
+ int sdw_alloc_stream(char * stream_name);
+
+
+SDW_STREAM_CONFIGURED
+~~~~~~~~~~~~~~~~~~~~~
+
+Configuration state of stream. Operations performed before entering in
+this state:
+
+ (1) The resources allocated for stream information in SDW_STREAM_ALLOCATED
+ state are updated here. This includes stream parameters, Master(s)
+ and Slave(s) runtime information associated with current stream.
+
+ (2) All the Master(s) and Slave(s) associated with current stream provide
+ the port information to Bus which includes port numbers allocated by
+ Master(s) and Slave(s) for current stream and their channel mask.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_CONFIGURED``.
+
+Bus implements below APIs for CONFIG state which needs to be called by
+the respective Master(s) and Slave(s) associated with stream. These APIs can
+only be invoked once by respective Master(s) and Slave(s). From ASoC DPCM
+framework, this stream state is linked to .hw_params() operation.
+
+ .. code-block:: c
+ int sdw_stream_add_master(struct sdw_bus * bus,
+ struct sdw_stream_config * stream_config,
+ struct sdw_ports_config * ports_config,
+ struct sdw_stream_runtime * stream);
+
+ int sdw_stream_add_slave(struct sdw_slave * slave,
+ struct sdw_stream_config * stream_config,
+ struct sdw_ports_config * ports_config,
+ struct sdw_stream_runtime * stream);
+
+
+SDW_STREAM_PREPARED
+~~~~~~~~~~~~~~~~~~~
+
+Prepare state of stream. Operations performed before entering in this state:
+
+ (1) Bus parameters such as bandwidth, frame shape, clock frequency,
+ are computed based on current stream as well as already active
+ stream(s) on Bus. Re-computation is required to accommodate current
+ stream on the Bus.
+
+ (2) Transport and port parameters of all Master(s) and Slave(s) port(s) are
+ computed for the current as well as already active stream based on frame
+ shape and clock frequency computed in step 1.
+
+ (3) Computed Bus and transport parameters are programmed in Master(s) and
+ Slave(s) registers. The banked registers programming is done on the
+ alternate bank (bank currently unused). Port(s) are enabled for the
+ already active stream(s) on the alternate bank (bank currently unused).
+ This is done in order to not disrupt already active stream(s).
+
+ (4) Once all the values are programmed, Bus initiates switch to alternate
+ bank where all new values programmed gets into effect.
+
+ (5) Ports of Master(s) and Slave(s) for current stream are prepared by
+ programming PrepareCtrl register.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_PREPARED``.
+
+Bus implements below API for PREPARE state which needs to be called once per
+stream. From ASoC DPCM framework, this stream state is linked to
+.prepare() operation.
+
+ .. code-block:: c
+ int sdw_prepare_stream(struct sdw_stream_runtime * stream);
+
+
+SDW_STREAM_ENABLED
+~~~~~~~~~~~~~~~~~~
+
+Enable state of stream. The data port(s) are enabled upon entering this state.
+Operations performed before entering in this state:
+
+ (1) All the values computed in SDW_STREAM_PREPARED state are programmed
+ in alternate bank (bank currently unused). It includes programming of
+ already active stream(s) as well.
+
+ (2) All the Master(s) and Slave(s) port(s) for the current stream are
+ enabled on alternate bank (bank currently unused) by programming
+ ChannelEn register.
+
+ (3) Once all the values are programmed, Bus initiates switch to alternate
+ bank where all new values programmed gets into effect and port(s)
+ associated with current stream are enabled.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_ENABLED``.
+
+Bus implements below API for ENABLE state which needs to be called once per
+stream. From ASoC DPCM framework, this stream state is linked to
+.trigger() start operation.
+
+ .. code-block:: c
+ int sdw_enable_stream(struct sdw_stream_runtime * stream);
+
+SDW_STREAM_DISABLED
+~~~~~~~~~~~~~~~~~~~
+
+Disable state of stream. The data port(s) are disabled upon exiting this state.
+Operations performed before entering in this state:
+
+ (1) All the Master(s) and Slave(s) port(s) for the current stream are
+ disabled on alternate bank (bank currently unused) by programming
+ ChannelEn register.
+
+ (2) All the current configuration of Bus and active stream(s) are programmed
+ into alternate bank (bank currently unused).
+
+ (3) Once all the values are programmed, Bus initiates switch to alternate
+ bank where all new values programmed gets into effect and port(s) associated
+ with current stream are disabled.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_DISABLED``.
+
+Bus implements below API for DISABLED state which needs to be called once
+per stream. From ASoC DPCM framework, this stream state is linked to
+.trigger() stop operation.
+
+ .. code-block:: c
+ int sdw_disable_stream(struct sdw_stream_runtime * stream);
+
+
+SDW_STREAM_DEPREPARED
+~~~~~~~~~~~~~~~~~~~~~
+
+De-prepare state of stream. Operations performed before entering in this
+state:
+
+ (1) All the port(s) of Master(s) and Slave(s) for current stream are
+ de-prepared by programming PrepareCtrl register.
+
+ (2) The payload bandwidth of current stream is reduced from the total
+ bandwidth requirement of bus and new parameters calculated and
+ applied by performing bank switch etc.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_DEPREPARED``.
+
+Bus implements below API for DEPREPARED state which needs to be called once
+per stream. From ASoC DPCM framework, this stream state is linked to
+.trigger() stop operation.
+
+ .. code-block:: c
+ int sdw_deprepare_stream(struct sdw_stream_runtime * stream);
+
+
+SDW_STREAM_RELEASED
+~~~~~~~~~~~~~~~~~~~
+
+Release state of stream. Operations performed before entering in this state:
+
+ (1) Release port resources for all Master(s) and Slave(s) port(s)
+ associated with current stream.
+
+ (2) Release Master(s) and Slave(s) runtime resources associated with
+ current stream.
+
+ (3) Release stream runtime resources associated with current stream.
+
+After all above operations are successful, stream state is set to
+``SDW_STREAM_RELEASED``.
+
+Bus implements below APIs for RELEASE state which needs to be called by
+all the Master(s) and Slave(s) associated with stream. From ASoC DPCM
+framework, this stream state is linked to .hw_free() operation.
+
+ .. code-block:: c
+ int sdw_stream_remove_master(struct sdw_bus * bus,
+ struct sdw_stream_runtime * stream);
+ int sdw_stream_remove_slave(struct sdw_slave * slave,
+ struct sdw_stream_runtime * stream);
+
+
+The .shutdown() ASoC DPCM operation calls below Bus API to release
+stream assigned as part of ALLOCATED state.
+
+In .shutdown() the data structure maintaining stream state are freed up.
+
+ .. code-block:: c
+ void sdw_release_stream(struct sdw_stream_runtime * stream);
+
+Not Supported
+=============
+
+1. A single port with multiple channels supported cannot be used between two
+streams or across stream. For example a port with 4 channels cannot be used
+to handle 2 independent stereo streams even though it's possible in theory
+in SoundWire.
diff --git a/Documentation/fpga/fpga-mgr.txt b/Documentation/fpga/fpga-mgr.txt
deleted file mode 100644
index cc6413ed6fc9..000000000000
--- a/Documentation/fpga/fpga-mgr.txt
+++ /dev/null
@@ -1,199 +0,0 @@
-FPGA Manager Core
-
-Alan Tull 2015
-
-Overview
-========
-
-The FPGA manager core exports a set of functions for programming an FPGA with
-an image. The API is manufacturer agnostic. All manufacturer specifics are
-hidden away in a low level driver which registers a set of ops with the core.
-The FPGA image data itself is very manufacturer specific, but for our purposes
-it's just binary data. The FPGA manager core won't parse it.
-
-The FPGA image to be programmed can be in a scatter gather list, a single
-contiguous buffer, or a firmware file. Because allocating contiguous kernel
-memory for the buffer should be avoided, users are encouraged to use a scatter
-gather list instead if possible.
-
-The particulars for programming the image are presented in a structure (struct
-fpga_image_info). This struct contains parameters such as pointers to the
-FPGA image as well as image-specific particulars such as whether the image was
-built for full or partial reconfiguration.
-
-API Functions:
-==============
-
-To program the FPGA:
---------------------
-
- int fpga_mgr_load(struct fpga_manager *mgr,
- struct fpga_image_info *info);
-
-Load the FPGA from an image which is indicated in the info. If successful,
-the FPGA ends up in operating mode. Return 0 on success or a negative error
-code.
-
-To allocate or free a struct fpga_image_info:
----------------------------------------------
-
- struct fpga_image_info *fpga_image_info_alloc(struct device *dev);
-
- void fpga_image_info_free(struct fpga_image_info *info);
-
-To get/put a reference to a FPGA manager:
------------------------------------------
-
- struct fpga_manager *of_fpga_mgr_get(struct device_node *node);
- struct fpga_manager *fpga_mgr_get(struct device *dev);
- void fpga_mgr_put(struct fpga_manager *mgr);
-
-Given a DT node or device, get a reference to a FPGA manager. This pointer
-can be saved until you are ready to program the FPGA. fpga_mgr_put releases
-the reference.
-
-
-To get exclusive control of a FPGA manager:
--------------------------------------------
-
- int fpga_mgr_lock(struct fpga_manager *mgr);
- void fpga_mgr_unlock(struct fpga_manager *mgr);
-
-The user should call fpga_mgr_lock and verify that it returns 0 before
-attempting to program the FPGA. Likewise, the user should call
-fpga_mgr_unlock when done programming the FPGA.
-
-
-To register or unregister the low level FPGA-specific driver:
--------------------------------------------------------------
-
- int fpga_mgr_register(struct device *dev, const char *name,
- const struct fpga_manager_ops *mops,
- void *priv);
-
- void fpga_mgr_unregister(struct device *dev);
-
-Use of these two functions is described below in "How To Support a new FPGA
-device."
-
-
-How to write an image buffer to a supported FPGA
-================================================
-#include <linux/fpga/fpga-mgr.h>
-
-struct fpga_manager *mgr;
-struct fpga_image_info *info;
-int ret;
-
-/*
- * Get a reference to FPGA manager. The manager is not locked, so you can
- * hold onto this reference without it preventing programming.
- *
- * This example uses the device node of the manager. Alternatively, use
- * fpga_mgr_get(dev) instead if you have the device.
- */
-mgr = of_fpga_mgr_get(mgr_node);
-
-/* struct with information about the FPGA image to program. */
-info = fpga_image_info_alloc(dev);
-
-/* flags indicates whether to do full or partial reconfiguration */
-info->flags = FPGA_MGR_PARTIAL_RECONFIG;
-
-/*
- * At this point, indicate where the image is. This is pseudo-code; you're
- * going to use one of these three.
- */
-if (image is in a scatter gather table) {
-
- info->sgt = [your scatter gather table]
-
-} else if (image is in a buffer) {
-
- info->buf = [your image buffer]
- info->count = [image buffer size]
-
-} else if (image is in a firmware file) {
-
- info->firmware_name = devm_kstrdup(dev, firmware_name, GFP_KERNEL);
-
-}
-
-/* Get exclusive control of FPGA manager */
-ret = fpga_mgr_lock(mgr);
-
-/* Load the buffer to the FPGA */
-ret = fpga_mgr_buf_load(mgr, &info, buf, count);
-
-/* Release the FPGA manager */
-fpga_mgr_unlock(mgr);
-fpga_mgr_put(mgr);
-
-/* Deallocate the image info if you're done with it */
-fpga_image_info_free(info);
-
-How to support a new FPGA device
-================================
-To add another FPGA manager, write a driver that implements a set of ops. The
-probe function calls fpga_mgr_register(), such as:
-
-static const struct fpga_manager_ops socfpga_fpga_ops = {
- .write_init = socfpga_fpga_ops_configure_init,
- .write = socfpga_fpga_ops_configure_write,
- .write_complete = socfpga_fpga_ops_configure_complete,
- .state = socfpga_fpga_ops_state,
-};
-
-static int socfpga_fpga_probe(struct platform_device *pdev)
-{
- struct device *dev = &pdev->dev;
- struct socfpga_fpga_priv *priv;
- int ret;
-
- priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
- if (!priv)
- return -ENOMEM;
-
- /* ... do ioremaps, get interrupts, etc. and save
- them in priv... */
-
- return fpga_mgr_register(dev, "Altera SOCFPGA FPGA Manager",
- &socfpga_fpga_ops, priv);
-}
-
-static int socfpga_fpga_remove(struct platform_device *pdev)
-{
- fpga_mgr_unregister(&pdev->dev);
-
- return 0;
-}
-
-
-The ops will implement whatever device specific register writes are needed to
-do the programming sequence for this particular FPGA. These ops return 0 for
-success or negative error codes otherwise.
-
-The programming sequence is:
- 1. .write_init
- 2. .write or .write_sg (may be called once or multiple times)
- 3. .write_complete
-
-The .write_init function will prepare the FPGA to receive the image data. The
-buffer passed into .write_init will be atmost .initial_header_size bytes long,
-if the whole bitstream is not immediately available then the core code will
-buffer up at least this much before starting.
-
-The .write function writes a buffer to the FPGA. The buffer may be contain the
-whole FPGA image or may be a smaller chunk of an FPGA image. In the latter
-case, this function is called multiple times for successive chunks. This interface
-is suitable for drivers which use PIO.
-
-The .write_sg version behaves the same as .write except the input is a sg_table
-scatter list. This interface is suitable for drivers which use DMA.
-
-The .write_complete function is called after all the image has been written
-to put the FPGA into operating mode.
-
-The ops include a .state function which will read the hardware FPGA manager and
-return a code of type enum fpga_mgr_states. It doesn't result in a change in
-hardware state.
diff --git a/Documentation/fpga/fpga-region.txt b/Documentation/fpga/fpga-region.txt
deleted file mode 100644
index 139a02ba1ff6..000000000000
--- a/Documentation/fpga/fpga-region.txt
+++ /dev/null
@@ -1,95 +0,0 @@
-FPGA Regions
-
-Alan Tull 2017
-
-CONTENTS
- - Introduction
- - The FPGA region API
- - Usage example
-
-Introduction
-============
-
-This document is meant to be an brief overview of the FPGA region API usage. A
-more conceptual look at regions can be found in [1].
-
-For the purposes of this API document, let's just say that a region associates
-an FPGA Manager and a bridge (or bridges) with a reprogrammable region of an
-FPGA or the whole FPGA. The API provides a way to register a region and to
-program a region.
-
-Currently the only layer above fpga-region.c in the kernel is the Device Tree
-support (of-fpga-region.c) described in [1]. The DT support layer uses regions
-to program the FPGA and then DT to handle enumeration. The common region code
-is intended to be used by other schemes that have other ways of accomplishing
-enumeration after programming.
-
-An fpga-region can be set up to know the following things:
-* which FPGA manager to use to do the programming
-* which bridges to disable before programming and enable afterwards.
-
-Additional info needed to program the FPGA image is passed in the struct
-fpga_image_info [2] including:
-* pointers to the image as either a scatter-gather buffer, a contiguous
- buffer, or the name of firmware file
-* flags indicating specifics such as whether the image if for partial
- reconfiguration.
-
-===================
-The FPGA region API
-===================
-
-To register or unregister a region:
------------------------------------
-
- int fpga_region_register(struct device *dev,
- struct fpga_region *region);
- int fpga_region_unregister(struct fpga_region *region);
-
-An example of usage can be seen in the probe function of [3]
-
-To program an FPGA:
--------------------
- int fpga_region_program_fpga(struct fpga_region *region);
-
-This function operates on info passed in the fpga_image_info
-(region->info).
-
-This function will attempt to:
- * lock the region's mutex
- * lock the region's FPGA manager
- * build a list of FPGA bridges if a method has been specified to do so
- * disable the bridges
- * program the FPGA
- * re-enable the bridges
- * release the locks
-
-=============
-Usage example
-=============
-
-First, allocate the info struct:
-
- info = fpga_image_info_alloc(dev);
- if (!info)
- return -ENOMEM;
-
-Set flags as needed, i.e.
-
- info->flags |= FPGA_MGR_PARTIAL_RECONFIG;
-
-Point to your FPGA image, such as:
-
- info->sgt = &sgt;
-
-Add info to region and do the programming:
-
- region->info = info;
- ret = fpga_region_program_fpga(region);
-
-Then enumerate whatever hardware has appeared in the FPGA.
-
---
-[1] ../devicetree/bindings/fpga/fpga-region.txt
-[2] ./fpga-mgr.txt
-[3] ../../drivers/fpga/of-fpga-region.c
diff --git a/Documentation/fpga/overview.txt b/Documentation/fpga/overview.txt
deleted file mode 100644
index 0f1236e7e675..000000000000
--- a/Documentation/fpga/overview.txt
+++ /dev/null
@@ -1,23 +0,0 @@
-Linux kernel FPGA support
-
-Alan Tull 2017
-
-The main point of this project has been to separate the out the upper layers
-that know when to reprogram a FPGA from the lower layers that know how to
-reprogram a specific FPGA device. The intention is to make this manufacturer
-agnostic, understanding that of course the FPGA images are very device specific
-themselves.
-
-The framework in the kernel includes:
-* low level FPGA manager drivers that know how to program a specific device
-* the fpga-mgr framework they are registered with
-* low level FPGA bridge drivers for hard/soft bridges which are intended to
- be disable during FPGA programming
-* the fpga-bridge framework they are registered with
-* the fpga-region framework which associates and controls managers and bridges
- as reconfigurable regions
-* the of-fpga-region support for reprogramming FPGAs when device tree overlays
- are applied.
-
-I would encourage you the user to add code that creates FPGA regions rather
-that trying to control managers and bridges separately.
diff --git a/Documentation/ioctl/ioctl-number.txt b/Documentation/ioctl/ioctl-number.txt
index 27c1b7b78504..a12488d45c40 100644
--- a/Documentation/ioctl/ioctl-number.txt
+++ b/Documentation/ioctl/ioctl-number.txt
@@ -328,6 +328,7 @@ Code Seq#(hex) Include File Comments
0xCA 80-BF uapi/scsi/cxlflash_ioctl.h
0xCB 00-1F CBM serial IEC bus in development:
<mailto:michael.klein@puffin.lb.shuttle.de>
+0xCC 00-0F drivers/misc/ibmvmc.h pseries VMC driver
0xCD 01 linux/reiserfs_fs.h
0xCF 02 fs/cifs/ioctl.c
0xDB 00-0F drivers/char/mwave/mwavepub.h
diff --git a/Documentation/misc-devices/ibmvmc.rst b/Documentation/misc-devices/ibmvmc.rst
new file mode 100644
index 000000000000..46ded79554d4
--- /dev/null
+++ b/Documentation/misc-devices/ibmvmc.rst
@@ -0,0 +1,226 @@
+.. SPDX-License-Identifier: GPL-2.0+
+======================================================
+IBM Virtual Management Channel Kernel Driver (IBMVMC)
+======================================================
+
+:Authors:
+ Dave Engebretsen <engebret@us.ibm.com>,
+ Adam Reznechek <adreznec@linux.vnet.ibm.com>,
+ Steven Royer <seroyer@linux.vnet.ibm.com>,
+ Bryant G. Ly <bryantly@linux.vnet.ibm.com>,
+
+Introduction
+============
+
+Note: Knowledge of virtualization technology is required to understand
+this document.
+
+A good reference document would be:
+
+https://openpowerfoundation.org/wp-content/uploads/2016/05/LoPAPR_DRAFT_v11_24March2016_cmt1.pdf
+
+The Virtual Management Channel (VMC) is a logical device which provides an
+interface between the hypervisor and a management partition. This interface
+is like a message passing interface. This management partition is intended
+to provide an alternative to systems that use a Hardware Management
+Console (HMC) - based system management.
+
+The primary hardware management solution that is developed by IBM relies
+on an appliance server named the Hardware Management Console (HMC),
+packaged as an external tower or rack-mounted personal computer. In a
+Power Systems environment, a single HMC can manage multiple POWER
+processor-based systems.
+
+Management Application
+----------------------
+
+In the management partition, a management application exists which enables
+a system administrator to configure the system’s partitioning
+characteristics via a command line interface (CLI) or Representational
+State Transfer Application (REST API's).
+
+The management application runs on a Linux logical partition on a
+POWER8 or newer processor-based server that is virtualized by PowerVM.
+System configuration, maintenance, and control functions which
+traditionally require an HMC can be implemented in the management
+application using a combination of HMC to hypervisor interfaces and
+existing operating system methods. This tool provides a subset of the
+functions implemented by the HMC and enables basic partition configuration.
+The set of HMC to hypervisor messages supported by the management
+application component are passed to the hypervisor over a VMC interface,
+which is defined below.
+
+The VMC enables the management partition to provide basic partitioning
+functions:
+
+- Logical Partitioning Configuration
+- Start, and stop actions for individual partitions
+- Display of partition status
+- Management of virtual Ethernet
+- Management of virtual Storage
+- Basic system management
+
+Virtual Management Channel (VMC)
+--------------------------------
+
+A logical device, called the Virtual Management Channel (VMC), is defined
+for communicating between the management application and the hypervisor. It
+basically creates the pipes that enable virtualization management
+software. This device is presented to a designated management partition as
+a virtual device.
+
+This communication device uses Command/Response Queue (CRQ) and the
+Remote Direct Memory Access (RDMA) interfaces. A three-way handshake is
+defined that must take place to establish that both the hypervisor and
+management partition sides of the channel are running prior to
+sending/receiving any of the protocol messages.
+
+This driver also utilizes Transport Event CRQs. CRQ messages are sent
+when the hypervisor detects one of the peer partitions has abnormally
+terminated, or one side has called H_FREE_CRQ to close their CRQ.
+Two new classes of CRQ messages are introduced for the VMC device. VMC
+Administrative messages are used for each partition using the VMC to
+communicate capabilities to their partner. HMC Interface messages are used
+for the actual flow of HMC messages between the management partition and
+the hypervisor. As most HMC messages far exceed the size of a CRQ buffer,
+a virtual DMA (RMDA) of the HMC message data is done prior to each HMC
+Interface CRQ message. Only the management partition drives RDMA
+operations; hypervisors never directly cause the movement of message data.
+
+
+Terminology
+-----------
+RDMA
+ Remote Direct Memory Access is DMA transfer from the server to its
+ client or from the server to its partner partition. DMA refers
+ to both physical I/O to and from memory operations and to memory
+ to memory move operations.
+CRQ
+ Command/Response Queue a facility which is used to communicate
+ between partner partitions. Transport events which are signaled
+ from the hypervisor to partition are also reported in this queue.
+
+Example Management Partition VMC Driver Interface
+=================================================
+
+This section provides an example for the management application
+implementation where a device driver is used to interface to the VMC
+device. This driver consists of a new device, for example /dev/ibmvmc,
+which provides interfaces to open, close, read, write, and perform
+ioctl’s against the VMC device.
+
+VMC Interface Initialization
+----------------------------
+
+The device driver is responsible for initializing the VMC when the driver
+is loaded. It first creates and initializes the CRQ. Next, an exchange of
+VMC capabilities is performed to indicate the code version and number of
+resources available in both the management partition and the hypervisor.
+Finally, the hypervisor requests that the management partition create an
+initial pool of VMC buffers, one buffer for each possible HMC connection,
+which will be used for management application session initialization.
+Prior to completion of this initialization sequence, the device returns
+EBUSY to open() calls. EIO is returned for all open() failures.
+
+::
+
+ Management Partition Hypervisor
+ CRQ INIT
+ ---------------------------------------->
+ CRQ INIT COMPLETE
+ <----------------------------------------
+ CAPABILITIES
+ ---------------------------------------->
+ CAPABILITIES RESPONSE
+ <----------------------------------------
+ ADD BUFFER (HMC IDX=0,1,..) _
+ <---------------------------------------- |
+ ADD BUFFER RESPONSE | - Perform # HMCs Iterations
+ ----------------------------------------> -
+
+VMC Interface Open
+------------------
+
+After the basic VMC channel has been initialized, an HMC session level
+connection can be established. The application layer performs an open() to
+the VMC device and executes an ioctl() against it, indicating the HMC ID
+(32 bytes of data) for this session. If the VMC device is in an invalid
+state, EIO will be returned for the ioctl(). The device driver creates a
+new HMC session value (ranging from 1 to 255) and HMC index value (starting
+at index 0 and ranging to 254) for this HMC ID. The driver then does an
+RDMA of the HMC ID to the hypervisor, and then sends an Interface Open
+message to the hypervisor to establish the session over the VMC. After the
+hypervisor receives this information, it sends Add Buffer messages to the
+management partition to seed an initial pool of buffers for the new HMC
+connection. Finally, the hypervisor sends an Interface Open Response
+message, to indicate that it is ready for normal runtime messaging. The
+following illustrates this VMC flow:
+
+::
+
+ Management Partition Hypervisor
+ RDMA HMC ID
+ ---------------------------------------->
+ Interface Open
+ ---------------------------------------->
+ Add Buffer _
+ <---------------------------------------- |
+ Add Buffer Response | - Perform N Iterations
+ ----------------------------------------> -
+ Interface Open Response
+ <----------------------------------------
+
+VMC Interface Runtime
+---------------------
+
+During normal runtime, the management application and the hypervisor
+exchange HMC messages via the Signal VMC message and RDMA operations. When
+sending data to the hypervisor, the management application performs a
+write() to the VMC device, and the driver RDMA’s the data to the hypervisor
+and then sends a Signal Message. If a write() is attempted before VMC
+device buffers have been made available by the hypervisor, or no buffers
+are currently available, EBUSY is returned in response to the write(). A
+write() will return EIO for all other errors, such as an invalid device
+state. When the hypervisor sends a message to the management, the data is
+put into a VMC buffer and an Signal Message is sent to the VMC driver in
+the management partition. The driver RDMA’s the buffer into the partition
+and passes the data up to the appropriate management application via a
+read() to the VMC device. The read() request blocks if there is no buffer
+available to read. The management application may use select() to wait for
+the VMC device to become ready with data to read.
+
+::
+
+ Management Partition Hypervisor
+ MSG RDMA
+ ---------------------------------------->
+ SIGNAL MSG
+ ---------------------------------------->
+ SIGNAL MSG
+ <----------------------------------------
+ MSG RDMA
+ <----------------------------------------
+
+VMC Interface Close
+-------------------
+
+HMC session level connections are closed by the management partition when
+the application layer performs a close() against the device. This action
+results in an Interface Close message flowing to the hypervisor, which
+causes the session to be terminated. The device driver must free any
+storage allocated for buffers for this HMC connection.
+
+::
+
+ Management Partition Hypervisor
+ INTERFACE CLOSE
+ ---------------------------------------->
+ INTERFACE CLOSE RESPONSE
+ <----------------------------------------
+
+Additional Information
+======================
+
+For more information on the documentation for CRQ Messages, VMC Messages,
+HMC interface Buffers, and signal messages please refer to the Linux on
+Power Architecture Platform Reference. Section F.
diff --git a/Documentation/trace/coresight-cpu-debug.txt b/Documentation/trace/coresight-cpu-debug.txt
index 2b9b51cd501e..89ab09e78e8d 100644
--- a/Documentation/trace/coresight-cpu-debug.txt
+++ b/Documentation/trace/coresight-cpu-debug.txt
@@ -177,11 +177,11 @@ Here is an example of the debugging output format:
ARM external debug module:
coresight-cpu-debug 850000.debug: CPU[0]:
coresight-cpu-debug 850000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
-coresight-cpu-debug 850000.debug: EDPCSR: [<ffff00000808e9bc>] handle_IPI+0x174/0x1d8
+coresight-cpu-debug 850000.debug: EDPCSR: handle_IPI+0x174/0x1d8
coresight-cpu-debug 850000.debug: EDCIDSR: 00000000
coresight-cpu-debug 850000.debug: EDVIDSR: 90000000 (State:Non-secure Mode:EL1/0 Width:64bits VMID:0)
coresight-cpu-debug 852000.debug: CPU[1]:
coresight-cpu-debug 852000.debug: EDPRSR: 00000001 (Power:On DLK:Unlock)
-coresight-cpu-debug 852000.debug: EDPCSR: [<ffff0000087fab34>] debug_notifier_call+0x23c/0x358
+coresight-cpu-debug 852000.debug: EDPCSR: debug_notifier_call+0x23c/0x358
coresight-cpu-debug 852000.debug: EDCIDSR: 00000000
coresight-cpu-debug 852000.debug: EDVIDSR: 90000000 (State:Non-secure Mode:EL1/0 Width:64bits VMID:0)
OpenPOWER on IntegriCloud