summaryrefslogtreecommitdiffstats
path: root/src/usr/targeting/common/target.C
blob: 244d0499315888c603a4d76414d38f3cf7154424 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/targeting/common/target.C $                           */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2012,2019                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
/**
 *  @file targeting/common/target.C
 *
 *  @brief Implementation of the Target class which provide APIs to read and
 *      write attributes from various attribute sections
 */

//******************************************************************************
// Includes
//******************************************************************************

// STD
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>

// This component
#include <targeting/common/attributes.H>
#include <targeting/attrrp.H>
#include <targeting/common/util.H>
#include <targeting/common/trace.H>
#include <targeting/common/predicates/predicateattrval.H>
#include <targeting/common/utilFilter.H>
#include <targeting/common/attributeTank.H>

namespace TARGETING
{

#define TARG_NAMESPACE "TARGETING::"
#define TARG_CLASS "Target::"

//P9 number of MC/CORE units contained per level
//Both happen to be the same, so use one constant
#define P9_UNIT_PER_LEVEL 2

// Static function pointer variable allocation
pCallbackFuncPtr Target::cv_pCallbackFuncPtr = NULL;

//******************************************************************************
// Target::~Target
//******************************************************************************

Target::~Target()
{
    #define TARG_FN "~Target()"

    #undef TARG_FN
}

//******************************************************************************
// Target::_tryGetAttrUnsafe
//******************************************************************************
bool Target::_tryGetAttrUnsafe(
    const ATTRIBUTE_ID i_attr,
    const uint32_t     i_size,
          void* const  io_pAttrData) const
{
    #define TARG_FN "_tryGetAttr()"

    bool l_found = false;

    // Very fast check if there are any overrides at all
    if (unlikely(cv_overrideTank.attributesExist()))
    {
        // Check if there are any overrides for this attr ID
        if (cv_overrideTank.attributeExists(i_attr))
        {
            // Check if attribute exists for the target
            void * l_pAttr = NULL;
            _getAttrPtr(i_attr, l_pAttr);
            if (l_pAttr)
            {
                // Find if there is an attribute override for this target
                uint32_t l_type = getAttrTankTargetType();
                uint16_t l_pos = 0;
                uint8_t l_unitPos = 0;
                uint8_t l_node = 0;
                getAttrTankTargetPosData(l_pos, l_unitPos, l_node);

                TRACFCOMP(g_trac_targeting, "Checking for override for ID: 0x%08x, "
                          "TargType: 0x%08x, Pos/Upos/Node: 0x%08x",
                          i_attr, l_type,
                          (static_cast<uint32_t>(l_pos) << 16) +
                          (static_cast<uint32_t>(l_unitPos) << 8) + l_node);

                l_found = cv_overrideTank.getAttribute(i_attr, l_type,
                    l_pos, l_unitPos, l_node, io_pAttrData);

                if (l_found)
                {
                    TRACFCOMP(g_trac_targeting, "Returning Override for ID: 0x%08x",
                              i_attr);
                }
            }
        }
    }

    if (!l_found)
    {
        // No attribute override, get the real attribute
        void* l_pAttrData = NULL;
        (void) _getAttrPtr(i_attr, l_pAttrData);
        if (l_pAttrData)
        {
            memcpy(io_pAttrData, l_pAttrData, i_size);
            l_found = true;
        }
    }

    return l_found;

    #undef TARG_FN
}

//******************************************************************************
// Target::_tryGetAttrUnsafe
//******************************************************************************
bool Target::_tryGetAttrUnsafe(
    const ATTRIBUTE_ID i_attr,
    const uint32_t     i_size,
    AttrRP*            i_attrRP,
    ATTRIBUTE_ID*      i_pAttrId,
    AbstractPointer<void>* i_ppAttrAddr,
    void* const        io_pAttrData) const
{
    #define TARG_FN "_tryGetAttrUnsafe()"

    bool l_found = false;

    void* l_pAttrData = NULL;
    _getAttrPtr(i_attr, i_attrRP, i_pAttrId, i_ppAttrAddr, l_pAttrData);
    if (l_pAttrData)
    {
        memcpy(io_pAttrData, l_pAttrData, i_size);
        l_found = true;
    }

    return l_found;

    #undef TARG_FN
}

//******************************************************************************
// Target::_trySetAttr
//******************************************************************************

bool Target::_trySetAttr(
    const ATTRIBUTE_ID i_attr,
    const uint32_t     i_size,
    const void* const  i_pAttrData) const
{
    #define TARG_FN "_trySetAttr()"

#ifdef __HOSTBOOT_RUNTIME
    // Get AttrRP pointer
    AttrRP *l_attrRP = &TARG_GET_SINGLETON(theAttrRP);
    // Get the node ID associated with the input target
    NODE_ID l_nodeId = NODE0;
    l_attrRP->getNodeId(this, l_nodeId);
    bool isSysTarget = ((this->getAttr<ATTR_CLASS>() == CLASS_SYS) &&
                        (this->getAttr<ATTR_TYPE>() == TYPE_SYS))
                     ? true : false;
#endif

    // Figure out if effort should be expended figuring out the target's type/
    // position in order to clear any non-const attribute overrides and/or to
    // store the attribute for syncing to Cronus

    bool l_clearAnyNonConstOverride = false;

    // Very fast check if there are any overrides at all for this Attr ID
    if (unlikely(cv_overrideTank.attributesExist()))
    {
        // Check if there are any overrides for this attr ID
        if (cv_overrideTank.attributeExists(i_attr))
        {
            l_clearAnyNonConstOverride = true;
        }
    }

    bool l_syncAttribute = AttributeTank::syncEnabled();

    if (unlikely(l_clearAnyNonConstOverride || l_syncAttribute))
    {
        // Check if attribute exists for the target
        void * l_pAttr = NULL;
        _getAttrPtr(i_attr, l_pAttr);
        if (l_pAttr)
        {
            uint32_t l_type = getAttrTankTargetType();
            uint16_t l_pos = 0;
            uint8_t l_unitPos = 0;
            uint8_t l_node = 0;
            getAttrTankTargetPosData(l_pos, l_unitPos, l_node);

            if (l_clearAnyNonConstOverride)
            {
                // Clear any non const override for this attribute because the
                // attribute is being written
                cv_overrideTank.clearNonConstAttribute(i_attr, l_type, l_pos,
                    l_unitPos, l_node);
            }

            if (l_syncAttribute)
            {
                // Write the attribute to the SyncAttributeTank to sync to Cronus
                cv_syncTank.setAttribute(i_attr, l_type, l_pos, l_unitPos, l_node,
                    0, i_size, i_pAttrData);
            }
        }
    }

    // Set the real attribute
    void* l_pAttrData = NULL;
    (void) _getAttrPtr(i_attr, l_pAttrData);
    if (l_pAttrData)
    {
        memcpy(l_pAttrData, i_pAttrData, i_size);
#ifdef __HOSTBOOT_RUNTIME
        if(isSysTarget)
        {
            uint8_t l_nodeCount = l_attrRP->getNodeCount();

            for(NODE_ID l_nodeX = NODE0;
                l_nodeX < l_nodeCount;
                ++l_nodeX)
            {
                if(l_nodeX == l_nodeId)
                {
                    // Already set attribute for this node, so continue to next
                    continue;
                }

                // Walk through targets
                for(TargetIterator pIt = targetService().begin(l_nodeX);
                    pIt != TARGETING::targetService().end();
                    ++pIt)
                {
                    // Check for system target
                    if(((*pIt)->getAttr<ATTR_CLASS>() == CLASS_SYS) &&
                       ((*pIt)->getAttr<ATTR_TYPE>() == TYPE_SYS))
                    {
                        // Get pointer to the attribute being set
                        void* l_pAttrDataNodeX = NULL;
                        (*pIt)->_getAttrPtr(i_attr, l_pAttrDataNodeX);
                        if (l_pAttrData)
                        {
                            // Set the attribute for this node
                            memcpy(l_pAttrDataNodeX, i_pAttrData, i_size);
                        }

                        break;
                    }
                }
            }
        }
#endif
        if( unlikely(cv_pCallbackFuncPtr != NULL) )
        {
            cv_pCallbackFuncPtr(this, i_attr, i_size, i_pAttrData);
        }
    }
    return (l_pAttrData != NULL);

    #undef TARG_FN
}

//******************************************************************************
// Target::_getAttrPtr
//******************************************************************************

void Target::_getAttrPtr(
    const ATTRIBUTE_ID i_attr,
          void*&       o_pAttr) const
{
    #define TARG_FN "_getAttrPtr()"

    void* l_pAttr = NULL;

    // Transform platform neutral pointers into platform specific pointers, and
    // optimize processing by not having to do the conversion in the loop below
    // (it's guaranteed that attribute metadata will be in the same contiguous
    // VMM region)
    ATTRIBUTE_ID* pAttrId = TARG_TO_PLAT_PTR(iv_pAttrNames);
    AbstractPointer<void>* ppAttrAddr = TARG_TO_PLAT_PTR(iv_pAttrValues);

    // Only translate addresses on platforms where addresses are 4 bytes wide
    // (FSP). The compiler should perform dead code elimination of this path on
    // platforms with 8 byte wide addresses (Hostboot), since the "if" check can
    // be statically computed at compile time.
    if(TARG_ADDR_TRANSLATION_REQUIRED)
    {
        pAttrId = static_cast<ATTRIBUTE_ID*>(
            TARG_GET_SINGLETON(TARGETING::theAttrRP).translateAddr(pAttrId,
                static_cast<const Target*>(this)));
        ppAttrAddr = static_cast<AbstractPointer<void>*>(
            TARG_GET_SINGLETON(TARGETING::theAttrRP).translateAddr(ppAttrAddr,
                static_cast<const Target*>(this)));
    }

    if ((pAttrId != NULL) && (ppAttrAddr != NULL))
    {   // only check for the attribute if we got a valid address from
        // the translateAddr function

        // Search for the attribute ID.
        ATTRIBUTE_ID* ptr = std::lower_bound(pAttrId, pAttrId+iv_attrs, i_attr);
        if ((ptr != pAttrId+iv_attrs) && (*ptr == i_attr))
        {
            // Locate the corresponding attribute address
            l_pAttr =
                TARG_TO_PLAT_PTR(*(ppAttrAddr+std::distance(pAttrId,ptr)));

            // Only translate addresses on platforms where addresses are
            // 4 byte wide (FSP).  The compiler should perform dead code
            // elimination this path on platforms with 8 byte wide
            // addresses (Hostboot), since the "if" check can be statically
            // computed at compile time.
            if(TARG_ADDR_TRANSLATION_REQUIRED)
            {
                l_pAttr =
                    TARG_GET_SINGLETON(TARGETING::theAttrRP).translateAddr(
                            l_pAttr, static_cast<const Target*>(this));
            }
        }
    }
    o_pAttr = l_pAttr;

    #undef TARG_FN
}

//******************************************************************************
// Target::_getAttrPtr
//******************************************************************************

void Target::_getAttrPtr(
            ATTRIBUTE_ID  i_attr,
            AttrRP*       i_attrRP,
            ATTRIBUTE_ID* i_pAttrId,
            AbstractPointer<void>* i_ppAttrAddr,
            void*&        o_pAttr) const
{

    #define TARG_FN "_getAttrPtr()"

    void* l_pAttr = NULL;

    // Search for the attribute ID.
    ATTRIBUTE_ID* ptr = std::lower_bound(i_pAttrId,
                                         i_pAttrId + iv_attrs,
                                         i_attr);
    if ((ptr != i_pAttrId + iv_attrs) && (*ptr == i_attr))
    {
        // Locate the corresponding attribute address
        l_pAttr =
            TARG_TO_PLAT_PTR(*(i_ppAttrAddr + std::distance(i_pAttrId, ptr)));

        // Only translate addresses on platforms where addresses are
        // 4 byte wide (FSP).  The compiler should perform dead code
        // elimination this path on platforms with 8 byte wide
        // addresses (Hostboot), since the "if" check can be statically
        // computed at compile time.
        if(TARG_ADDR_TRANSLATION_REQUIRED)
        {
            l_pAttr =
                i_attrRP->translateAddr(l_pAttr,
                                        static_cast<const Target*>(this));
        }
    }

    o_pAttr = l_pAttr;

    #undef TARG_FN
}

//******************************************************************************
// Target::_getHbMutexAttr
//******************************************************************************

mutex_t* Target::_getHbMutexAttr(
    const ATTRIBUTE_ID i_attribute) const
{
    #define TARG_FN "_getHbMutexAttr()"

    void* l_pAttr = NULL;
    (void)_getAttrPtr(i_attribute,l_pAttr);

    if (unlikely(l_pAttr == NULL))
    {
        targAssert(GET_HB_MUTEX_ATTR, i_attribute);
    }

    return static_cast<mutex_t*>(l_pAttr);

    #undef TARG_FN
}

//******************************************************************************
// Target::_tryGetHbMutexAttr
//******************************************************************************

bool Target::_tryGetHbMutexAttr(
    const ATTRIBUTE_ID i_attribute,
          mutex_t*&    o_pMutex) const
{
    #define TARG_FN "_tryGetHbMutexAttr()"

    void* l_pAttr = NULL;
    (void)_getAttrPtr(i_attribute,l_pAttr);
    o_pMutex = static_cast<mutex_t*>(l_pAttr);
    return (l_pAttr != NULL);

    #undef TARG_FN
}

//******************************************************************************
// Target::Target
//******************************************************************************

Target::Target()
{
    #define TARG_FN "Target()"

    // Note there is no initialization of a target, since it's mapped to memory
    // directly.

    #undef TARG_FN
}

//******************************************************************************
// Target::targetFFDC()
//******************************************************************************

uint8_t * Target::targetFFDC( uint32_t & o_size ) const
{
    #define TARG_FN "targetFFDC(...)"

    AttributeTraits<ATTR_HUID>::Type  attrHuid  = getAttr<ATTR_HUID>();
    AttributeTraits<ATTR_CLASS>::Type attrClass = getAttr<ATTR_CLASS>();
    AttributeTraits<ATTR_TYPE>::Type  attrType  = getAttr<ATTR_TYPE>();
    AttributeTraits<ATTR_MODEL>::Type attrModel = getAttr<ATTR_MODEL>();
    uint32_t headerSize = sizeof(attrHuid) +
                            sizeof(attrClass) + sizeof(attrType) +
                            sizeof(attrModel);

    uint32_t attrEnum = ATTR_NA;

    uint8_t pathPhysSize = 0;
    AttributeTraits<ATTR_PHYS_PATH>::Type pathPhys;
    if( tryGetAttr<ATTR_PHYS_PATH>(pathPhys) ) {
        // entityPath is PATH_TYPE:4, NumberOfElements:4, [Element, Instance#]
        pathPhysSize = sizeof(uint8_t) + (sizeof(pathPhys[0]) * pathPhys.size());
    }

    uint8_t pathAffSize = 0;
    AttributeTraits<ATTR_AFFINITY_PATH>::Type pathAff;
    if( tryGetAttr<ATTR_AFFINITY_PATH>(pathAff) ) {
        // entityPath is PATH_TYPE:4, NumberOfElements:4, [Element, Instance#]
        pathAffSize = sizeof(uint8_t) + (sizeof(pathAff[0]) * pathAff.size());
    }

    uint8_t *pFFDC;

    // If there is a physical path or affinity path, the serialization code
    // below prefixes an attribute type ahead of the actual structure, so need
    // to compensate for the size of that attribute type, when applicable
    pFFDC = static_cast<uint8_t*>(
        malloc(  headerSize
               + pathPhysSize
               + sizeof(attrEnum)
               + pathAffSize
               + sizeof(attrEnum)));

    // we'll send down HUID CLASS TYPE and MODEL
    uint32_t bSize = 0; // size of data in the buffer
    memcpy(pFFDC + bSize, &attrHuid, sizeof(attrHuid) );
    bSize += sizeof(attrHuid);
    memcpy(pFFDC + bSize, &attrClass, sizeof(attrClass) );
    bSize += sizeof(attrClass);
    memcpy(pFFDC + bSize, &attrType, sizeof(attrType) );
    bSize += sizeof(attrType);
    memcpy(pFFDC + bSize, &attrModel, sizeof(attrModel) );
    bSize += sizeof(attrModel);

    if( pathPhysSize > 0)
    {
        attrEnum = ATTR_PHYS_PATH;
        memcpy(pFFDC + bSize, &attrEnum, sizeof(attrEnum));
        bSize += sizeof(attrEnum);
        memcpy(pFFDC + bSize, &pathPhys, pathPhysSize);
        bSize += pathPhysSize;
    }
    else
    {
        // write 0x00 indicating no PHYS_PATH
        attrEnum = 0x00;
        memcpy(pFFDC + bSize, &attrEnum, sizeof(attrEnum));
        bSize += sizeof(attrEnum);
    }

    if( pathAffSize > 0)
    {
        attrEnum = ATTR_AFFINITY_PATH;
        memcpy(pFFDC + bSize, &attrEnum, sizeof(attrEnum));
        bSize += sizeof(attrEnum);
        memcpy(pFFDC + bSize, &pathAff, pathAffSize);
        bSize += pathAffSize;
    }
    else
    {
        // write 0x00 indicating no AFFINITY_PATH
        attrEnum = 0x00;
        memcpy(pFFDC + bSize, &attrEnum, sizeof(attrEnum));
        bSize += sizeof(attrEnum);
    }

    o_size = bSize;
    return pFFDC;

    #undef TARG_FN
}

//******************************************************************************
// Target::getTargetFromHuid()
//******************************************************************************

Target* Target::getTargetFromHuid(
    const ATTR_HUID_type i_huid)
{
    #define TARG_FN "getTargetFromHuid"
    Target* l_pTarget = NULL;

    TARGETING::PredicateAttrVal<TARGETING::ATTR_HUID> huidMatches(i_huid);

    TARGETING::TargetRangeFilter targetsWithMatchingHuid(
        TARGETING::targetService().begin(),
        TARGETING::targetService().end(),
        &huidMatches);
    if(targetsWithMatchingHuid)
    {
        // Exactly one target will match the HUID, if any
        l_pTarget = *targetsWithMatchingHuid;
    }

    return l_pTarget;
    #undef TARG_FN
}

//******************************************************************************
// Target::getAttrTankTargetType()
//******************************************************************************
uint32_t Target::getAttrTankTargetType() const
{
    // In a Targeting Attribute Tank, the Target Type is ATTR_TYPE
    AttributeTraits<ATTR_TYPE>::Type l_type = TYPE_NA;
    void * l_pAttr = NULL;
    _getAttrPtr(ATTR_TYPE, l_pAttr);
    if (l_pAttr)
    {
        l_type = *(reinterpret_cast<AttributeTraits<ATTR_TYPE>::Type *>(
            l_pAttr));
    }
    return l_type;
}

//******************************************************************************
// Target::getAttrTankTargetPosData()
//******************************************************************************
void Target::getAttrTankTargetPosData(uint16_t & o_pos,
                                      uint8_t & o_unitPos,
                                      uint8_t & o_node) const
{
    o_pos = AttributeTank::ATTR_POS_NA;
    o_unitPos = AttributeTank::ATTR_UNIT_POS_NA;
    o_node = AttributeTank::ATTR_NODE_NA;

    // Pos, UnitPos and Node are figured out from the PHYS_PATH
    void * l_pAttr = NULL;
    _getAttrPtr(ATTR_PHYS_PATH, l_pAttr);
    if (l_pAttr)
    {
        AttributeTraits<ATTR_PHYS_PATH>::Type & l_physPath =
            *(reinterpret_cast<AttributeTraits<ATTR_PHYS_PATH>::Type *>(
                l_pAttr));

        for (uint32_t i = 0; i < l_physPath.size(); i++)
        {
            const EntityPath::PathElement & l_element = l_physPath[i];

            if (l_element.type == TYPE_NODE)
            {
                o_node = l_element.instance;
            }
            else if ((l_element.type == TYPE_PROC) ||
                     (l_element.type == TYPE_MEMBUF) ||
                     (l_element.type == TYPE_DIMM) ||
                     (l_element.type == TYPE_OCMB_CHIP) ||
                     (l_element.type == TYPE_PMIC))
            {
                o_pos = l_element.instance;
            }
            else if ((l_element.type == TYPE_L4) ||
                     (l_element.type == TYPE_MBA) ||
                     (l_element.type == TYPE_MC) ||
                     (l_element.type == TYPE_XBUS) ||
                     (l_element.type == TYPE_ABUS) ||
                     (l_element.type == TYPE_EQ) ||
                     (l_element.type == TYPE_MCBIST) ||
                     (l_element.type == TYPE_CAPP) ||
                     (l_element.type == TYPE_OBUS) ||
                     (l_element.type == TYPE_OBUS_BRICK) ||
                     (l_element.type == TYPE_SBE) ||
                     (l_element.type == TYPE_PPE) ||
                     (l_element.type == TYPE_PERV) ||
                     (l_element.type == TYPE_PEC) ||
                     (l_element.type == TYPE_PHB) ||
                     (l_element.type == TYPE_OMI) ||
                     (l_element.type == TYPE_MCC) ||
                     (l_element.type == TYPE_OMIC) ||
                     (l_element.type == TYPE_MEM_PORT))
            {
                o_unitPos = l_element.instance;
            }
            //Factor in that MCS and MCAs numbering is relative
            //to their parent.  Thus MCA 1 behind MCS1 behind MCBIST 1
            //is pos 7.  Below is the physical path showing containment:
            // Physical:/Sys0/Node0/Proc0/MCBIST0/MCS0/MCA0 --> unitPos = 0
            // Physical:/Sys0/Node0/Proc0/MCBIST0/MCS0/MCA1 --> unitPos = 1
            // Physical:/Sys0/Node0/Proc0/MCBIST0/MCS1/MCA0 --> unitPos = 2
            // Physical:/Sys0/Node0/Proc0/MCBIST0/MCS1/MCA1 --> unitPos = 3
            // Physical:/Sys0/Node0/Proc0/MCBIST1/MCS0/MCA0 --> unitPos = 4
            // etc
            //
            // physical:sys-0/node-0/proc-1/eq-1/ex-1/core-0 --> unitPos = 4
            // physical:sys-0/node-0/proc-1/eq-1/ex-1/core-1 --> unitPos = 5
            // physical:sys-0/node-0/proc-1/eq-2/ex-0/core-0 --> unitPos = 6
            // physical:sys-0/node-0/proc-1/eq-2/ex-0/core-1 --> unitPos = 7

            //Note that this ALSO applies to EX/EC units relative to their
            //quad.  So for now the magical number is "2" for everything
            //TODO RTC 160598 -- find a better way to do this
            else if ((l_element.type == TYPE_EX) ||
                     (l_element.type == TYPE_CORE) ||
                     (l_element.type == TYPE_MCS) ||
                     (l_element.type == TYPE_MCA) ||
                     (l_element.type == TYPE_MI)  ||
                     (l_element.type == TYPE_DMI))
            {
                //previous o_unitPos was MCBIST/MCS or EQ/EX.
                // Multiply by 2 and add in instance number
                o_unitPos = (o_unitPos*P9_UNIT_PER_LEVEL) + l_element.instance;
            }
        }

        // Check that the correct values are returned
        _getAttrPtr(ATTR_CLASS, l_pAttr);
        if (l_pAttr)
        {
            AttributeTraits<ATTR_CLASS>::Type & l_class =
                *(reinterpret_cast<AttributeTraits<ATTR_CLASS>::Type *>(
                    l_pAttr));
            if (l_class == TARGETING::CLASS_SYS)
            {
                if ((o_pos != AttributeTank::ATTR_POS_NA) ||
                    (o_unitPos != AttributeTank::ATTR_UNIT_POS_NA) ||
                    (o_node != AttributeTank::ATTR_NODE_NA))
                {
                    targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
                }
            }
            else if ((l_class == TARGETING::CLASS_CHIP) ||
                     (l_class == TARGETING::CLASS_CARD) ||
                     (l_class == TARGETING::CLASS_LOGICAL_CARD))
            {
                if ((o_pos == AttributeTank::ATTR_POS_NA) ||
                    (o_unitPos != AttributeTank::ATTR_UNIT_POS_NA) ||
                    (o_node == AttributeTank::ATTR_NODE_NA))
                {
                    targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
                }
            }
            else if (l_class == TARGETING::CLASS_UNIT)
            {
                if ((o_pos == AttributeTank::ATTR_POS_NA) ||
                    (o_unitPos == AttributeTank::ATTR_UNIT_POS_NA) ||
                    (o_node == AttributeTank::ATTR_NODE_NA))
                {
                    TRACFCOMP(g_trac_targeting,"o_pos[%d], o_unitPos[%d] o_node[%d]", o_pos, o_unitPos, o_node);
                    targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
                }
            }
            else if (l_class == TARGETING::CLASS_ENC)
            {
                if ((o_pos != AttributeTank::ATTR_POS_NA) ||
                    (o_unitPos != AttributeTank::ATTR_UNIT_POS_NA) ||
                    (o_node == AttributeTank::ATTR_NODE_NA))
                {
                    targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
                }
            }
            else
            {
                targAssert(GET_ATTR_TANK_TARGET_POS_DATA, l_class);
            }
        }
        else
        {
            targAssert(GET_ATTR_TANK_TARGET_POS_DATA_ATTR, ATTR_CLASS);
        }
    }
    else
    {
        targAssert(GET_ATTR_TANK_TARGET_POS_DATA_ATTR, ATTR_PHYS_PATH);
    }
}

//******************************************************************************
// Target::targAssert()
//******************************************************************************
void Target::targAssert(TargAssertReason i_reason,
                        uint32_t i_ffdc)
{
    switch (i_reason)
    {
    case SET_ATTR:
        TARG_ASSERT(false,
            "TARGETING::Target::setAttr<0x%7x>: trySetAttr returned false",
            i_ffdc);
        break;
    case SET_ATTR_FROM_STD_ARR:
        TARG_ASSERT(false,
            "TARGETING::Target::setAttrFromStdArr<0x%7x>: setAttrFromStdArr "
            "returned false",
            i_ffdc);
        break;
    case GET_ATTR:
        TARG_ASSERT(false,
            "TARGETING::Target::getAttr<0x%7x>: tryGetAttr returned false",
            i_ffdc);
        break;
    case GET_ATTR_AS_STRING:
        TARG_ASSERT(false,
            "TARGETING::Target::getAttrAsString<0x%7x>: tryGetAttr returned false",
            i_ffdc);
        break;
    case GET_ATTR_AS_STD_ARRAY:
        TARG_ASSERT(false,
            "TARGETING::Target::getAttrAsStdArray<0x%7x>: getAttrAsStdArray returned"
            " false",
            i_ffdc);
        break;
    case GET_HB_MUTEX_ATTR:
        TARG_ASSERT(false,
            "TARGETING::Target::_getHbMutexAttr<0x%7x>: _getAttrPtr returned NULL",
            i_ffdc);
        break;
    case GET_ATTR_TANK_TARGET_POS_DATA:
        TARG_ASSERT(false,
            "TARGETING::Target::getAttrTankTargetPosData: "
            "Error decoding class 0x%x", i_ffdc);
        break;
    case GET_ATTR_TANK_TARGET_POS_DATA_ATTR:
        TARG_ASSERT(false,
            "TARGETING::Target::getAttrTankTargetPosData: "
            "Error getting attr<0x%7x>)", i_ffdc);
        break;
    default:
        TARG_ASSERT(false,
            "TARGETING function asserted for unknown reason (0x%x)",
            i_ffdc);
    }
}

//******************************************************************************
// Target::installWriteAttributeCallback
//******************************************************************************
bool Target::installWriteAttributeCallback(
    TARGETING::pCallbackFuncPtr & i_callBackFunc)
{
    #define TARG_FN "installWriteAttributeCallback"
    TARG_ENTER();

    return __sync_bool_compare_and_swap(&cv_pCallbackFuncPtr,
                                        NULL, i_callBackFunc);
    TARG_EXIT();
    #undef TARG_FN
}

//******************************************************************************
// Target::uninstallWriteAttributeCallback
//******************************************************************************
bool Target::uninstallWriteAttributeCallback()
{
    #define TARG_FN "uninstallWriteAttributeCallback"
    TARG_ENTER();

    __sync_synchronize();
    cv_pCallbackFuncPtr = NULL;
    __sync_synchronize();
    return true;

    TARG_EXIT();
    #undef TARG_FN
}


//******************************************************************************
// setFrequencyAttributes
//******************************************************************************
void setFrequencyAttributes( Target * i_sys,
                             uint32_t i_newNestFreq )
{
    #define TARG_FN "setFrequencyAttributes"
    TARG_ENTER();

    // Calculate the new value for PIB_I2C_NEST_PLL using old freq attributes.
    uint32_t l_oldPll = i_sys->getAttr<TARGETING::ATTR_PIB_I2C_NEST_PLL>();
    uint32_t l_oldNestFreq = i_sys->getAttr<TARGETING::ATTR_FREQ_PB_MHZ>();
    uint32_t l_newPll = (i_newNestFreq * l_oldPll)/l_oldNestFreq;

    // Needed for NEST_PLL_BUCKET
    size_t l_bucket;
    uint8_t nest_pll_freq_buckets =
        i_sys->getAttr<TARGETING::ATTR_NEST_PLL_FREQ_BUCKETS>();
    TARGETING::ATTR_NEST_PLL_FREQ_LIST_type freq_list;
    TARGETING::ATTR_NEST_PLL_FREQ_I2CDIV_LIST_type i2cdiv_list;

    //FREQ_PB_MHZ
    uint32_t l_freqPb = i_newNestFreq;
    i_sys->setAttr<TARGETING::ATTR_FREQ_PB_MHZ>(l_freqPb);
    TRACFCOMP(g_trac_targeting,
            "ATTR_FREQ_PB_MHZ getting set from %d to %d",
            l_oldNestFreq,
            l_freqPb );

    //PIB_I2C_NEST_PLL
    i_sys->setAttr<TARGETING::ATTR_PIB_I2C_NEST_PLL>(l_newPll);
    TRACFCOMP(g_trac_targeting,
            "ATTR_PIB_I2C_NEST_PLL getting set from %x to %x",
            l_oldPll,
            l_newPll);

    //NEST_PLL_BUCKET
    TARG_ASSERT((i_sys->tryGetAttr
                    <TARGETING::ATTR_NEST_PLL_FREQ_LIST>(freq_list)),
                "TARGETING::setFrequencyAttributes: "
                "Error getting nest PLL frequency list attribute");
    TARG_ASSERT((i_sys->tryGetAttr
                    <TARGETING::ATTR_NEST_PLL_FREQ_I2CDIV_LIST>(i2cdiv_list)),
                "TARGETING::setFrequencyAttributes: "
                "Error getting nest PLL frequency I2C divisor list attribute");
    for( l_bucket = 1; l_bucket <= nest_pll_freq_buckets; l_bucket++ )
    {
        TRACFCOMP(g_trac_targeting,
                  "Bucket %d with freq %d and i2cdiv %d",
                  l_bucket,
                  freq_list[l_bucket-1],
                  i2cdiv_list[l_bucket-1]);
        // The nest PLL bucket IDs are numbered 1 - 5. Subtract 1 to
        // take zero-based indexing into account.
        if( freq_list[l_bucket-1] == i_newNestFreq )
        {
            TRACFCOMP(g_trac_targeting,
                      "ATTR_NEST_PLL_BUCKET getting set to %x",
                      l_bucket);
            i_sys->setAttr<TARGETING::ATTR_NEST_PLL_BUCKET>(l_bucket);
            break;
        }
    }
    TARG_ASSERT(l_bucket <= nest_pll_freq_buckets,
                "TARGETING::setFrequencyAttributes: "
                "Error finding nest PLL bucket for nest frequency %d",
                i_newNestFreq);

    // Get the processor targets to set the i2c bus divisor.
    TARGETING::TargetHandleList l_procList;
    TARGETING::getAllChips( l_procList,
                            TARGETING::TYPE_PROC,
                            true ); // true: return functional procs

    TARG_EXIT();
    #undef TARG_FN
}

//******************************************************************************
// Attribute Tanks
//******************************************************************************
AttributeTank Target::cv_overrideTank;
AttributeTank Target::cv_syncTank;

#undef TARG_CLASS

#undef TARG_NAMESPACE

} // End namespace TARGETING
OpenPOWER on IntegriCloud