summaryrefslogtreecommitdiffstats
path: root/src/usr/targeting/targetservicestart.C
blob: dea0b98676fc4bc3c45c6e2e31c3a68dfd1db771 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/targeting/targetservicestart.C $                      */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2012,2019                        */
/* [+] Google Inc.                                                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

/**
 *  @file targeting/targetservicestart.C
 *
 *  @brief Hostboot entry point for target service
 */

//******************************************************************************
// Includes
//******************************************************************************

// STD
#include <stdio.h>
#include <stdlib.h>
#include <limits.h>

// Other components
#include <sys/misc.h>
#include <sys/mm.h>
#include <sys/task.h>
#include <sys/sync.h>
#include <arch/ppc.H>
#include <targeting/common/trace.H>
#include <targeting/adapters/assertadapter.H>
#include <targeting/adapters/types.H>
#include <initservice/taskargs.H>
#include <util/utilmbox_scratch.H>
#include <util/align.H>

// This component
#include <targeting/common/targetservice.H>
#include <targeting/attrrp.H>
#include <targeting/targplatutil.H>

// Others
#include <errl/errlentry.H>
#include <errl/errlmanager.H>
#include <devicefw/userif.H>
#include <initservice/initserviceif.H>
#include <util/misc.H>
#include <util/utilrsvdmem.H>
#include <kernel/bltohbdatamgr.H>
#include <map>
#include <arch/memorymap.H>
#include <lpc/lpcif.H>
#include <xscom/xscomif.H>
#include <bootloader/bootloaderif.H>
#include <sbeio/sbeioif.H>
#include <sys/mm.h>
#include "../runtime/hdatstructs.H"
#include <console/consoleif.H>

#ifdef CONFIG_BMC_IPMI
#include <ipmi/ipmiif.H>
#endif

#ifdef CONFIG_DRTM
#include <secureboot/drtm.H>
#endif

#include <targeting/common/associationmanager.H>

using namespace INITSERVICE::SPLESS;
//******************************************************************************
// targetService
//******************************************************************************

namespace TARGETING
{

#define TARG_NAMESPACE "TARGETING::"

#define TARG_LOC TARG_NAMESPACE TARG_CLASS TARG_FN ": "

//******************************************************************************
// _start
//******************************************************************************

#define TARG_CLASS ""

/*
 * @brief Initialize any attributes that need to be set early on
 */
static void initializeAttributes(TargetService& i_targetService,
                                 bool i_isMpipl,
                                 bool i_istepMode,
                                 ATTR_MASTER_MBOX_SCRATCH_type& i_masterScratch);

/**
 *  @brief Check that at least one processor of our cpu type is being targeted
 */
static void checkProcessorTargeting(TargetService& i_targetService);

/**
 *  @brief Compute any values that might change based on a remap of memory
 *  @param[in]  Pointer to targeting service
 */
static void adjustMemoryMap(TargetService& i_targetService);

/**
 *  @brief Entry point for initialization service to initialize the targeting
 *      code
 *
 *  @param[in] io_pError
 *      Error log handle; returns NULL on success, !NULL otherwise
 *
 *  @note: Link register is configured to automatically invoke task_end() when
 *      this routine returns
 */
static void initTargeting(errlHndl_t& io_pError)
{
    #define TARG_FN "initTargeting(errlHndl_t& io_pError)"

    TARG_ENTER();

    //Need to stash away the master mbox regs as they will
    //be overwritten
    bool l_isMpipl = false;
    bool l_isIstepMode = false;
    ATTR_MASTER_MBOX_SCRATCH_type l_scratch = {0,0,0,0,0,0,0,0};

    for(size_t i=0; i< sizeof(l_scratch)/sizeof(l_scratch[0]); i++)
    {
        l_scratch[i] =
        Util::readScratchReg(MBOX_SCRATCH_REG1+i);
    }

    // Check mbox scratch reg 3 for IPL boot options
    // Specifically istep mode (bit 0) and MPIPL (bit 2)
    INITSERVICE::SPLESS::MboxScratch3_t l_scratch3;
    l_scratch3.data32 = l_scratch[SCRATCH_3];

    if(l_scratch3.isMpipl)
    {
        TARG_INF("We are running MPIPL mode");
        l_isMpipl = true;

#ifdef CONFIG_SUPPORT_PARTIAL_CACHE
        //If in partial cache mode need to extend to full mem
        //Since we are in MPIPL we know that memory is up and running
        //in order to avoid burning through all of our memory pages
        //during the attrrp init, which is when we copy attributes from
        //the prev IPL into PNOR, we expand out to full cache right now
        //in activate_threads we will expand out to MM_EXTEND_REAL_MEMORY
        mm_extend(MM_EXTEND_FULL_CACHE);
#endif
    }
    if(l_scratch3.istepMode)
    {
        l_isIstepMode = true;
    }
    if(l_scratch3.overrideSecurity)
    {
        TARG_INF("WARNING: External tool asked master proc to disable "
            "security.");
    }
    if(l_scratch3.allowAttrOverrides)
    {
        TARG_INF("WARNING: External tool asked master proc to allow "
            "attribute overrides even in secure mode.");
    }

#ifndef CONFIG_SUPPORT_PARTIAL_CACHE
    //To prevent thrashing or "out of memory' errors on richly
    //configured systems, always extend into full cache prior
    //to loading ATTRs
    mm_extend(MM_EXTEND_FULL_CACHE);
#endif

    AttrRP::init(io_pError, l_isMpipl);

    if (io_pError == NULL)
    {
        TargetService& l_targetService = targetService();
        (void)l_targetService.init();

        if(l_isMpipl)
        {
            // Open the permissions to be able to reset the links between
            // sys <-> nodeN established during runtime.
            io_pError = l_targetService.modifyReadOnlyPagePermissions(true);
            if(io_pError)
            {
                auto l_plid = io_pError->plid();
                errlCommit(io_pError, TARG_COMP_ID);
                INITSERVICE::doShutdown(l_plid, true);
            }

            io_pError = TARGETING::AssociationManager::
                                                    reconnectSyAndNodeTargets();
            if(io_pError)
            {
                auto l_plid = io_pError->plid();
                errlCommit(io_pError, TARG_COMP_ID);
                INITSERVICE::doShutdown(l_plid,  true);
            }
        }

        initializeAttributes(l_targetService, l_isMpipl, l_isIstepMode,
                             l_scratch);


        uint32_t l_peerTargetsAdjusted = 0;
        uint32_t l_numberMutexAttrsReset = 0;

        if(l_isMpipl)
        {


            for( auto targ_iter = l_targetService.begin();
                 targ_iter != l_targetService.end();
                 targ_iter++)
            {
                const Target* l_pTarget = *targ_iter;

                // Ensure all mutex attributes are setup correctly for MPIPL
                // Check if there any mutex attributes
                // we need to reset on this target
                l_numberMutexAttrsReset +=
                    l_targetService.resetMutexAttributes(l_pTarget);

                // Update any peer target addresses if necessary
                // updatePeerTargets will write to read-only attribute pages.
                // To get around vmm fails we need to allow writes to readonly
                // memory for the duration of this loop (unlocking is done
                // above).
                if(l_targetService.updatePeerTarget(l_pTarget))
                {
                    l_peerTargetsAdjusted++;
                }
            }

            // Now that the loop is complete we can re-apply
            // the read only permissions to the read only attr pages
            l_targetService.modifyReadOnlyPagePermissions(false);
            TARG_INF("Number of peer target addresses adjusted: %d",
                     l_peerTargetsAdjusted);
            TARG_INF("Number of mutex attributes reset: %d",
                     l_numberMutexAttrsReset);
        }
        else
        {

            for( auto targ_iter = l_targetService.begin();
                 targ_iter != l_targetService.end();
                 targ_iter++)
            {
                const Target* l_pTarget = *targ_iter;

                // Ensure all mutex attributes are setup correctly for IPL
                // Recursive Mutexes need to be setup since they are defaulted
                // to all zero.
                // Check if there any mutex attributes
                // we need to reset on this target
                l_targetService.resetMutexAttributes(l_pTarget);
            }
        }


        checkProcessorTargeting(l_targetService);

        // Print out top-level model value from loaded targeting values.
        // @TODO RTC:88056 Make the model printed more meaniful
        Target* l_pTopLevel = NULL;
        l_targetService.getTopLevelTarget(l_pTopLevel);
        ATTR_MODEL_type l_model = MODEL_NA;
        if (l_pTopLevel->tryGetAttr<ATTR_MODEL>(l_model)) {
            TARG_INF("Initialized targeting for model: %s",
                     l_pTopLevel->getAttrAsString<ATTR_MODEL>());
        }

#ifdef CONFIG_DRTM
        const INITSERVICE::SPLESS::MboxScratch7_t scratch7 =
            {.data32 = l_scratch[SCRATCH_7] };
        const INITSERVICE::SPLESS::MboxScratch8_t scratch8 =
            {.data32 = l_scratch[SCRATCH_8] };

        errlHndl_t pError = SECUREBOOT::DRTM::discoverDrtmState(
            scratch7,scratch8);
        if(pError)
        {
            auto plid = pError->plid();
            errlCommit(pError,SECURE_COMP_ID);
            // TODO: RTC 167205: Better GA error handling
            INITSERVICE::doShutdown(plid, true);
        }
#endif

        // Handle possibility of Attribute Overrides allowed in secure mode
        bool l_allow_attr_overrides =
            g_BlToHbDataManager.getAllowAttrOverrides();
        if (l_allow_attr_overrides)
        {
            TARG_INF("Allow Attribute Overrides In Secure Mode: %d",
                l_allow_attr_overrides);
            l_pTopLevel->setAttr<
                TARGETING::ATTR_ALLOW_ATTR_OVERRIDES_IN_SECURE_MODE>(
                    l_allow_attr_overrides);
        }
        else
        {
            // Hardcode to zero to be safe
            l_pTopLevel->setAttr<
                TARGETING::ATTR_ALLOW_ATTR_OVERRIDES_IN_SECURE_MODE>(0x0);
        }

// No error module loaded in VPO to save load time
#ifndef CONFIG_VPO_COMPILE
        // call ErrlManager function - tell him that TARG is ready!
        ERRORLOG::ErrlManager::errlResourceReady(ERRORLOG::TARG);
#endif

        // set global that TARG is ready
        Util::setIsTargetingLoaded();

#ifdef CONFIG_BMC_IPMI
        /* Break IPMI's dependency on targeting by setting buffer size here */
        l_pTopLevel->setAttr<TARGETING::ATTR_IPMI_MAX_BUFFER_SIZE>
            (IPMI::max_buffer());
#endif
    }

    TARG_EXIT();

#undef TARG_FN
}

/**
 *  @brief Create _start entry point using task entry macro and vector to
 *      initTargeting function
 */
TASK_ENTRY_MACRO(initTargeting);


/**
 *  @brief Check that at least one processor of our cpu type is being targeted
 */
static void checkProcessorTargeting(TargetService& i_targetService)
{
    #define TARG_FN "checkProcessorTargeting()"
    TARG_ENTER();

    PredicateCTM l_procChip(CLASS_CHIP,TYPE_PROC);
    ProcessorCoreType l_coreType = cpu_core_type();
    bool l_haveOneCorrectProcessor = false;
    TargetRangeFilter l_filter(
        i_targetService.begin(),
        i_targetService.end(),
        &l_procChip);

    for(;l_filter && (l_haveOneCorrectProcessor != true);++l_filter)
    {
        switch(l_filter->getAttr<ATTR_MODEL>())
        {
            case MODEL_VENICE:
                if(l_coreType == CORE_POWER8_VENICE)
                {
                    l_haveOneCorrectProcessor = true;
                }
                break;

            case MODEL_MURANO:
                if(l_coreType == CORE_POWER8_MURANO)
                {
                    l_haveOneCorrectProcessor = true;
                }
                break;

            case MODEL_NAPLES:
                if(l_coreType == CORE_POWER8_NAPLES)
                {
                    l_haveOneCorrectProcessor = true;
                }
                break;
            case MODEL_NIMBUS:
                if(l_coreType == CORE_POWER9_NIMBUS)
                {
                    l_haveOneCorrectProcessor = true;
                }
                break;
            case MODEL_CUMULUS:
                if(l_coreType == CORE_POWER9_CUMULUS)
                {
                    l_haveOneCorrectProcessor = true;
                }
                break;
            case MODEL_AXONE:
                if(l_coreType == CORE_POWER9_AXONE)
                {
                    l_haveOneCorrectProcessor = true;
                }
                break;

            default:
                break;
        };
    }

    TARG_ASSERT((l_haveOneCorrectProcessor == true), TARG_ERR_LOC "FATAL: No "
                "targeted processors are of the correct type");

    TARG_EXIT();

    #undef TARG_FN
}

/*
 * @brief Initialize any attributes that need to be set early on
 */
static void initializeAttributes(TargetService& i_targetService,
                                 bool i_isMpipl,
                                 bool i_istepMode,
                                 ATTR_MASTER_MBOX_SCRATCH_type& i_masterScratch)
{
    #define TARG_FN "initializeAttributes()...)"
    TARG_ENTER();

    Target* l_pTopLevel = NULL;

    TargetHandleList l_chips;

    i_targetService.getTopLevelTarget(l_pTopLevel);
    if(l_pTopLevel)
    {
        //Set SKIP_WAKEUP to true until all cores  are powered on (16.2)
        //If this is not set to true, PM_RESET , which is called between
        //now and istep 16.2 in various configurations and IPL flows will attempt
        //to enable special wakeup on cores that are not yet powered
        l_pTopLevel->setAttr<ATTR_SKIP_WAKEUP>(1);

        Target* l_pMasterProcChip = NULL;
        i_targetService.masterProcChipTargetHandle(l_pMasterProcChip);

        if(l_pMasterProcChip)
        {
            // Master uses xscom by default, needs to be set before
            // doing any other scom accesses
            ScomSwitches l_switches =
              l_pMasterProcChip->getAttr<ATTR_SCOM_SWITCHES>();
            l_switches.useXscom = 1;
            l_switches.useFsiScom = 0;
            l_switches.useSbeScom = 0;
            l_pMasterProcChip->setAttr<ATTR_SCOM_SWITCHES>(l_switches);


            // Master can only use Host I2C so needs to be set before
            // doing any I2C accesses
            I2cSwitches l_i2c_switches =
              l_pMasterProcChip->getAttr<ATTR_I2C_SWITCHES>();
            l_i2c_switches.useHostI2C = 1;
            l_i2c_switches.useFsiI2C  = 0;
            l_pMasterProcChip->setAttr<ATTR_I2C_SWITCHES>(l_i2c_switches);

            l_pMasterProcChip->setAttr<ATTR_PROC_SBE_MASTER_CHIP>(1);

            // Master has SBE started
            l_pMasterProcChip->setAttr<ATTR_SBE_IS_STARTED>(1);


            l_pTopLevel->setAttr<ATTR_MASTER_MBOX_SCRATCH>(i_masterScratch);

            // Targeting data defaults to non istep, only turn "on" if bit
            // is set so we don't tromp default setting
            if (i_istepMode)
            {
                l_pTopLevel->setAttr<ATTR_ISTEP_MODE>(1);
            }
            else
            {
                l_pTopLevel->setAttr<ATTR_ISTEP_MODE>(0);
            }

            //Set the RISK_LEVEL ATTR based off of master Scratch regs if set
            //otherwise use default level defined by system MRW
            // Risk Level is a 4 bit value that is treated as an integer, but
            //  there is a legacy mode that we need to maintain support for
            ATTR_RISK_LEVEL_type l_riskLevel =
              l_pTopLevel->getAttr<ATTR_MRW_DEFAULT_RISK_LEVEL>();

            INITSERVICE::SPLESS::MboxScratch8_t l_scratch8;
            l_scratch8.data32 =
              i_masterScratch[INITSERVICE::SPLESS::SCRATCH_8];

            // Scratch5:bit2 is legacy risk level bit for backward compatibility
            INITSERVICE::SPLESS::MboxScratch5_t l_scratch5;
            l_scratch5.data32 =
              i_masterScratch[INITSERVICE::SPLESS::SCRATCH_5];
            if( l_scratch5.oldRiskLevel  && l_scratch8.validHwpControlFlags)
            {
                l_riskLevel = 1;
            }
            // Scratch3 has the real risk level if the valid bit is on
            else if (l_scratch8.validFwMode)
            {
                INITSERVICE::SPLESS::MboxScratch3_t l_scratch3;
                l_scratch3.data32 =
                  i_masterScratch[INITSERVICE::SPLESS::SCRATCH_3];
                l_riskLevel = l_scratch3.riskLevel;
            }
            else
            {
                // MRW used to setup RISK_LEVEL
                l_pTopLevel->setAttr<ATTR_RISK_LEVEL_ORIGIN>
                    (RISK_LEVEL_ORIGIN_MRW);
            }
            TARG_INF( "Setting RISK_LEVEL=%d", l_riskLevel );
            l_pTopLevel->setAttr<ATTR_RISK_LEVEL>(l_riskLevel);

            //Set the SBE Console enablement based on our console enablement
            ATTR_LPC_CONSOLE_CNFG_type l_console = LPC_CONSOLE_CNFG_ENABLE;
#ifndef CONFIG_CONSOLE
            l_console = LPC_CONSOLE_CNFG_DISABLE;
#endif
            l_pMasterProcChip->setAttr<ATTR_LPC_CONSOLE_CNFG>(l_console);

        }

        // Loop around all processors
        TargetHandleList l_allProcChips;
        getAllChips(l_allProcChips, TYPE_PROC, false);
        for(auto l_chip : l_allProcChips)
        {
            // value for master set above
            if( l_chip == l_pMasterProcChip )
            {
                continue;
            }

            //Turn the SBE Console enablement off for all slave chips
            ATTR_LPC_CONSOLE_CNFG_type l_consoleOff = LPC_CONSOLE_CNFG_DISABLE;
            l_chip->setAttr<ATTR_LPC_CONSOLE_CNFG>(l_consoleOff);
        }


        // Do some special memory-preserving work
        if(i_isMpipl)
        {
            l_pTopLevel->setAttr<ATTR_IS_MPIPL_HB>(1);

            //Clear out some attributes that could have stale data
            l_pTopLevel->setAttr<ATTR_HB_RSV_MEM_NEXT_SECTION>(0);
            l_pTopLevel->setAttr<ATTR_ATTN_CHK_ALL_PROCS>(1);

            //Clear out PM MALF and FFDC enabled attributes
            l_pTopLevel->setAttr<ATTR_PM_MALF_ALERT_ENABLE> (0x0);
            l_pTopLevel->setAttr<ATTR_PM_RESET_FFDC_ENABLE> (0x0);

            //Assemble list of functional procs and zero out virtual address values
            //to ensure they get set again this IPL
            TARGETING::PredicateCTM l_chipFilter(CLASS_CHIP, TYPE_PROC);
            TARGETING::PredicateIsFunctional l_functional;
            TARGETING::PredicatePostfixExpr l_functionalChips;
            l_functionalChips.push(&l_chipFilter).push(&l_functional).And();

            i_targetService.getAssociated( l_chips,
                                        l_pTopLevel,
                                        TargetService::CHILD_BY_AFFINITY,
                                        TARGETING::TargetService::ALL,
                                        &l_functionalChips);

            for (auto & l_chip : l_chips)
            {
                l_chip->setAttr<ATTR_XSCOM_VIRTUAL_ADDR>(0);
                l_chip->setAttr<ATTR_HOMER_VIRT_ADDR>(0);
                l_chip->setAttr<ATTR_HB_INITIATED_PM_RESET>
                  (HB_INITIATED_PM_RESET_INACTIVE);

                // clear the NVDIMM arming status so it gets redone when OCC is active
                TargetHandleList l_nvdimmTargetList = getProcNVDIMMs(l_chip);
                for (auto const l_nvdimm : l_nvdimmTargetList)
                {
                    ATTR_NVDIMM_ARMED_type l_armed_state = {};
                    l_armed_state = l_nvdimm->getAttr<ATTR_NVDIMM_ARMED>();

                    // Only force rearming (error setting should persist)
                    l_armed_state.armed = 0;
                    l_armed_state.occ_active = 0;

                    l_nvdimm->setAttr<ATTR_NVDIMM_ARMED>(l_armed_state);
                }

                if (l_chip == l_pMasterProcChip)
                {
                    // Need to set PROC_MASTER_TYPE to reflect the
                    //  current acting master
                    l_chip->setAttr<ATTR_PROC_MASTER_TYPE>(PROC_MASTER_TYPE_ACTING_MASTER);
                }
                else
                {
                    // If an different proc chip was previously the master
                    //  (we assume this because the PROC_MASTER_TYPE
                    //  attribute says so) we should change the attribute
                    //  to indicate it could be the master again in the future
                    if (l_chip->getAttr<ATTR_PROC_MASTER_TYPE>()
                                      == PROC_MASTER_TYPE_ACTING_MASTER)
                    {
                        l_chip->setAttr<ATTR_PROC_MASTER_TYPE>(PROC_MASTER_TYPE_MASTER_CANDIDATE);
                    }

                    //In certain IPL Scenarios this attribute may not get
                    // cleared properly, so clearing it for all proc chip
                    // targets that are not the master proc chip
                    l_chip->setAttr<ATTR_PROC_SBE_MASTER_CHIP>(0);
                }
            }

            //Assemble list of tpms and zero out some values
            //to ensure they get set again this IPL
            TargetHandleList l_tpms;
            TARGETING::PredicateCTM tpmFilter(CLASS_CHIP, TYPE_TPM);
            i_targetService.getAssociated(
                l_tpms,
                l_pTopLevel,
                TargetService::CHILD,
                TARGETING::TargetService::ALL,
                &tpmFilter);
            for (auto & tpm : l_tpms)
            {
                tpm->setAttr<ATTR_HB_TPM_INIT_ATTEMPTED>(0);
                tpm->setAttr<ATTR_HB_TPM_LOG_MGR_PTR>(0);
                tpm->setAttr<ATTR_TPM_POISONED>(0);
            }

            //Assemble list of membuf and zero out some virtual address attributes
            //to ensure they get set again this IPL
            TargetHandleList l_membufs;
            TARGETING::PredicateCTM membufFilter(CLASS_CHIP, TYPE_MEMBUF);
            i_targetService.getAssociated(
                l_membufs,
                l_pTopLevel,
                TargetService::CHILD,
                TARGETING::TargetService::ALL,
                &membufFilter);
            for (auto & membuf : l_membufs)
            {
                membuf->setAttr<ATTR_IBSCOM_VIRTUAL_ADDR>(0);
            }

            TARGETING::PredicateCTM l_eqFilter(CLASS_UNIT, TYPE_EQ);
            TARGETING::PredicateCTM l_exFilter(CLASS_UNIT, TYPE_EX);
            TARGETING::PredicateCTM l_ecFilter(CLASS_UNIT, TYPE_CORE);
            TARGETING::PredicatePostfixExpr l_wakeupTargFilter;
            l_wakeupTargFilter.push(&l_eqFilter).push(&l_exFilter).Or().push(&l_ecFilter).Or();
            TargetHandleList l_wakeupTargs;
            i_targetService.getAssociated( l_wakeupTargs,
                                           l_pTopLevel,
                                           TargetService::CHILD_BY_AFFINITY,
                                           TARGETING::TargetService::ALL,
                                           &l_wakeupTargFilter);
            for (auto & l_targ : l_wakeupTargs)
            {
                l_targ->setAttr<ATTR_SPCWKUP_COUNT>(0);
            }

            // HYPCOMM section is only present for master node
            if ( TARGETING::UTIL::isCurrentMasterNode() )
            {
                // Setup physical TOC address
                uint64_t l_hbdTocAddr = AttrRP::getHbDataTocAddr();

                // Variables to store information about Hostboot/Hypervisor
                // communication area
                uint64_t l_hypComm_virt_addr = 0;
                uint64_t l_hypComm_phys_addr = 0;
                uint64_t l_hypComm_size = 0;

                // Now map the TOC to find the total size of the data section
                Util::hbrtTableOfContents_t * l_toc_ptr =
                    reinterpret_cast<Util::hbrtTableOfContents_t *>(
                        mm_block_map(reinterpret_cast<void*>(l_hbdTocAddr),
                        ALIGN_PAGE(sizeof(Util::hbrtTableOfContents_t))));

                // read the TOC and look for ATTR data section
                l_hypComm_virt_addr = Util::hb_find_rsvd_mem_label(
                                                   Util::HBRT_MEM_LABEL_HYPCOMM,
                                                   l_toc_ptr,
                                                   l_hypComm_size);

                //This will tell us how far from the beginning of
                //the toc_ptr the hypComm area starts
                uint64_t l_hypComm_offset = l_hypComm_virt_addr -
                                          reinterpret_cast<uint64_t>(l_toc_ptr);

                //Use the offset found w/ virtual addresses to determine
                //the physical address of the hostboot/hypervisor comm area
                l_hypComm_phys_addr = l_hbdTocAddr + l_hypComm_offset;

                //Clear the mapped memory for the TOC,
                //it is not longer needed as we have phys ptr
                assert (0 == mm_block_unmap(reinterpret_cast<void*>(l_toc_ptr)),
                        "Failed to unmap hbData TOC");

                // The hb/hyp communcation area is at the end of the hostboot
                // data reserved mem section.
                hbHypCommArea_t * l_hbHypComm_ptr =
                    reinterpret_cast<hbHypCommArea_t *>(
                      mm_block_map(reinterpret_cast<void*>(l_hypComm_phys_addr),
                                   ALIGN_PAGE(sizeof(l_hypComm_size))));

                // Make sure the magic number and version are valid
                if( l_hbHypComm_ptr->magicNum == HYPECOMM_MAGIC_NUM &&
                    l_hbHypComm_ptr->version >= STRUCT_VERSION_FIRST )
                {
                  // if the hrmor in the comm area is non-zero then
                  // set the payload base attribute
                  if( l_hbHypComm_ptr->hrmorAddress)
                  {
                    const uint64_t THREAD_STATE_RUNNING = 0x8000000000000000ULL;
                    TARG_INF("Setting ATTR_PAYLOAD_BASE to new hrmor given by hypervisor: 0x%lx",
                              l_hbHypComm_ptr->hrmorAddress);
                    //Mask off THREAD_STATE_RUNNING bit and
                    //then divide remaining address by 1 MB
                    uint64_t l_payloadBase_MB = ( (~(THREAD_STATE_RUNNING)) &
                                      l_hbHypComm_ptr->hrmorAddress) / MEGABYTE;
                    //ATTR_PAYLOAD_BASE's is MB
                    l_pTopLevel->setAttr<ATTR_PAYLOAD_BASE>(l_payloadBase_MB);
                  }
                  else
                  {
                    TARG_INF("Using default HRMOR as hypervisor did notify us of a change in it's HRMOR on previous boot");
                  }
                }
                else
                {
                    TARG_INF("Warning!! hbHypCommArea_t's version is invalid so we cannot check if hrmor has been changed");
                }

                // Clear the mapped memory for the hbHypComm area
                assert(0 == mm_block_unmap(
                       reinterpret_cast<void*>(l_hbHypComm_ptr)),
                       "Failed to unmap hbHypComm area");
            } // end of master node only HRMOR setup
        }
        else
        {
            l_pTopLevel->setAttr<ATTR_IS_MPIPL_HB>(0);

            // Compute any values that might change based on a remap of memory
            adjustMemoryMap(i_targetService);

            if(!INITSERVICE::spBaseServicesEnabled())
            {
                TARGETING::Target* l_sys = NULL;
                TARGETING::targetService().getTopLevelTarget(l_sys);
                getAllChips(l_chips, TYPE_PROC, false);

                ATTR_PROC_EFF_FABRIC_GROUP_ID_type l_eff_id;
                ATTR_FABRIC_PRESENT_GROUPS_type l_fabric_groups = 0;

                for(auto l_chip : l_chips)
                {
                    // Read the fabric group id
                    l_eff_id = l_chip->getAttr<ATTR_PROC_EFF_FABRIC_GROUP_ID>();
                    // Set the corresponding bit in fabric groups
                    l_fabric_groups |= (1 <<
                                       ((sizeof(ATTR_FABRIC_PRESENT_GROUPS_type)
                                        * 8)
                                        - l_eff_id - 1));
                }
                l_sys->setAttr<ATTR_FABRIC_PRESENT_GROUPS>(l_fabric_groups);
            }
        }

        // Set Hostboot load address across all (intentional) processors so that
        // FSP can determine the Hostboot load address when cores are
        // winkled (since during winkle, the core scratch register holding the
        // Hostboot load address is cleared).
        TargetHandleList procs;
        const auto loadAddressBytes = cpu_spr_value(CPU_SPR_HRMOR);
        (void)getAllChips(procs, TYPE_PROC,false);
        for(auto pProc : procs)
        {
            pProc->setAttr<TARGETING::ATTR_HB_HRMOR_BYTES>(
                loadAddressBytes);
        }
    }
    else // top level is NULL - never expected
    {
        TARG_INF("Top level target is NULL");
    }

    TARG_EXIT();
    #undef TARG_FN
}

/**
 *  @brief Utility macro to swap attributes
 *  @param[in]  _attr    Attribute ID
 *  @param[in]  _master  Master proc target
 *  @param[in]  _victim  Victim proc target
 *  @param[in]  _cache   Cache of victime attributes
 */
#define SWAP_ATTRIBUTE( _attr, _master, _victim, _cache ) \
{ \
    _attr##_type l_masterVal = _master->getAttr<_attr>(); \
    _victim->setAttr<_attr>(l_masterVal); \
    TARG_INF( "%.8X>" #_attr "=%.16llX", get_huid(_victim), l_masterVal ); \
    _master->setAttr<_attr>(_cache[_attr]); \
    TARG_INF( "%.8X>" #_attr "=%.16llX", get_huid(_master), _cache[_attr] ); \
}

// Compute any values that might change based on a remap of memory
static void adjustMemoryMap( TargetService& i_targetService )
{
    // Grab the value of the BARs that SBE booted with
    uint64_t l_curXscomBAR = g_BlToHbDataManager.getXscomBAR();
    uint64_t l_curLpcBAR = g_BlToHbDataManager.getLpcBAR();
    TARG_INF( "adjustMemoryMap> xscom=%llX, lpc=%llX",
              l_curXscomBAR, l_curLpcBAR );

    // Get the master proc
    Target* l_pMasterProcChip = nullptr;
    i_targetService.masterProcChipTargetHandle(l_pMasterProcChip);
    assert(l_pMasterProcChip,"No Master Proc");

    // Save off the base (group0-chip0) value for the BARs
    Target* l_pTopLevel = nullptr;
    i_targetService.getTopLevelTarget(l_pTopLevel);
    ATTR_XSCOM_BASE_ADDRESS_type l_xscomBase =
      l_pTopLevel->getAttr<ATTR_XSCOM_BASE_ADDRESS>();
    ATTR_LPC_BUS_ADDR_type l_lpcBase =
      l_pTopLevel->getAttr<ATTR_LPC_BUS_ADDR>();

    // Whether to update the SYS's ATTR_XSCOM_BASE_ADDRESS with a new
    // BAR before returning from this function
    bool l_updateSysXscomBar = false;

    // Loop through all the procs to recompute all the BARs
    //  also find the victim to swap with
    Target* l_swapVictim = nullptr;
    std::map<ATTRIBUTE_ID,uint64_t> l_swapAttrs;

    TARGETING::TargetHandleList l_funcProcs;
    getAllChips(l_funcProcs, TYPE_PROC, false );
    for( auto & l_procChip : l_funcProcs )
    {
        TARG_INF( "Proc=%.8X", get_huid(l_procChip) );
        // Set effective fabric ids back to default values
        ATTR_FABRIC_GROUP_ID_type l_groupId =
          l_procChip->getAttr<ATTR_FABRIC_GROUP_ID>();
        l_procChip->setAttr<ATTR_PROC_EFF_FABRIC_GROUP_ID>(l_groupId);

        ATTR_FABRIC_CHIP_ID_type l_chipId =
          l_procChip->getAttr<ATTR_FABRIC_CHIP_ID>();
        l_procChip->setAttr<ATTR_PROC_EFF_FABRIC_CHIP_ID>(l_chipId);

        // Compute default xscom BAR
        ATTR_XSCOM_BASE_ADDRESS_type l_xscomBAR =
          computeMemoryMapOffset( l_xscomBase, l_groupId, l_chipId );

        //If SBE Xscom addr has SMF bit on... propagate
        if(l_curXscomBAR & IS_SMF_ADDR_BIT)
        {
            l_xscomBAR |= IS_SMF_ADDR_BIT;
            l_updateSysXscomBar = true;
        }

        TARG_INF( " XSCOM=%.16llX", l_xscomBAR );
        l_procChip->setAttr<ATTR_XSCOM_BASE_ADDRESS>(l_xscomBAR);


        // See if this chip's space now belongs to the master
        if( l_xscomBAR == l_curXscomBAR )
        {
            l_swapVictim = l_procChip;
            TARG_INF( "Master Proc %.8X is using XSCOM BAR from %.8X, BAR=%.16llX", get_huid(l_pMasterProcChip), get_huid(l_swapVictim), l_curXscomBAR );
            l_swapAttrs[ATTR_PROC_EFF_FABRIC_GROUP_ID] = l_groupId;
            l_swapAttrs[ATTR_PROC_EFF_FABRIC_CHIP_ID] = l_chipId;
            l_swapAttrs[ATTR_XSCOM_BASE_ADDRESS] = l_xscomBAR;
        }

        // Compute default LPC BAR
        ATTR_LPC_BUS_ADDR_type l_lpcBAR =
          computeMemoryMapOffset( l_lpcBase, l_groupId, l_chipId );
        TARG_INF( " LPC=%.16llX", l_lpcBAR );
        l_procChip->setAttr<ATTR_LPC_BUS_ADDR>(l_lpcBAR);
        if( l_swapVictim == l_procChip )
        {
            l_swapAttrs[ATTR_LPC_BUS_ADDR] = l_lpcBAR;
        }

        // Paranoid double-check that LPC matches XSCOM...
        if( ((l_lpcBAR == l_curLpcBAR) && (l_swapVictim != l_procChip))
            ||
            ((l_lpcBAR != l_curLpcBAR) && (l_swapVictim == l_procChip)) )
        {
            TARG_ERR("BARs do not match : LPC=%.16llX, XSCOM=%.16llX",
                     l_curLpcBAR, l_curXscomBAR );
            TARG_ASSERT(false,"Mismatch between LPC and XSCOM BARs");
        }

        //Setup Interrupt Related Bars
        ATTR_PSI_BRIDGE_BASE_ADDR_type l_psiBridgeBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_PSI_BRIDGE_BASE_ADDR,
                                  l_groupId,
                                  l_chipId);
        TARG_INF( " PSI_BRIDGE_BAR =%.16llX", l_psiBridgeBAR );
        l_procChip->setAttr<ATTR_PSI_BRIDGE_BASE_ADDR>(l_psiBridgeBAR);
        if( l_swapVictim == l_procChip)
        {
            l_swapAttrs[ATTR_PSI_BRIDGE_BASE_ADDR] = l_psiBridgeBAR;
        }

        ATTR_XIVE_CONTROLLER_BAR_ADDR_type l_xiveCtrlBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_XIVE_CONTROLLER_BASE_ADDR,
                                   l_groupId,
                                   l_chipId);
        TARG_INF( " XIVE_CONTROLLER_BAR =%.16llX", l_xiveCtrlBAR );
        l_procChip->setAttr<ATTR_XIVE_CONTROLLER_BAR_ADDR>(l_xiveCtrlBAR);
        if( l_swapVictim == l_procChip)
        {
            l_swapAttrs[ATTR_XIVE_CONTROLLER_BAR_ADDR] = l_xiveCtrlBAR;
        }

        ATTR_XIVE_THREAD_MGMT1_BAR_ADDR_type l_xiveThreadMgmtBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_XIVE_THREAD_MGMT1_BASE_ADDR,
                                   l_groupId,
                                   l_chipId);
        TARG_INF( " XIVE_THREAD_MGMT1_BAR =%.16llX", l_xiveThreadMgmtBAR );
        l_procChip->setAttr<ATTR_XIVE_THREAD_MGMT1_BAR_ADDR>(l_xiveThreadMgmtBAR);
        if( l_swapVictim == l_procChip)
        {
            l_swapAttrs[ATTR_XIVE_THREAD_MGMT1_BAR_ADDR] = l_xiveThreadMgmtBAR;
        }

        ATTR_PSI_HB_ESB_ADDR_type l_psiHbEsbBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_PSI_HB_ESB_BASE_ADDR,
                                   l_groupId,
                                   l_chipId);
        TARG_INF( " PSI_HB_ESB_BAR =%.16llX", l_psiHbEsbBAR );
        l_procChip->setAttr<ATTR_PSI_HB_ESB_ADDR>(l_psiHbEsbBAR);
        if( l_swapVictim == l_procChip)
        {
            l_swapAttrs[ATTR_PSI_HB_ESB_ADDR] = l_psiHbEsbBAR;
        }

        ATTR_INTP_BASE_ADDR_type l_intpBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_INTP_BASE_ADDR,
                                   l_groupId,
                                   l_chipId);
        TARG_INF( " INTP_BAR =%.16llX", l_intpBAR );
        l_procChip->setAttr<ATTR_INTP_BASE_ADDR>(l_intpBAR);
        if( l_swapVictim == l_procChip)
        {
            l_swapAttrs[ATTR_INTP_BASE_ADDR] = l_intpBAR;
        }
        //finished setting up interrupt bars

        // Set the rest of the BARs...
    }

    // We should have found a match, but if a processor was swapped
    //  between different systems we could end up with a non-match
    if( l_swapVictim == nullptr )
    {
        TARG_INF( "No swap victim was found, forcing master proc to use calculated proc0 values" );

        // figure out what fabric id we actually booted with
        uint8_t l_bootGroup = 0;
        uint8_t l_bootChip = 0;
        getFabricIdFromAddr( l_curXscomBAR, l_bootGroup, l_bootChip );
        CONSOLE::displayf( NULL, "Module swap detected - handling memory remap from g%d:c%d\n", l_bootGroup, l_bootChip );

        // now adjust the attributes that our early code is going to consume
        //  to match the fabric id we're currently using
        ATTR_XSCOM_BASE_ADDRESS_type l_xscomBAR =
          computeMemoryMapOffset( l_xscomBase, l_bootGroup, l_bootChip );
        l_pMasterProcChip->setAttr<ATTR_XSCOM_BASE_ADDRESS>(l_xscomBAR);

        ATTR_LPC_BUS_ADDR_type l_lpcBAR =
          computeMemoryMapOffset( l_lpcBase, l_bootGroup, l_bootChip );
        l_pMasterProcChip->setAttr<ATTR_LPC_BUS_ADDR>(l_lpcBAR);

        ATTR_PSI_BRIDGE_BASE_ADDR_type l_psiBridgeBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_PSI_BRIDGE_BASE_ADDR,
                                  l_bootGroup,
                                  l_bootChip);
        l_pMasterProcChip->setAttr<ATTR_PSI_BRIDGE_BASE_ADDR>(l_psiBridgeBAR);

        ATTR_XIVE_CONTROLLER_BAR_ADDR_type l_xiveCtrlBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_XIVE_CONTROLLER_BASE_ADDR,
                                   l_bootGroup,
                                   l_bootChip);
        l_pMasterProcChip->setAttr<ATTR_XIVE_CONTROLLER_BAR_ADDR>(l_xiveCtrlBAR);

        ATTR_XIVE_THREAD_MGMT1_BAR_ADDR_type l_xiveThreadMgmtBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_XIVE_THREAD_MGMT1_BASE_ADDR,
                                   l_bootGroup,
                                   l_bootChip);
        TARG_INF( " XIVE_THREAD_MGMT1_BAR =%.16llX", l_xiveThreadMgmtBAR );
        l_pMasterProcChip->setAttr<ATTR_XIVE_THREAD_MGMT1_BAR_ADDR>(l_xiveThreadMgmtBAR);

        ATTR_PSI_HB_ESB_ADDR_type l_psiHbEsbBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_PSI_HB_ESB_BASE_ADDR,
                                   l_bootGroup,
                                   l_bootChip);
        l_pMasterProcChip->setAttr<ATTR_PSI_HB_ESB_ADDR>(l_psiHbEsbBAR);

        ATTR_INTP_BASE_ADDR_type l_intpBAR =
            computeMemoryMapOffset(MMIO_GROUP0_CHIP0_INTP_BASE_ADDR,
                                   l_bootGroup,
                                   l_bootChip);
        l_pMasterProcChip->setAttr<ATTR_INTP_BASE_ADDR>(l_intpBAR);

        // Set the attribute to force a SBE update later
        l_pTopLevel->setAttr<TARGETING::ATTR_FORCE_SBE_UPDATE>
          (TARGETING::FORCE_SBE_UPDATE_BAR_MISMATCH);
    }
    // Now swap the BARs between the master and the victim if needed
    else if( l_swapVictim != l_pMasterProcChip )
    {
        // Walk through all of the attributes we cached above
        SWAP_ATTRIBUTE( ATTR_PROC_EFF_FABRIC_GROUP_ID, l_pMasterProcChip,
                        l_swapVictim, l_swapAttrs );
        SWAP_ATTRIBUTE( ATTR_PROC_EFF_FABRIC_CHIP_ID, l_pMasterProcChip,
                        l_swapVictim, l_swapAttrs );
        SWAP_ATTRIBUTE( ATTR_XSCOM_BASE_ADDRESS, l_pMasterProcChip,
                        l_swapVictim, l_swapAttrs );
        SWAP_ATTRIBUTE( ATTR_LPC_BUS_ADDR, l_pMasterProcChip,
                        l_swapVictim, l_swapAttrs );
        SWAP_ATTRIBUTE( ATTR_PSI_BRIDGE_BASE_ADDR, l_pMasterProcChip,
                        l_swapVictim, l_swapAttrs );
        SWAP_ATTRIBUTE( ATTR_XIVE_CONTROLLER_BAR_ADDR, l_pMasterProcChip,
                        l_swapVictim, l_swapAttrs );
        SWAP_ATTRIBUTE( ATTR_XIVE_THREAD_MGMT1_BAR_ADDR, l_pMasterProcChip,
                        l_swapVictim, l_swapAttrs );
        SWAP_ATTRIBUTE( ATTR_PSI_HB_ESB_ADDR, l_pMasterProcChip,
                        l_swapVictim, l_swapAttrs );
        SWAP_ATTRIBUTE( ATTR_INTP_BASE_ADDR, l_pMasterProcChip,
                        l_swapVictim, l_swapAttrs );
        // Handle the rest of the BARs...
    }


    // Cross-check that what we ended up setting in the attributes
    //  matches the non-TARGETING values that the XSCOM and LPC
    //  drivers computed (only if we found a swap victim)
    if( l_swapVictim &&
        (l_pMasterProcChip->getAttr<ATTR_LPC_BUS_ADDR>()
         != LPC::get_lpc_bar()) )
    {
        TARG_ERR( "LPC attribute=%.16llX, live=%.16llX",
           l_pMasterProcChip->getAttr<ATTR_LPC_BUS_ADDR>(),
           LPC::get_lpc_bar() );
        TARG_ASSERT( false, "LPC BARs are inconsistent" );
    }
    if( l_swapVictim &&
        (l_pMasterProcChip->getAttr<ATTR_XSCOM_BASE_ADDRESS>()
         != XSCOM::get_master_bar()) )
    {
        TARG_ERR( "XSCOM attribute=%.16llX, live=%.16llX",
           l_pMasterProcChip->getAttr<ATTR_XSCOM_BASE_ADDRESS>(),
           XSCOM::get_master_bar() );
        TARG_ASSERT( false, "XSCOM BARs are inconsistent" );
    }

    if(l_updateSysXscomBar)
    {
        l_pTopLevel->setAttr<ATTR_XSCOM_BASE_ADDRESS>(
            l_xscomBase |= IS_SMF_ADDR_BIT);
        TARG_INF("Updating the SYS XSCOM BAR to 0x%.16llX",
            l_xscomBase |= IS_SMF_ADDR_BIT);
    }
}


#undef TARG_CLASS

#undef TARG_NAMESPACE

} // End namespace TARGETING

OpenPOWER on IntegriCloud