1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/usr/targeting/common/target.C $ */
/* */
/* OpenPOWER HostBoot Project */
/* */
/* Contributors Listed Below - COPYRIGHT 2012,2017 */
/* [+] International Business Machines Corp. */
/* */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
/* implied. See the License for the specific language governing */
/* permissions and limitations under the License. */
/* */
/* IBM_PROLOG_END_TAG */
/**
* @file targeting/common/target.C
*
* @brief Implementation of the Target class which provide APIs to read and
* write attributes from various attribute sections
*/
//******************************************************************************
// Includes
//******************************************************************************
// STD
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>
// This component
#include <targeting/common/attributes.H>
#include <targeting/attrrp.H>
#include <targeting/common/util.H>
#include <targeting/common/trace.H>
#include <targeting/common/predicates/predicateattrval.H>
#include <targeting/common/utilFilter.H>
#include <targeting/common/attributeTank.H>
namespace TARGETING
{
#define TARG_NAMESPACE "TARGETING::"
#define TARG_CLASS "Target::"
//P9 number of MC/CORE units contained per level
//Both happen to be the same, so use one constant
#define P9_UNIT_PER_LEVEL 2
// Static function pointer variable allocation
pCallbackFuncPtr Target::cv_pCallbackFuncPtr = NULL;
//******************************************************************************
// Target::~Target
//******************************************************************************
Target::~Target()
{
#define TARG_FN "~Target()"
#undef TARG_FN
}
//******************************************************************************
// Target::_tryGetAttr
//******************************************************************************
bool Target::_tryGetAttr(
const ATTRIBUTE_ID i_attr,
const uint32_t i_size,
void* const io_pAttrData) const
{
#define TARG_FN "_tryGetAttr()"
bool l_found = false;
// Very fast check if there are any overrides at all
if (unlikely(cv_overrideTank.attributesExist()))
{
// Check if there are any overrides for this attr ID
if (cv_overrideTank.attributeExists(i_attr))
{
// Check if attribute exists for the target
void * l_pAttr = NULL;
_getAttrPtr(i_attr, l_pAttr);
if (l_pAttr)
{
// Find if there is an attribute override for this target
uint32_t l_type = getAttrTankTargetType();
uint16_t l_pos = 0;
uint8_t l_unitPos = 0;
uint8_t l_node = 0;
getAttrTankTargetPosData(l_pos, l_unitPos, l_node);
TRACFCOMP(g_trac_targeting, "Checking for override for ID: 0x%08x, "
"TargType: 0x%08x, Pos/Upos/Node: 0x%08x",
i_attr, l_type,
(static_cast<uint32_t>(l_pos) << 16) +
(static_cast<uint32_t>(l_unitPos) << 8) + l_node);
l_found = cv_overrideTank.getAttribute(i_attr, l_type,
l_pos, l_unitPos, l_node, io_pAttrData);
if (l_found)
{
TRACFCOMP(g_trac_targeting, "Returning Override for ID: 0x%08x",
i_attr);
}
}
}
}
if (!l_found)
{
// No attribute override, get the real attribute
void* l_pAttrData = NULL;
(void) _getAttrPtr(i_attr, l_pAttrData);
if (l_pAttrData)
{
memcpy(io_pAttrData, l_pAttrData, i_size);
l_found = true;
}
}
return l_found;
#undef TARG_FN
}
//******************************************************************************
// Target::_trySetAttr
//******************************************************************************
bool Target::_trySetAttr(
const ATTRIBUTE_ID i_attr,
const uint32_t i_size,
const void* const i_pAttrData) const
{
#define TARG_FN "_trySetAttr()"
// Figure out if effort should be expended figuring out the target's type/
// position in order to clear any non-const attribute overrides and/or to
// store the attribute for syncing to Cronus
bool l_clearAnyNonConstOverride = false;
// Very fast check if there are any overrides at all for this Attr ID
if (unlikely(cv_overrideTank.attributesExist()))
{
// Check if there are any overrides for this attr ID
if (cv_overrideTank.attributeExists(i_attr))
{
l_clearAnyNonConstOverride = true;
}
}
bool l_syncAttribute = AttributeTank::syncEnabled();
if (unlikely(l_clearAnyNonConstOverride || l_syncAttribute))
{
// Check if attribute exists for the target
void * l_pAttr = NULL;
_getAttrPtr(i_attr, l_pAttr);
if (l_pAttr)
{
uint32_t l_type = getAttrTankTargetType();
uint16_t l_pos = 0;
uint8_t l_unitPos = 0;
uint8_t l_node = 0;
getAttrTankTargetPosData(l_pos, l_unitPos, l_node);
if (l_clearAnyNonConstOverride)
{
// Clear any non const override for this attribute because the
// attribute is being written
cv_overrideTank.clearNonConstAttribute(i_attr, l_type, l_pos,
l_unitPos, l_node);
}
if (l_syncAttribute)
{
// Write the attribute to the SyncAttributeTank to sync to Cronus
cv_syncTank.setAttribute(i_attr, l_type, l_pos, l_unitPos, l_node,
0, i_size, i_pAttrData);
}
}
}
// Set the real attribute
void* l_pAttrData = NULL;
(void) _getAttrPtr(i_attr, l_pAttrData);
if (l_pAttrData)
{
memcpy(l_pAttrData, i_pAttrData, i_size);
if( unlikely(cv_pCallbackFuncPtr != NULL) )
{
cv_pCallbackFuncPtr(this, i_attr, i_size, i_pAttrData);
}
}
return (l_pAttrData != NULL);
#undef TARG_FN
}
//******************************************************************************
// Target::_getAttrPtr
//******************************************************************************
void Target::_getAttrPtr(
const ATTRIBUTE_ID i_attr,
void*& o_pAttr) const
{
#define TARG_FN "_getAttrPtr()"
void* l_pAttr = NULL;
// Transform platform neutral pointers into platform specific pointers, and
// optimize processing by not having to do the conversion in the loop below
// (it's guaranteed that attribute metadata will be in the same contiguous
// VMM region)
ATTRIBUTE_ID* pAttrId = TARG_TO_PLAT_PTR(iv_pAttrNames);
AbstractPointer<void>* ppAttrAddr = TARG_TO_PLAT_PTR(iv_pAttrValues);
// Only translate addresses on platforms where addresses are 4 bytes wide
// (FSP). The compiler should perform dead code elimination of this path on
// platforms with 8 byte wide addresses (Hostboot), since the "if" check can
// be statically computed at compile time.
if(TARG_ADDR_TRANSLATION_REQUIRED)
{
pAttrId = static_cast<ATTRIBUTE_ID*>(
TARG_GET_SINGLETON(TARGETING::theAttrRP).translateAddr(pAttrId,
static_cast<const Target*>(this)));
ppAttrAddr = static_cast<AbstractPointer<void>*>(
TARG_GET_SINGLETON(TARGETING::theAttrRP).translateAddr(ppAttrAddr,
static_cast<const Target*>(this)));
}
if ((pAttrId != NULL) && (ppAttrAddr != NULL))
{ // only check for the attribute if we got a valid address from
// the translateAddr function
// Search for the attribute ID.
ATTRIBUTE_ID* ptr = std::lower_bound(pAttrId, pAttrId+iv_attrs, i_attr);
if ((ptr != pAttrId+iv_attrs) && (*ptr == i_attr))
{
// Locate the corresponding attribute address
l_pAttr =
TARG_TO_PLAT_PTR(*(ppAttrAddr+std::distance(pAttrId,ptr)));
// Only translate addresses on platforms where addresses are
// 4 byte wide (FSP). The compiler should perform dead code
// elimination this path on platforms with 8 byte wide
// addresses (Hostboot), since the "if" check can be statically
// computed at compile time.
if(TARG_ADDR_TRANSLATION_REQUIRED)
{
l_pAttr =
TARG_GET_SINGLETON(TARGETING::theAttrRP).translateAddr(
l_pAttr, static_cast<const Target*>(this));
}
}
}
o_pAttr = l_pAttr;
#undef TARG_FN
}
//******************************************************************************
// Target::_getHbMutexAttr
//******************************************************************************
mutex_t* Target::_getHbMutexAttr(
const ATTRIBUTE_ID i_attribute) const
{
#define TARG_FN "_getHbMutexAttr()"
void* l_pAttr = NULL;
(void)_getAttrPtr(i_attribute,l_pAttr);
if (unlikely(l_pAttr == NULL))
{
targAssert(GET_HB_MUTEX_ATTR, i_attribute);
}
return static_cast<mutex_t*>(l_pAttr);
#undef TARG_FN
}
//******************************************************************************
// Target::_tryGetHbMutexAttr
//******************************************************************************
bool Target::_tryGetHbMutexAttr(
const ATTRIBUTE_ID i_attribute,
mutex_t*& o_pMutex) const
{
#define TARG_FN "_tryGetHbMutexAttr()"
void* l_pAttr = NULL;
(void)_getAttrPtr(i_attribute,l_pAttr);
o_pMutex = static_cast<mutex_t*>(l_pAttr);
return (l_pAttr != NULL);
#undef TARG_FN
}
//******************************************************************************
// Target::Target
//******************************************************************************
Target::Target()
{
#define TARG_FN "Target()"
// Note there is no initialization of a target, since it's mapped to memory
// directly.
#undef TARG_FN
}
//******************************************************************************
// Target::targetFFDC()
//******************************************************************************
uint8_t * Target::targetFFDC( uint32_t & o_size ) const
{
#define TARG_FN "targetFFDC(...)"
AttributeTraits<ATTR_HUID>::Type attrHuid = getAttr<ATTR_HUID>();
AttributeTraits<ATTR_CLASS>::Type attrClass = getAttr<ATTR_CLASS>();
AttributeTraits<ATTR_TYPE>::Type attrType = getAttr<ATTR_TYPE>();
AttributeTraits<ATTR_MODEL>::Type attrModel = getAttr<ATTR_MODEL>();
uint32_t headerSize = sizeof(attrHuid) +
sizeof(attrClass) + sizeof(attrType) +
sizeof(attrModel);
uint32_t attrEnum = ATTR_NA;
uint8_t pathPhysSize = 0;
AttributeTraits<ATTR_PHYS_PATH>::Type pathPhys;
if( tryGetAttr<ATTR_PHYS_PATH>(pathPhys) ) {
// entityPath is PATH_TYPE:4, NumberOfElements:4, [Element, Instance#]
pathPhysSize = sizeof(uint8_t) + (sizeof(pathPhys[0]) * pathPhys.size());
}
uint8_t pathAffSize = 0;
AttributeTraits<ATTR_AFFINITY_PATH>::Type pathAff;
if( tryGetAttr<ATTR_AFFINITY_PATH>(pathAff) ) {
// entityPath is PATH_TYPE:4, NumberOfElements:4, [Element, Instance#]
pathAffSize = sizeof(uint8_t) + (sizeof(pathAff[0]) * pathAff.size());
}
uint8_t *pFFDC;
// If there is a physical path or affinity path, the serialization code
// below prefixes an attribute type ahead of the actual structure, so need
// to compensate for the size of that attribute type, when applicable
pFFDC = static_cast<uint8_t*>(
malloc( headerSize
+ pathPhysSize
+ sizeof(attrEnum)
+ pathAffSize
+ sizeof(attrEnum)));
// we'll send down HUID CLASS TYPE and MODEL
uint32_t bSize = 0; // size of data in the buffer
memcpy(pFFDC + bSize, &attrHuid, sizeof(attrHuid) );
bSize += sizeof(attrHuid);
memcpy(pFFDC + bSize, &attrClass, sizeof(attrClass) );
bSize += sizeof(attrClass);
memcpy(pFFDC + bSize, &attrType, sizeof(attrType) );
bSize += sizeof(attrType);
memcpy(pFFDC + bSize, &attrModel, sizeof(attrModel) );
bSize += sizeof(attrModel);
if( pathPhysSize > 0)
{
attrEnum = ATTR_PHYS_PATH;
memcpy(pFFDC + bSize, &attrEnum, sizeof(attrEnum));
bSize += sizeof(attrEnum);
memcpy(pFFDC + bSize, &pathPhys, pathPhysSize);
bSize += pathPhysSize;
}
else
{
// write 0x00 indicating no PHYS_PATH
attrEnum = 0x00;
memcpy(pFFDC + bSize, &attrEnum, sizeof(attrEnum));
bSize += sizeof(attrEnum);
}
if( pathAffSize > 0)
{
attrEnum = ATTR_AFFINITY_PATH;
memcpy(pFFDC + bSize, &attrEnum, sizeof(attrEnum));
bSize += sizeof(attrEnum);
memcpy(pFFDC + bSize, &pathAff, pathAffSize);
bSize += pathAffSize;
}
else
{
// write 0x00 indicating no AFFINITY_PATH
attrEnum = 0x00;
memcpy(pFFDC + bSize, &attrEnum, sizeof(attrEnum));
bSize += sizeof(attrEnum);
}
o_size = bSize;
return pFFDC;
#undef TARG_FN
}
//******************************************************************************
// Target::getTargetFromHuid()
//******************************************************************************
Target* Target::getTargetFromHuid(
const ATTR_HUID_type i_huid)
{
#define TARG_FN "getTargetFromHuid"
Target* l_pTarget = NULL;
TARGETING::PredicateAttrVal<TARGETING::ATTR_HUID> huidMatches(i_huid);
TARGETING::TargetRangeFilter targetsWithMatchingHuid(
TARGETING::targetService().begin(),
TARGETING::targetService().end(),
&huidMatches);
if(targetsWithMatchingHuid)
{
// Exactly one target will match the HUID, if any
l_pTarget = *targetsWithMatchingHuid;
}
return l_pTarget;
#undef TARG_FN
}
//******************************************************************************
// Target::getAttrTankTargetType()
//******************************************************************************
uint32_t Target::getAttrTankTargetType() const
{
// In a Targeting Attribute Tank, the Target Type is ATTR_TYPE
AttributeTraits<ATTR_TYPE>::Type l_type = TYPE_NA;
void * l_pAttr = NULL;
_getAttrPtr(ATTR_TYPE, l_pAttr);
if (l_pAttr)
{
l_type = *(reinterpret_cast<AttributeTraits<ATTR_TYPE>::Type *>(
l_pAttr));
}
return l_type;
}
//******************************************************************************
// Target::getAttrTankTargetPosData()
//******************************************************************************
void Target::getAttrTankTargetPosData(uint16_t & o_pos,
uint8_t & o_unitPos,
uint8_t & o_node) const
{
o_pos = AttributeTank::ATTR_POS_NA;
o_unitPos = AttributeTank::ATTR_UNIT_POS_NA;
o_node = AttributeTank::ATTR_NODE_NA;
// Pos, UnitPos and Node are figured out from the PHYS_PATH
void * l_pAttr = NULL;
_getAttrPtr(ATTR_PHYS_PATH, l_pAttr);
if (l_pAttr)
{
AttributeTraits<ATTR_PHYS_PATH>::Type & l_physPath =
*(reinterpret_cast<AttributeTraits<ATTR_PHYS_PATH>::Type *>(
l_pAttr));
for (uint32_t i = 0; i < l_physPath.size(); i++)
{
const EntityPath::PathElement & l_element = l_physPath[i];
if (l_element.type == TYPE_NODE)
{
o_node = l_element.instance;
}
else if ((l_element.type == TYPE_PROC) ||
(l_element.type == TYPE_MEMBUF) ||
(l_element.type == TYPE_DIMM))
{
o_pos = l_element.instance;
}
else if ((l_element.type == TYPE_L4) ||
(l_element.type == TYPE_MBA) ||
(l_element.type == TYPE_XBUS) ||
(l_element.type == TYPE_ABUS) ||
(l_element.type == TYPE_EQ) ||
(l_element.type == TYPE_MCBIST) ||
(l_element.type == TYPE_MI) ||
(l_element.type == TYPE_CAPP) ||
(l_element.type == TYPE_DMI) ||
(l_element.type == TYPE_OBUS) ||
(l_element.type == TYPE_NV) ||
(l_element.type == TYPE_SBE) ||
(l_element.type == TYPE_PPE) ||
(l_element.type == TYPE_PERV) ||
(l_element.type == TYPE_PEC) ||
(l_element.type == TYPE_PHB))
{
o_unitPos = l_element.instance;
}
//Factor in that MCS and MCAs numbering is relative
//to their parent. Thus MCA 1 behind MCS1 behind MCBIST 1
//is pos 7. Below is the physical path showing containment:
// Physical:/Sys0/Node0/Proc0/MCBIST0/MCS0/MCA0 --> unitPos = 0
// Physical:/Sys0/Node0/Proc0/MCBIST0/MCS0/MCA1 --> unitPos = 1
// Physical:/Sys0/Node0/Proc0/MCBIST0/MCS1/MCA0 --> unitPos = 2
// Physical:/Sys0/Node0/Proc0/MCBIST0/MCS1/MCA1 --> unitPos = 3
// Physical:/Sys0/Node0/Proc0/MCBIST1/MCS0/MCA0 --> unitPos = 4
// etc
//
// physical:sys-0/node-0/proc-1/eq-1/ex-1/core-0 --> unitPos = 4
// physical:sys-0/node-0/proc-1/eq-1/ex-1/core-1 --> unitPos = 5
// physical:sys-0/node-0/proc-1/eq-2/ex-0/core-0 --> unitPos = 6
// physical:sys-0/node-0/proc-1/eq-2/ex-0/core-1 --> unitPos = 7
//Note that this ALSO applies to EX/EC units relative to their
//quad. So for now the magical number is "2" for everything
//TODO RTC 160598 -- find a better way to do this
else if ((l_element.type == TYPE_EX) ||
(l_element.type == TYPE_CORE) ||
(l_element.type == TYPE_MCS) ||
(l_element.type == TYPE_MCA))
{
//previous o_unitPos was MCBIST/MCS or EQ/EX.
// Multiply by 2 and add in instance number
o_unitPos = (o_unitPos*P9_UNIT_PER_LEVEL) + l_element.instance;
}
}
// Check that the correct values are returned
_getAttrPtr(ATTR_CLASS, l_pAttr);
if (l_pAttr)
{
AttributeTraits<ATTR_CLASS>::Type & l_class =
*(reinterpret_cast<AttributeTraits<ATTR_CLASS>::Type *>(
l_pAttr));
if (l_class == TARGETING::CLASS_SYS)
{
if ((o_pos != AttributeTank::ATTR_POS_NA) ||
(o_unitPos != AttributeTank::ATTR_UNIT_POS_NA) ||
(o_node != AttributeTank::ATTR_NODE_NA))
{
targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
}
}
else if ((l_class == TARGETING::CLASS_CHIP) ||
(l_class == TARGETING::CLASS_CARD) ||
(l_class == TARGETING::CLASS_LOGICAL_CARD))
{
if ((o_pos == AttributeTank::ATTR_POS_NA) ||
(o_unitPos != AttributeTank::ATTR_UNIT_POS_NA) ||
(o_node == AttributeTank::ATTR_NODE_NA))
{
targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
}
}
else if (l_class == TARGETING::CLASS_UNIT)
{
if ((o_pos == AttributeTank::ATTR_POS_NA) ||
(o_unitPos == AttributeTank::ATTR_UNIT_POS_NA) ||
(o_node == AttributeTank::ATTR_NODE_NA))
{
TRACFCOMP(g_trac_targeting,"o_pos[%d], o_unitPos[%d] o_node[%d]", o_pos, o_unitPos, o_node);
targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
}
}
else if (l_class == TARGETING::CLASS_ENC)
{
if ((o_pos != AttributeTank::ATTR_POS_NA) ||
(o_unitPos != AttributeTank::ATTR_UNIT_POS_NA) ||
(o_node == AttributeTank::ATTR_NODE_NA))
{
targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
}
}
else
{
targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
}
}
else
{
targAssert(GET_ATTR_TANK_TARGET_POS_DATA_ATTR, ATTR_CLASS);
}
}
else
{
targAssert(GET_ATTR_TANK_TARGET_POS_DATA_ATTR, ATTR_PHYS_PATH);
}
}
//******************************************************************************
// Target::targAssert()
//******************************************************************************
void Target::targAssert(TargAssertReason i_reason,
uint32_t i_ffdc)
{
switch (i_reason)
{
case SET_ATTR:
TARG_ASSERT(false,
"TARGETING::Target::setAttr<0x%7x>: trySetAttr returned false",
i_ffdc);
break;
case GET_ATTR:
TARG_ASSERT(false,
"TARGETING::Target::getAttr<0x%7x>: tryGetAttr returned false",
i_ffdc);
break;
case GET_ATTR_AS_STRING:
TARG_ASSERT(false,
"TARGETING::Target::getAttrAsString<0x%7x>: tryGetAttr returned false",
i_ffdc);
break;
case GET_HB_MUTEX_ATTR:
TARG_ASSERT(false,
"TARGETING::Target::_getHbMutexAttr<0x%7x>: _getAttrPtr returned NULL",
i_ffdc);
break;
case GET_ATTR_TANK_TARGET_POS_DATA:
TARG_ASSERT(false,
"TARGETING::Target::getAttrTankTargetPosData: "
"Error decoding class 0x%x", i_ffdc);
break;
case GET_ATTR_TANK_TARGET_POS_DATA_ATTR:
TARG_ASSERT(false,
"TARGETING::Target::getAttrTankTargetPosData: "
"Error getting attr<0x%7x>)", i_ffdc);
break;
default:
TARG_ASSERT(false,
"TARGETING function asserted for unknown reason (0x%x)",
i_ffdc);
}
}
//******************************************************************************
// Target::installWriteAttributeCallback
//******************************************************************************
bool Target::installWriteAttributeCallback(
TARGETING::pCallbackFuncPtr & i_callBackFunc)
{
#define TARG_FN "installWriteAttributeCallback"
TARG_ENTER();
return __sync_bool_compare_and_swap(&cv_pCallbackFuncPtr,
NULL, i_callBackFunc);
TARG_EXIT();
#undef TARG_FN
}
//******************************************************************************
// Target::uninstallWriteAttributeCallback
//******************************************************************************
bool Target::uninstallWriteAttributeCallback()
{
#define TARG_FN "uninstallWriteAttributeCallback"
TARG_ENTER();
__sync_synchronize();
cv_pCallbackFuncPtr = NULL;
__sync_synchronize();
return true;
TARG_EXIT();
#undef TARG_FN
}
//******************************************************************************
// setFrequencyAttributes
//******************************************************************************
void setFrequencyAttributes( Target * i_sys,
uint32_t i_newNestFreq )
{
#define TARG_FN "setFrequencyAttributes"
TARG_ENTER();
// Calculate the new value for PIB_I2C_NEST_PLL using old freq attributes.
uint32_t l_oldPll = i_sys->getAttr<TARGETING::ATTR_PIB_I2C_NEST_PLL>();
uint32_t l_oldNestFreq = i_sys->getAttr<TARGETING::ATTR_FREQ_PB_MHZ>();
uint32_t l_newPll = (i_newNestFreq * l_oldPll)/l_oldNestFreq;
// Needed for NEST_PLL_BUCKET
uint32_t l_i2cBusDiv = 0;
size_t l_bucket;
uint8_t nest_pll_freq_buckets =
i_sys->getAttr<TARGETING::ATTR_NEST_PLL_FREQ_BUCKETS>();
TARGETING::ATTR_NEST_PLL_FREQ_LIST_type freq_list;
TARGETING::ATTR_NEST_PLL_FREQ_I2CDIV_LIST_type i2cdiv_list;
//FREQ_PB_MHZ
uint32_t l_freqPb = i_newNestFreq;
i_sys->setAttr<TARGETING::ATTR_FREQ_PB_MHZ>(l_freqPb);
TRACFCOMP(g_trac_targeting,
"ATTR_FREQ_PB_MHZ getting set from %d to %d",
l_oldNestFreq,
l_freqPb );
//PIB_I2C_NEST_PLL
i_sys->setAttr<TARGETING::ATTR_PIB_I2C_NEST_PLL>(l_newPll);
TRACFCOMP(g_trac_targeting,
"ATTR_PIB_I2C_NEST_PLL getting set from %x to %x",
l_oldPll,
l_newPll);
//NEST_PLL_BUCKET
TARG_ASSERT((i_sys->tryGetAttr
<TARGETING::ATTR_NEST_PLL_FREQ_LIST>(freq_list)),
"TARGETING::setFrequencyAttributes: "
"Error getting nest PLL frequency list attribute");
TARG_ASSERT((i_sys->tryGetAttr
<TARGETING::ATTR_NEST_PLL_FREQ_I2CDIV_LIST>(i2cdiv_list)),
"TARGETING::setFrequencyAttributes: "
"Error getting nest PLL frequency I2C divisor list attribute");
for( l_bucket = 1; l_bucket <= nest_pll_freq_buckets; l_bucket++ )
{
TRACFCOMP(g_trac_targeting,
"Bucket %d with freq %d and i2cdiv %d",
l_bucket,
freq_list[l_bucket-1],
i2cdiv_list[l_bucket-1]);
// The nest PLL bucket IDs are numbered 1 - 5. Subtract 1 to
// take zero-based indexing into account.
if( freq_list[l_bucket-1] == i_newNestFreq )
{
TRACFCOMP(g_trac_targeting,
"ATTR_NEST_PLL_BUCKET getting set to %x",
l_bucket);
i_sys->setAttr<TARGETING::ATTR_NEST_PLL_BUCKET>(l_bucket);
l_i2cBusDiv = i2cdiv_list[l_bucket-1];
break;
}
}
TARG_ASSERT(l_bucket <= nest_pll_freq_buckets,
"TARGETING::setFrequencyAttributes: "
"Error finding nest PLL bucket for nest frequency %d",
i_newNestFreq);
// Get the processor targets to set the i2c bus divisor.
TARGETING::TargetHandleList l_procList;
TARGETING::getAllChips( l_procList,
TARGETING::TYPE_PROC,
true ); // true: return functional procs
TargetHandleList::iterator l_procTarget;
for( l_procTarget = l_procList.begin();
l_procTarget != l_procList.end();
++l_procTarget )
{
(*l_procTarget)->setAttr<TARGETING::ATTR_I2C_BUS_DIV_NEST>(l_i2cBusDiv);
}
TARG_EXIT();
#undef TARG_FN
}
//******************************************************************************
// Attribute Tanks
//******************************************************************************
AttributeTank Target::cv_overrideTank;
AttributeTank Target::cv_syncTank;
#undef TARG_CLASS
#undef TARG_NAMESPACE
} // End namespace TARGETING
|