summaryrefslogtreecommitdiffstats
path: root/src/usr/intr/intrrp.C
blob: 909774a844a08b2631556938d23b6eeb19165cf7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/intr/intrrp.C $                                       */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* COPYRIGHT International Business Machines Corp. 2011,2014              */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
/**
 * @file intrrp.C
 * @brief Interrupt Resource Provider
 */

#include "intrrp.H"
#include <trace/interface.H>
#include <errno.h>
#include <initservice/taskargs.H>
#include <initservice/initserviceif.H>
#include <util/singleton.H>
#include <intr/intr_reasoncodes.H>
#include <sys/mmio.h>
#include <sys/mm.h>
#include <sys/misc.h>
#include <kernel/console.H>
#include <kernel/ipc.H>
#include <sys/task.h>
#include <vmmconst.h>
#include <targeting/common/targetservice.H>
#include <targeting/common/attributes.H>
#include <targeting/common/utilFilter.H>
#include <devicefw/userif.H>
#include <sys/time.h>
#include <sys/vfs.h>
#include <hwas/common/hwasCallout.H>
#include <fsi/fsiif.H>
#include <arch/ppc.H>

#define INTR_TRACE_NAME INTR_COMP_NAME

using namespace INTR;
using namespace TARGETING;

const uint32_t IntrRp::cv_PE_IRSN_COMP_SCOM_LIST[] =
{
    PE0_IRSN_COMP_SCOM_ADDR,
    PE1_IRSN_COMP_SCOM_ADDR,
    PE2_IRSN_COMP_SCOM_ADDR
};

const uint32_t IntrRp::cv_PE_IRSN_MASK_SCOM_LIST[] =
{
    PE0_IRSN_MASK_SCOM_ADDR,
    PE1_IRSN_MASK_SCOM_ADDR,
    PE2_IRSN_MASK_SCOM_ADDR
};

const uint32_t IntrRp::cv_PE_BAR_SCOM_LIST[] =
{
    PE0_BAREN_SCOM_ADDR,
    PE1_BAREN_SCOM_ADDR,
    PE2_BAREN_SCOM_ADDR
};

trace_desc_t * g_trac_intr = NULL;
TRAC_INIT(&g_trac_intr, INTR_TRACE_NAME, 16*KILOBYTE, TRACE::BUFFER_SLOW);

/**
 * setup _start and handle barrier
 */
TASK_ENTRY_MACRO( IntrRp::init );


/**
 * @brief Utility function to get the list of enabled threads
 * @return Bitstring of enabled threads
 */
uint64_t get_enabled_threads( void )
{
    TARGETING::Target* sys = NULL;
    TARGETING::targetService().getTopLevelTarget(sys);
    assert( sys != NULL );
    uint64_t en_threads = sys->getAttr<TARGETING::ATTR_ENABLED_THREADS>();
    if( en_threads == 0 )
    {
        // Read the scratch reg that the SBE setup
        //  Enabled threads are listed as a bitstring in bits 16:23
        //  A value of zero means the SBE hasn't set them up yet

        // Loop for 1 sec (1000 x 1 msec) for this value to be set
        uint64_t loop_count = 0;
        const uint64_t LOOP_MAX = 1000;

        while( (en_threads == 0) && (loop_count < LOOP_MAX) )
        {
            en_threads = mmio_scratch_read(MMIO_SCRATCH_AVP_THREADS);

            if( en_threads == 0 )
            {
                // Sleep if value has not been set
                nanosleep(0,NS_PER_MSEC);   // 1 msec
            }

            // Update the counter
            loop_count++;
        }

        // If LOOP_MAX reached, CRIT_ASSERT
        if ( unlikely(loop_count == LOOP_MAX) )
        {
            TRACFCOMP( g_trac_intr,"SBE Didn't Set Active Threads");
            crit_assert(0);
        }
        else
        {
            en_threads = en_threads << 16; //left-justify the threads
            TRACFCOMP( g_trac_intr,
                       "Enabled Threads = %.16X",
                       en_threads );
            sys->setAttr<TARGETING::ATTR_ENABLED_THREADS>(en_threads);
        }

    }
    TRACDCOMP( g_trac_intr, "en_threads=%.16X", en_threads );
    return en_threads;
}

void IntrRp::init( errlHndl_t   &io_errlHndl_t )
{
    errlHndl_t err = NULL;

    err = Singleton<IntrRp>::instance()._init();

    //  pass task error back to parent
    io_errlHndl_t = err ;
}

//  ICPBAR = INTP.ICP_BAR[0:25] in P8 = 0x3FFFF800 + (8*node) + procPos
//  P8 Scom address = 0x020109c9
//
//  BaseAddress P8:
//  BA[14:43] = ICPBAR (30 bits)
//  BA[45:48] = coreID (1-6,9-14) (12 cores)
//  BA[49:51] = thread (0-7)
//
//  BA+0  = XIRR (poll - Read/Write has no side effects))
//  BA+4  = XIRR (Read locks HW, Write -> EOI to HW))
//  BA+12 = MFRR  (1 byte)
//  BA+16 = LINKA (4 bytes)
//  BA+20 = LINKB (4 bytes)
//  BA+24 = LINKC (4 bytes)
errlHndl_t IntrRp::_init()
{
    errlHndl_t err = NULL;

    // get the PIR
    // Which ever cpu core this is running on is the MASTER cpu
    // Make master thread 0
    uint32_t cpuid = task_getcpuid();
    iv_masterCpu = cpuid;
    iv_masterCpu.threadId = 0;

    TRACFCOMP(g_trac_intr,"Master cpu node[%d], chip[%d], core[%d], thread[%d]",
              iv_masterCpu.nodeId, iv_masterCpu.chipId, iv_masterCpu.coreId,
              iv_masterCpu.threadId);

    // The base realAddr is the base address for the whole system.
    // Therefore the realAddr must be based on the processor
    // that would have the lowest BAR value in the system,
    // whether it exists or not. In this case n0p0

    TARGETING::Target* procTarget = NULL;
    TARGETING::targetService().masterProcChipTargetHandle( procTarget );

    uint64_t barValue = 0;
    barValue = procTarget->getAttr<TARGETING::ATTR_INTP_BASE_ADDR>();

    // Mask off node & chip id to get base address
    uint64_t realAddr = barValue & ICPBAR_BASE_ADDRESS_MASK;

    TRACFCOMP(g_trac_intr,"INTR: realAddr = %lx",realAddr);

    // VADDR_SIZE is 1MB per chip - max 32 -> 32MB
    iv_baseAddr = reinterpret_cast<uint64_t>
        (mmio_dev_map(reinterpret_cast<void*>(realAddr),THIRTYTWO_MB));

    TRACFCOMP(g_trac_intr,"INTR: vAddr = %lx",iv_baseAddr);

    // Set up the IPC message Data area
    TARGETING::Target * sys = NULL;
    TARGETING::targetService().getTopLevelTarget( sys );
    assert(sys != NULL);
    uint64_t hrmor_base =
        sys->getAttr<TARGETING::ATTR_HB_HRMOR_NODAL_BASE>();

    KernelIpc::ipc_data_area.pir = iv_masterCpu.word;
    KernelIpc::ipc_data_area.hrmor_base = hrmor_base;
    KernelIpc::ipc_data_area.msg_queue_id = IPC_DATA_AREA_CLEAR;

    // Set the BAR scom reg
    err = setBAR(procTarget,iv_masterCpu);

    if(!err)
    {
        err = checkAddress(iv_baseAddr);
    }

    if(!err)
    {
        uint8_t is_mpipl = 0;
        TARGETING::Target * sys = NULL;
        TARGETING::targetService().getTopLevelTarget(sys);
        if(sys &&
           sys->tryGetAttr<TARGETING::ATTR_IS_MPIPL_HB>(is_mpipl) &&
           is_mpipl)
        {
            TRACFCOMP(g_trac_intr,"Disable interupts for MPIPL");
            err = hw_disableIntrMpIpl();

            if(err)
            {
                errlCommit(err,INTR_COMP_ID);
                err = NULL;
            }
        }


        // Set up the interrupt provider registers
        // NOTE: It's only possible to set up the master core at this point.
        //
        // Set up link registers to forward all intrpts to master cpu.
        //
        // There is one register set per cpu thread.
        uint64_t max_threads = cpu_thread_count();
        uint64_t en_threads = get_enabled_threads();

        PIR_t pir = iv_masterCpu;
        for(size_t thread = 0; thread < max_threads; ++thread)
        {
            // Skip threads that we shouldn't be starting
            if( !(en_threads & (0x8000000000000000>>thread)) )
            {
                TRACDCOMP(g_trac_intr,
                          "IntrRp::_init: Skipping thread %d : en_threads=%X",
                          thread,en_threads);
                continue;
            }
            pir.threadId = thread;
            initInterruptPresenter(pir);
        }

        // Get the kernel msg queue for ext intr
        // Create a task to handle the messages
        iv_msgQ = msg_q_create();
        msg_intr_q_register(iv_msgQ, realAddr);

        task_create(IntrRp::msg_handler, NULL);

        // Register event to be called on shutdown
        INITSERVICE::registerShutdownEvent(iv_msgQ,
                                           MSG_INTR_SHUTDOWN,
                                           INITSERVICE::INTR_PRIORITY);
    }

    if(!err)
    {
        // Enable PSI to present interrupts
        err = initIRSCReg(procTarget);
    }

    return err;
}

errlHndl_t IntrRp::enableInterrupts()
{
    errlHndl_t err = NULL;

    // Enable the interrupt on master processor core, thread 0
    uint64_t baseAddr = iv_baseAddr + cpuOffsetAddr(iv_masterCpu);

    err = checkAddress(baseAddr);
    if(!err)
    {
        uint8_t * cppr = reinterpret_cast<uint8_t*>(baseAddr+CPPR_OFFSET);
        *cppr = 0xff;
    }

    return err;
}

errlHndl_t IntrRp::disableInterrupts()
{
    errlHndl_t err = NULL;

    // Disable the interrupt on master processor core, thread 0
    uint64_t baseAddr = iv_baseAddr + cpuOffsetAddr(iv_masterCpu);

    err = checkAddress(baseAddr);
    if(!err)
    {
        uint8_t * cppr = reinterpret_cast<uint8_t*>(baseAddr+CPPR_OFFSET);
        *cppr = 0;
    }

    return err;
}

/**
 * Helper function to start the messge handler
 */
void* IntrRp::msg_handler(void * unused)
{
    Singleton<IntrRp>::instance().msgHandler();
    return NULL;
}


void IntrRp::msgHandler()
{
    while(1)
    {
        msg_t* msg = msg_wait(iv_msgQ); // wait for interrupt msg

        switch(msg->type)
        {
            case MSG_INTR_EXTERN:
                {
                    ext_intr_t type = NO_INTERRUPT;

                    // xirr was read by interrupt message handler.
                    // Passed in as upper word of data[0]
                    uint32_t xirr = static_cast<uint32_t>(msg->data[0]>>32);
                    // data[0] (lower word) has the PIR
                    uint64_t l_data0 = (msg->data[0] & 0xFFFFFFFF);
                    PIR_t pir = static_cast<PIR_t>(l_data0);

                    uint64_t baseAddr = iv_baseAddr + cpuOffsetAddr(pir);
                    uint32_t * xirrAddress =
                        reinterpret_cast<uint32_t*>(baseAddr + XIRR_OFFSET);

                    // type = XISR = XIRR[8:31]
                    // priority = XIRR[0:7]
                    // Use the XISR as the type (for now)
                    type = static_cast<ext_intr_t>(xirr & XISR_MASK);

                    TRACFCOMP(g_trac_intr,
                              "External Interrupt received. XIRR=%x, PIR=%x",
                              xirr,pir.word);

                    // Acknowlege msg
                    msg->data[1] = 0;
                    msg_respond(iv_msgQ, msg);

                    Registry_t::iterator r = iv_registry.find(type);
                    if(r != iv_registry.end() &&
                       type != INTERPROC_XISR) //handle IPI after EOI, not here
                    {
                        msg_q_t msgQ = r->second.msgQ;

                        msg_t * rmsg = msg_allocate();
                        rmsg->type = r->second.msgType;
                        rmsg->data[0] = type;  // interrupt type
                        rmsg->data[1] = 0;
                        rmsg->extra_data = NULL;

                        int rc = msg_sendrecv(msgQ,rmsg);
                        if(rc)
                        {
                            TRACFCOMP(g_trac_intr,ERR_MRK
                                      "External Interrupt received type = %d, "
                                      "but could not send message to registered"
                                      " handler. Ignoring it. rc = %d",
                                      (uint32_t) type, rc);
                        }
                        msg_free(rmsg);
                    }
                    else if (type == INTERPROC_XISR)
                    {
                        // Ignore "spurious" IPIs (handled below).

                        // Note that we could get an INTERPROC interrupt
                        // and handle it through the above registration list
                        // as well.  This is to catch the case where no one
                        // has registered for an IPI.
                    }
                    else  // no queue registered for this interrupt type
                    {
                        // Throw it away for now.
                        TRACFCOMP(g_trac_intr,ERR_MRK
                                  "External Interrupt received type = %d, but "
                                  "nothing registered to handle it. "
                                  "Ignoring it.",
                                  (uint32_t)type);
                    }

                    // Handle IPIs special since they're used for waking up
                    // cores and have special clearing requirements.
                    if (type == INTERPROC_XISR)
                    {
                        // Clear IPI request.
                        volatile uint8_t * mfrr =
                            reinterpret_cast<uint8_t*>(baseAddr + MFRR_OFFSET);

                        TRACFCOMP( g_trac_intr,"mfrr = %x",*mfrr);

                        (*mfrr) = 0xff;
                        eieio();  // Force mfrr clear before xirr EIO.

                        // Deal with pending IPIs.
                        PIR_t core_pir = pir; core_pir.threadId = 0;
                        if (iv_ipisPending.count(core_pir))
                        {
                            TRACFCOMP(g_trac_intr,INFO_MRK
                                      "IPI wakeup received for %d", pir.word);

                            IPI_Info_t& ipiInfo = iv_ipisPending[core_pir];

                            ipiInfo.first &=
                                ~(0x8000000000000000 >> pir.threadId);

                            if (0 == ipiInfo.first)
                            {
                                msg_t* ipiMsg = ipiInfo.second;
                                iv_ipisPending.erase(core_pir);

                                ipiMsg->data[1] = 0;
                                msg_respond(iv_msgQ, ipiMsg);
                            }
                            else
                            {
                                TRACDCOMP(g_trac_intr,INFO_MRK
                                          "IPI still pending for %x",
                                          ipiInfo.first);
                            }

                        }
                    }

                    // Writing the XIRR with the same value read earlier
                    // tells the interrupt presenter hardware to signal an EOI.
                    xirr |= CPPR_MASK;  //set all CPPR bits - allow any INTR
                    *xirrAddress = xirr;

                    TRACDCOMP(g_trac_intr,
                              "EOI issued. XIRR=%x, PIR=%x",
                              xirr,pir);

                    // Now handle any IPC messages
                    if (type == INTERPROC_XISR)
                    {
                        // If something is registered for IPIs and
                        // it has not already been handled then handle
                        if(r != iv_registry.end() &&
                           KernelIpc::ipc_data_area.msg_queue_id !=
                           IPC_DATA_AREA_READ)
                        {
                            msg_q_t msgQ = r->second.msgQ;

                            msg_t * rmsg = msg_allocate();
                            rmsg->type = r->second.msgType;
                            rmsg->data[0] = type;  // interrupt type
                            rmsg->data[1] = 0;
                            rmsg->extra_data = NULL;

                            int rc = msg_sendrecv(msgQ,rmsg);
                            if(rc)
                            {
                                TRACFCOMP(g_trac_intr,ERR_MRK
                                          "IPI Interrupt received, but could "
                                          "not send message to the registered "
                                          "handler. Ignoring it. rc = %d",
                                          rc);
                            }
                            msg_free(rmsg);
                        }
                        if(KernelIpc::ipc_data_area.msg_queue_id ==
                           IPC_DATA_AREA_READ)
                        {
                            KernelIpc::ipc_data_area.msg_queue_id =
                                IPC_DATA_AREA_CLEAR;
                        }
                    }

                }
                break;

            case MSG_INTR_REGISTER_MSGQ:
                {
                    msg_q_t l_msgQ = reinterpret_cast<msg_q_t>(msg->data[0]);
                    uint64_t l_type = msg->data[1];
                    ISNvalue_t l_intr_type = static_cast<ISNvalue_t>
                      (l_type & 0xFFFF);

                    errlHndl_t err = registerInterruptISN(l_msgQ,l_type >> 32,
                                                       l_intr_type);
                    if(!err)
                    {
                        err = initXIVR(l_intr_type, true);
                    }

                    msg->data[1] = reinterpret_cast<uint64_t>(err);
                    msg_respond(iv_msgQ,msg);
                }
                break;

            case MSG_INTR_UNREGISTER_MSGQ:
                {
                    TRACFCOMP(g_trac_intr,
                              "INTR remove registration of interrupt type = 0x%lx",
                              msg->data[0]);
                    ISNvalue_t l_type = static_cast<ISNvalue_t>(msg->data[0]);
                    msg_q_t msgQ = unregisterInterruptISN(l_type);

                    if(msgQ)
                    {
                        //shouldn't get an error since we found a queue
                        //Just commit it
                        errlHndl_t err = initXIVR(l_type, false);
                        if(err)
                        {
                            errlCommit(err,INTR_COMP_ID);
                        }
                    }

                    msg->data[1] = reinterpret_cast<uint64_t>(msgQ);

                    TRACDCOMP(g_trac_intr,
                              "UNREG: msgQ = 0x%lx",
                              msg->data[1]);

                    msg_respond(iv_msgQ,msg);
                }
                break;

            case MSG_INTR_ENABLE:
                {
                    errlHndl_t err = enableInterrupts();
                    msg->data[1] = reinterpret_cast<uint64_t>(err);
                    msg_respond(iv_msgQ,msg);
                }
                break;

            case MSG_INTR_DISABLE:
                {
                    errlHndl_t err =disableInterrupts();
                    msg->data[1] = reinterpret_cast<uint64_t>(err);
                    msg_respond(iv_msgQ,msg);
                }
                break;

            //  Called when a new cpu becomes active other than the master
            //  Expect a call for each new core
            case MSG_INTR_ADD_CPU:
                {
                    PIR_t pir = msg->data[1];
                    pir.threadId = 0;
                    iv_cpuList.push_back(pir);

                    TRACFCOMP(g_trac_intr,"Add CPU node[%d], chip[%d],"
                              "core[%d], thread[%d]",
                              pir.nodeId, pir.chipId, pir.coreId,
                              pir.threadId);

                    size_t threads = cpu_thread_count();
                    uint64_t en_threads = get_enabled_threads();

                    iv_ipisPending[pir] = IPI_Info_t(en_threads, msg);

                    for(size_t thread = 0; thread < threads; ++thread)
                    {
                        // Skip threads that we shouldn't be starting
                        if( !(en_threads & (0x8000000000000000>>thread)) )
                        {
                            TRACDCOMP(g_trac_intr,"MSG_INTR_ADD_CPU: Skipping thread %d",thread);
                            continue;
                        }
                        pir.threadId = thread;
                        initInterruptPresenter(pir);
                        sendIPI(pir);
                    }

                    pir.threadId = 0;
                    task_create(handleCpuTimeout,
                                reinterpret_cast<void*>(pir.word));
                }
                break;

            case MSG_INTR_ADD_CPU_TIMEOUT:
                {
                    PIR_t pir = msg->data[0];
                    size_t count = msg->data[1];

                    if(iv_ipisPending.count(pir))
                    {
                        if (count < CPU_WAKEUP_INTERVAL_COUNT)
                        {
                            TRACDCOMP(g_trac_intr,
                                      INFO_MRK "Cpu wakeup pending on %x",
                                      pir.word);

                            // Tell child thread to retry.
                            msg->data[1] = EAGAIN;
                        }
                        else // Timed out.
                        {
                            TRACFCOMP(g_trac_intr,
                                      ERR_MRK "Cpu wakeup timeout on %x",
                                      pir.word);

                            // Tell child thread to exit.
                            msg->data[1] = 0;

                            // Get saved thread info.
                            IPI_Info_t& ipiInfo = iv_ipisPending[pir];
                            msg_t* ipiMsg = ipiInfo.second;
                            iv_ipisPending.erase(pir);

                            // Respond to waiting thread with ETIME.
                            ipiMsg->data[1] = -ETIME;
                            msg_respond(iv_msgQ, ipiMsg);
                        }
                    }
                    else // Ended successfully.
                    {
                        TRACDCOMP(g_trac_intr,
                                  INFO_MRK "Cpu wakeup completed on %x",
                                  pir.word);
                        // Tell child thread to exit.
                        msg->data[1] = 0;
                    }

                    msg_respond(iv_msgQ, msg);
                }
                break;

            case MSG_INTR_ENABLE_PSI_INTR:
                {
                    TARGETING::Target * target =
                        reinterpret_cast<TARGETING::Target *>(msg->data[0]);
                    errlHndl_t err = initIRSCReg(target);
                    msg->data[1] = reinterpret_cast<uint64_t>(err);
                    msg_respond(iv_msgQ,msg);
                }
                break;

            case MSG_INTR_ISSUE_SBE_MBOX_WA:
                {
                    //The SBE IPI injection on master winkle wakeup
                    //can clobber a pending mailbox interrupt in the ICP
                    //To workaround need to issue EOI on mailbox.  If
                    //mbx intr is not hot this does nothing, if it is
                    //then the EOI will cause intr to be represented

                    //This is safe on FSPless since the PSI intr are
                    //always setup on master chip
                    uint64_t baseAddr = iv_baseAddr +
                                        cpuOffsetAddr(iv_masterCpu);
                    uint32_t * xirrAddress =
                      reinterpret_cast<uint32_t*>(baseAddr + XIRR_OFFSET);

                    //Generate the mailbox IRSN for this node
                    uint32_t l_irsn = makeXISR(iv_masterCpu, ISN_FSI);
                    l_irsn |= CPPR_MASK;  //set all CPPR bits - allow any INTR

                    TRACFCOMP(g_trac_intr,
                              "MBX SBE WA Issue EOI to %x",l_irsn);
                    *xirrAddress = l_irsn;  //Issue EOI

                    // Acknowlege msg
                    msg->data[1] = 0;
                    msg_respond(iv_msgQ, msg);
                }
                break;

            case MSG_INTR_SHUTDOWN:
                {
                    TRACFCOMP(g_trac_intr,"Shutdown event received");
                    shutDown();

                    msg_respond(iv_msgQ, msg);

                }
                break;

            case MSG_INTR_ADD_HBNODE:  // node info for mpipl
                {
                    errlHndl_t err = addHbNodeToMpiplSyncArea(msg->data[0]);
                    if(err)
                    {
                        errlCommit(err,INTR_COMP_ID);
                    }
                    msg_free(msg); // async message
                }
                break;

            default:
                msg->data[1] = -EINVAL;
                msg_respond(iv_msgQ, msg);
        }
    }
}



errlHndl_t IntrRp::setBAR(TARGETING::Target * i_target,
                          const PIR_t i_pir)
{
    errlHndl_t err = NULL;

    uint64_t barValue = 0;
    barValue = i_target->getAttr<TARGETING::ATTR_INTP_BASE_ADDR>();

    barValue <<= 14;
    barValue |= 1ULL << (63 - ICPBAR_EN);

    TRACFCOMP(g_trac_intr,"INTR: Target %p. ICPBAR value: 0x%016lx",
              i_target,barValue);

    uint64_t size = sizeof(barValue);

    err = deviceWrite(i_target,
                      &barValue,
                      size,
                      DEVICE_SCOM_ADDRESS(ICPBAR_SCOM_ADDR));

    if(err)
    {
        TRACFCOMP(g_trac_intr,ERR_MRK"Unable to set IPCBAR");
    }

    return err;
}

errlHndl_t IntrRp::getPsiIRSN(TARGETING::Target * i_target,
                              uint32_t& o_irsn, uint32_t& o_num)
{
    errlHndl_t err = NULL;

    // Setup PHBISR
    // EN.TPC.PSIHB.PSIHB_ISRN_REG set to 0x00030003FFFF0000
    PSIHB_ISRN_REG_t reg;
    size_t scom_len = sizeof(uint64_t);
    o_num = ISN_HOST; //Hardcoded based on HB knowledge of HW

    do{
        err = deviceRead
          ( i_target,
            &reg,
            scom_len,
            DEVICE_SCOM_ADDRESS(PSIHB_ISRN_REG_t::PSIHB_ISRN_REG));

        if(err)
        {
            break;
        }

        //only calc IRSN if downstream interrupts are enabled
        o_irsn = 0;
        if(reg.die == 1)  //downstream interrupt enable = 1
        {
            o_irsn = reg.irsn & reg.mask;
        }
    }while(0);


    TRACFCOMP(g_trac_intr,"PSIHB_ISRN: 0x%x",o_irsn);

    return err;
}

errlHndl_t IntrRp::getNxIRSN(TARGETING::Target * i_target,
                             uint32_t& o_irsn, uint32_t& o_num)
{
    errlHndl_t err = NULL;

    size_t scom_len = sizeof(uint64_t);
    uint64_t reg = 0x0;

    do{
        err = deviceRead
          ( i_target,
            &reg,
            scom_len,
            DEVICE_SCOM_ADDRESS(NX_BUID_SCOM_ADDR));

        if(err)
        {
            break;
        }

        //only calc IRSN if downstream interrupts are enabled
        o_irsn = 0;
        if(reg &(1ull << (63-NX_BUID_ENABLE)))  //reg has NX_BUID_ENABLE set
        {
            uint32_t l_mask = ((static_cast<uint32_t>(reg >> NX_IRSN_MASK_SHIFT)
                                & NX_IRSN_MASK_MASK) | NX_IRSN_UPPER_MASK);

            o_irsn = ((static_cast<uint32_t>(reg >> NX_IRSN_COMP_SHIFT)
                       & IRSN_COMP_MASK) & l_mask);

            //To get the number of interrupts, we need to "count" the 0 bits
            //cheat by extending mask to FFF8 + mask, then invert and add 1
            o_num = (~((~IRSN_COMP_MASK) | l_mask)) +1;
        }
    }while(0);


    TRACFCOMP(g_trac_intr,"NX_ISRN: 0x%x, num: 0x%x",o_irsn, o_num);

    return err;
}

errlHndl_t IntrRp::initIRSCReg(TARGETING::Target * i_target)
{
    errlHndl_t err = NULL;

    // Only do once for each proc chip
    if(std::find(iv_chipList.begin(),iv_chipList.end(),i_target) ==
       iv_chipList.end())
    {
        uint8_t chip = 0;
        uint8_t node = 0;

        node = i_target->getAttr<ATTR_FABRIC_NODE_ID>();
        chip = i_target->getAttr<ATTR_FABRIC_CHIP_ID>();

        size_t scom_len = sizeof(uint64_t);

        // Mask off interrupts from isn's on this target
        // This also sets the source isn and PIR destination
        // such that if an interrupt is pending when when the ISRN
        // is written, simics get the right destination for the
        // interrupt.  err is from deviceWrite(...)
        err = maskXIVR(i_target);

        if(!err)
        {
            // Setup PHBISR
            // EN.TPC.PSIHB.PSIHB_ISRN_REG set to 0x00030003FFFF0000
            PSIHB_ISRN_REG_t reg;

            PIR_t pir(0);
            pir.nodeId = node;
            pir.chipId = chip;
            // IRSN must be unique for each processor chip
            reg.irsn = makeXISR(pir,0);
            reg.die  = PSIHB_ISRN_REG_t::ENABLE;
            reg.uie  = PSIHB_ISRN_REG_t::ENABLE;
            reg.mask = PSIHB_ISRN_REG_t::IRSN_MASK;

            TRACFCOMP(g_trac_intr,"PSIHB_ISRN_REG: 0x%016lx",reg.d64);

            err = deviceWrite
                ( i_target,
                  &reg,
                  scom_len,
                  DEVICE_SCOM_ADDRESS(PSIHB_ISRN_REG_t::PSIHB_ISRN_REG));
        }

        if(!err)
        {
            iv_chipList.push_back(i_target);
        }
    }

    return err;
}

errlHndl_t IntrRp::initXIVR(enum ISNvalue_t i_isn, bool i_enable)
{
    errlHndl_t err = NULL;
    size_t scom_len = sizeof(uint64_t);
    uint64_t scom_addr = 0;

    //Don't do any of this for ISN_INTERPROC
    if(ISN_INTERPROC != i_isn)
    {
        //Setup the XIVR register
        PsiHbXivr xivr;
        PIR_t pir = intrDestCpuId();
        xivr.pir = pir.word;
        xivr.source = i_isn;

        switch(i_isn)
        {
        case ISN_PSI:
            xivr.priority   = PsiHbXivr::PSI_PRIO;
            scom_addr       = PsiHbXivr::PSI_XIVR_ADRR;
            break;

        case ISN_OCC:
            xivr.priority   = PsiHbXivr::OCC_PRIO;
            scom_addr       = PsiHbXivr::OCC_XIVR_ADRR;
            break;

        case ISN_FSI: //FSP_MAILBOX
            xivr.priority   = PsiHbXivr::FSI_PRIO;
            scom_addr       = PsiHbXivr::FSI_XIVR_ADRR;
            break;

        case ISN_LPC:
            xivr.priority   = PsiHbXivr::LPC_PRIO;
            scom_addr       = PsiHbXivr::LPC_XIVR_ADRR;
            break;

        case ISN_LCL_ERR:
            xivr.priority   = PsiHbXivr::LCL_ERR_PRIO;
            scom_addr       = PsiHbXivr::LCL_ERR_XIVR_ADDR;
            break;

        case ISN_HOST:
            xivr.priority   = PsiHbXivr::HOST_PRIO;
            scom_addr       = PsiHbXivr::HOST_XIVR_ADRR;
            break;

        default: //Unsupported ISN
            TRACFCOMP(g_trac_intr,"Unsupported ISN: 0x%02x",i_isn);
            /*@ errorlog tag
             * @errortype  ERRL_SEV_INFORMATIONAL
             * @moduleid   INTR::MOD_INTR_INIT_XIVR
             * @reasoncode INTR::RC_BAD_ISN
             * @userdata1  Interrupt type to register
             * @userdata2  0
             *
             * @devdesc    Unsupported ISN Requested
             *
             */
            err = new ERRORLOG::ErrlEntry
              (
               ERRORLOG::ERRL_SEV_INFORMATIONAL,    // severity
               INTR::MOD_INTR_INIT_XIVR,            // moduleid
               INTR::RC_BAD_ISN,                    // reason code
               static_cast<uint64_t>(i_isn),
               0
               );
        }

        // Init the XIVR on all chips we have setup
        // Note that this doesn't handle chips getting added midstream,
        // But the current use case only has FSIMbox (1 chip) and
        // ATTN (all chips) at stable points in the IPL
        if(!err)
        {
            if(i_enable)
            {
                iv_isnList.push_back(i_isn);
            }
            else
            {
                xivr.priority = PsiHbXivr::PRIO_DISABLED;

                //Remove from isn list
                ISNList_t::iterator itr = std::find(iv_isnList.begin(),
                                                    iv_isnList.end(),
                                                    i_isn);
                if(itr != iv_isnList.end())
                {
                    iv_isnList.erase(itr);
                }
            }

            for(ChipList_t::iterator target_itr = iv_chipList.begin();
                target_itr != iv_chipList.end(); ++target_itr)
            {
                err = deviceWrite
                  (*target_itr,
                   &xivr,
                   scom_len,
                   DEVICE_SCOM_ADDRESS(scom_addr));

                if(err)
                {
                    break;
                }
            }
        }
    }

    return err;
}

//----------------------------------------------------------------------------

// Set priority highest (disabled) ,but with valid PIR
errlHndl_t IntrRp::maskXIVR(TARGETING::Target *i_target)
{
    struct XIVR_INFO
    {
        ISNvalue_t  isn:8;
        uint32_t addr;
    };

    static  const XIVR_INFO xivr_info[] =
    {
        {ISN_PSI,       PsiHbXivr::PSI_XIVR_ADRR},
        {ISN_OCC,       PsiHbXivr::OCC_XIVR_ADRR},
        {ISN_FSI,       PsiHbXivr::FSI_XIVR_ADRR},
        {ISN_LPC,       PsiHbXivr::LPC_XIVR_ADRR},
        {ISN_LCL_ERR,   PsiHbXivr::LCL_ERR_XIVR_ADDR},
        {ISN_HOST,      PsiHbXivr::HOST_XIVR_ADRR}
    };

    errlHndl_t err = NULL;
    size_t scom_len = sizeof(uint64_t);
    PIR_t pir = intrDestCpuId();
    PsiHbXivr xivr;

    xivr.pir = pir.word;
    xivr.priority = PsiHbXivr::PRIO_DISABLED;

    for(size_t i = 0; i < sizeof(xivr_info)/sizeof(xivr_info[0]); ++i)
    {
        xivr.source = xivr_info[i].isn;

        err = deviceWrite
            (i_target,
             &xivr,
             scom_len,
             DEVICE_SCOM_ADDRESS(xivr_info[i].addr));

        if(err)
        {
            break;
        }
    }
    return err;
}

//----------------------------------------------------------------------------

errlHndl_t IntrRp::registerInterruptISN(msg_q_t i_msgQ,
                                     uint32_t i_msg_type,
                                     ext_intr_t i_intr_type)
{
    errlHndl_t err = NULL;

    //INTERPROC is special -- same for all procs
    if(i_intr_type == ISN_INTERPROC)
    {
        err = registerInterruptXISR(i_msgQ, i_msg_type,
                                    INTERPROC_XISR);
    }
    else
    {
        //Register interrupt type on all present procs
        for(ChipList_t::iterator target_itr = iv_chipList.begin();
            target_itr != iv_chipList.end(); ++target_itr)
        {
            uint8_t chip = 0;
            uint8_t node = 0;
            node = (*target_itr)->getAttr<ATTR_FABRIC_NODE_ID>();
            chip = (*target_itr)->getAttr<ATTR_FABRIC_CHIP_ID>();

            PIR_t pir(0);
            pir.nodeId = node;
            pir.chipId = chip;
            uint32_t l_irsn = makeXISR(pir, i_intr_type);

            err = registerInterruptXISR(i_msgQ, i_msg_type, l_irsn);
            if(err)
            {
                break;
            }
        }
    }
    return err;
}

errlHndl_t IntrRp::registerInterruptXISR(msg_q_t i_msgQ,
                                     uint32_t i_msg_type,
                                     ext_intr_t i_xisr)
{
    errlHndl_t err = NULL;

    Registry_t::iterator r = iv_registry.find(i_xisr);
    if(r == iv_registry.end())
    {
        TRACFCOMP(g_trac_intr,"INTR::register intr type 0x%x", i_xisr);
        iv_registry[i_xisr] = intr_response_t(i_msgQ,i_msg_type);
    }
    else
    {
        if(r->second.msgQ != i_msgQ)
        {
            /*@ errorlog tag
             * @errortype       ERRL_SEV_INFORMATIONAL
             * @moduleid        INTR::MOD_INTRRP_REGISTERINTERRUPT
             * @reasoncode      INTR::RC_ALREADY_REGISTERED
             * @userdata1       XISR
             * @userdata2       0
             *
             * @devdesc         Interrupt type already registered
             *
             */
            err = new ERRORLOG::ErrlEntry
              (
               ERRORLOG::ERRL_SEV_INFORMATIONAL,    // severity
               INTR::MOD_INTRRP_REGISTERINTERRUPT,  // moduleid
               INTR::RC_ALREADY_REGISTERED,         // reason code
               i_xisr,
               0
               );
        }
    }
    return err;
}

msg_q_t IntrRp::unregisterInterruptISN(ISNvalue_t i_intr_type)
{
    msg_q_t msgQ = NULL;

    //INTERPROC is special -- same for all procs
    if(i_intr_type == ISN_INTERPROC)
    {
        msgQ = unregisterInterruptXISR(INTERPROC_XISR);
    }
    else
    {
        //Unregister interrupt type on all present procs
        for(ChipList_t::iterator target_itr = iv_chipList.begin();
            target_itr != iv_chipList.end(); ++target_itr)
        {
            uint8_t chip = 0;
            uint8_t node = 0;
            node = (*target_itr)->getAttr<ATTR_FABRIC_NODE_ID>();
            chip = (*target_itr)->getAttr<ATTR_FABRIC_CHIP_ID>();

            PIR_t pir(0);
            pir.nodeId = node;
            pir.chipId = chip;
            uint32_t l_irsn = makeXISR(pir, i_intr_type);

            msgQ = unregisterInterruptXISR(l_irsn);
        }
    }

    return msgQ;
}

msg_q_t IntrRp::unregisterInterruptXISR(ext_intr_t i_xisr)
{
    msg_q_t msgQ = NULL;

    Registry_t::iterator r = iv_registry.find(i_xisr);
    if(r != iv_registry.end())
    {
        msgQ = r->second.msgQ;
        iv_registry.erase(r);
    }

    return msgQ;
}

void IntrRp::initInterruptPresenter(const PIR_t i_pir) const
{
    uint64_t baseAddr = iv_baseAddr + cpuOffsetAddr(i_pir);
    uint8_t * cppr =
        reinterpret_cast<uint8_t*>(baseAddr + CPPR_OFFSET);
    uint32_t * plinkReg =
        reinterpret_cast<uint32_t *>(baseAddr + LINKA_OFFSET);

    TRACDCOMP(g_trac_intr,"PIR 0x%x offset: 0x%lx",
              i_pir.word,
              cpuOffsetAddr(i_pir));

    if(i_pir.word == iv_masterCpu.word)
    {
        *cppr = 0xff;          // Allow all interrupts
    }
    else
    {
        // Allow Wake-up IPIs only
        // link regs route non-IPIs to iv_masterCPU) anyway
        // IPC IPIs are only directed at iv_masterCpu
        *cppr = IPI_USR_PRIO + 1;
    }

    // Links are intended to be set up in rings.  If an interrupt ends up
    // where it started, it gets rejected by hardware.
    //
    // According to BOOK IV, The links regs are setup by firmware.
    //
    // Should be possible to link all interrupt forwarding directly to
    // the master core and either make them direct (lspec = 0) or by setting
    // the LOOPTRIP bit to stop the forwarding at the masterProc.
    //
    LinkReg_t linkReg;
    linkReg.word = 0;
    linkReg.loopTrip = 1;   // needed?
    linkReg.node = iv_masterCpu.nodeId;
    linkReg.pchip= iv_masterCpu.chipId;
    linkReg.pcore= iv_masterCpu.coreId;
    linkReg.tspec= iv_masterCpu.threadId;

    *(plinkReg) = linkReg.word;
    *(plinkReg + 1) = linkReg.word;
    linkReg.last = 1;
    *(plinkReg + 2) = linkReg.word;
}



void IntrRp::disableInterruptPresenter(const PIR_t i_pir) const
{
    uint64_t baseAddr = iv_baseAddr + cpuOffsetAddr(i_pir);
    uint8_t * cppr =
        reinterpret_cast<uint8_t*>(baseAddr + CPPR_OFFSET);
    uint32_t * plinkReg =
        reinterpret_cast<uint32_t *>(baseAddr + LINKA_OFFSET);

    // non- side effect xirr register
    uint32_t * xirrAddr =
        reinterpret_cast<uint32_t *>(baseAddr + XIRR_RO_OFFSET);

    uint32_t xirr = *xirrAddr & 0x00FFFFFF;

    TRACDCOMP(g_trac_intr,"PIR 0x%x offset: 0x%lx",
              i_pir.word,
              cpuOffsetAddr(i_pir));

    // Not sure if this will ever happen, but squawk alittle if it does
    if(xirr)
    {
        TRACFCOMP(g_trac_intr,
                  ERR_MRK
                  "Pending interrupt found on shutdown. CpuId:0x%x XIRR:0x%x",
                  i_pir.word,
                  xirr);
    }

    *cppr = 0;          // Set priority to most favored (off)

    *plinkReg = 0;      // Reset link registers - clear all forwarding
    *(plinkReg + 1) = 0;
    *(plinkReg + 2) = 0;
}


void IntrRp::sendIPI(const PIR_t i_pir) const
{
    uint64_t baseAddr = iv_baseAddr + cpuOffsetAddr(i_pir);
    volatile uint8_t * mfrr =
        reinterpret_cast<uint8_t*>(baseAddr + MFRR_OFFSET);

    eieio(); sync();
    MAGIC_INSTRUCTION(MAGIC_SIMICS_CORESTATESAVE);
    (*mfrr) = IPI_USR_PRIO;
}


errlHndl_t IntrRp::checkAddress(uint64_t i_addr)
{
    errlHndl_t err = NULL;

    if(i_addr < VMM_VADDR_DEVICE_SEGMENT_FIRST)
    {
        /*@ errorlog tag
         * @errortype       ERRL_SEV_INFORMATIONAL
         * @moduleid        INTR::MOD_INTRRP_CHECKADDRESS
         * @reasoncode      INTR::RC_BAD_VIRTUAL_IO_ADDRESS
         * @userdata1       The bad virtual address
         * @userdata2       0
         *
         * @devdesc         The virtual address is not a valid IO address
         *
         */
        err = new ERRORLOG::ErrlEntry
            (
             ERRORLOG::ERRL_SEV_INFORMATIONAL,
             INTR::MOD_INTRRP_CHECKADDRESS,
             INTR::RC_BAD_VIRTUAL_IO_ADDRESS,
             i_addr,
             0
            );
    }

    return err;
}

void IntrRp::shutDown()
{
    errlHndl_t err = NULL;
    msg_t * rmsg = msg_allocate();

    // Call everyone and say shutting down!
    for(Registry_t::iterator r = iv_registry.begin();
        r != iv_registry.end();
        ++r)
    {
        msg_q_t msgQ = r->second.msgQ;

        rmsg->type = r->second.msgType;
        rmsg->data[0] = SHUT_DOWN;
        rmsg->data[1] = 0;
        rmsg->extra_data = NULL;

        int rc = msg_sendrecv(msgQ,rmsg);
        if(rc)
        {
            TRACFCOMP(g_trac_intr,ERR_MRK
                      "Could not send message to registered handler to Shut"
                      " down. Ignoring it.  rc = %d",
                      rc);
        }
    }

    msg_free(rmsg);

    // Reset the PSI regs
    // NOTE: there is nothing in the  IRSN Proposal.odt document that
    // specifies a procedure or order for disabling interrupts.
    // @see RTC story 47105 discussion for Firmware & Hardware requirements
    //

    //Going to clear the XIVRs first
    ISNList_t l_isnList = iv_isnList;
    for(ISNList_t::iterator isnItr = l_isnList.begin();
        isnItr != l_isnList.end();++isnItr)
    {
        //shouldn't get an error since we found a queue
        //so just commit it
        err = initXIVR((*isnItr), false);
        if(err)
        {
            errlCommit(err,INTR_COMP_ID);
            err = NULL;
        }
    }

    PSIHB_ISRN_REG_t reg;               //zeros self
    size_t scom_len = sizeof(reg);

    for(ChipList_t::iterator target_itr = iv_chipList.begin();
        target_itr != iv_chipList.end(); ++target_itr)
    {
        err = deviceWrite
            (*target_itr,
             &reg,
             scom_len,
             DEVICE_SCOM_ADDRESS(PSIHB_ISRN_REG_t::PSIHB_ISRN_REG));

        if(err)
        {
            errlCommit(err,INTR_COMP_ID);
            err = NULL;
        }
    }


    // Reset the IP hardware regiseters

    iv_cpuList.push_back(iv_masterCpu);

    size_t threads = cpu_thread_count();
    uint64_t en_threads = get_enabled_threads();

    for(CpuList_t::iterator pir_itr = iv_cpuList.begin();
        pir_itr != iv_cpuList.end();
        ++pir_itr)
    {
        PIR_t pir = *pir_itr;
        for(size_t thread = 0; thread < threads; ++thread)
        {
            // Skip threads that were never started
            if( !(en_threads & (0x8000000000000000>>thread)) )
            {
                TRACDCOMP(g_trac_intr,"IntrRp::shutDown: Skipping thread %d",thread);
                continue;
            }
            pir.threadId = thread;
            disableInterruptPresenter(pir);
        }
    }
    TRACFCOMP(g_trac_intr,INFO_MRK,"INTR is shutdown");
}

//----------------------------------------------------------------------------

errlHndl_t IntrRp::hw_disableRouting(TARGETING::Target * i_proc,
                                     INTR_ROUTING_t i_rx_tx)
{
    errlHndl_t err = NULL;
    do
    {
        size_t scom_len = sizeof(uint64_t);

        // PSI
        PSIHB_ISRN_REG_t reg;

        err = deviceRead
          (
           i_proc,
           &reg,
           scom_len,
           DEVICE_SCOM_ADDRESS(PSIHB_ISRN_REG_t::PSIHB_ISRN_REG)
           );

        if(err)
        {
            break;
        }

        switch(i_rx_tx)
        {
        case INTR_UPSTREAM:
            reg.uie = 0;   //upstream interrupt enable = 0 (disable)
            break;

        case INTR_DOWNSTREAM:
            reg.die = 0;  //downstream interrupt enable = 0 (disable)
            break;
        }

        scom_len = sizeof(uint64_t);
        err = deviceWrite
          (
           i_proc,
           &reg,
           scom_len,
           DEVICE_SCOM_ADDRESS(PSIHB_ISRN_REG_t::PSIHB_ISRN_REG)
           );

        if(err)
        {
            break;
        }

        for(size_t i = 0;
            i < sizeof(cv_PE_BAR_SCOM_LIST)/sizeof(cv_PE_BAR_SCOM_LIST[0]);
            ++i)
        {
            uint64_t reg = 0;
            scom_len = sizeof(uint64_t);
            err = deviceRead
                (
                 i_proc,
                 &reg,
                 scom_len,
                 DEVICE_SCOM_ADDRESS(cv_PE_BAR_SCOM_LIST[i])
                );

            if(err)
            {
                break;
            }

            switch(i_rx_tx)
            {
                case INTR_UPSTREAM:
                    // reset bit PE_IRSN_UPSTREAM
                    reg &= ~((1ull << (63-PE_IRSN_UPSTREAM)));
                    break;

                case INTR_DOWNSTREAM:
                    // reset bit PE_IRSN_DOWNSTREAM
                    reg &= ~((1ull << (63-PE_IRSN_DOWNSTREAM)));
                    break;
            }

            scom_len = sizeof(uint64_t);
            err = deviceWrite
                (
                 i_proc,
                 &reg,
                 scom_len,
                 DEVICE_SCOM_ADDRESS(cv_PE_BAR_SCOM_LIST[i])
                );

            if(err)
            {
                break;
            }
        }
        if(err)
        {
            break;
        }

        //NX has no up/down stream enable bit - just one enable bit.
        //The NX should be cleared as part of an MPIPL so no
        //interrupts should be pending from this unit, however
        //we must allow EOIs to flow, so only disable when
        //downstream is requested
        if(i_rx_tx == INTR_DOWNSTREAM)
        {
            uint64_t reg = 0;
            scom_len = sizeof(uint64_t);
            err = deviceRead
                (
                 i_proc,
                 &reg,
                 scom_len,
                 DEVICE_SCOM_ADDRESS(NX_BUID_SCOM_ADDR)
                );
            if(err)
            {
                break;
            }

            // reset bit NX_BUID_ENABLE
            reg &= ~(1ull << (63-NX_BUID_ENABLE));

            scom_len = sizeof(uint64_t);
            err = deviceWrite
                (
                 i_proc,
                 &reg,
                 scom_len,
                 DEVICE_SCOM_ADDRESS(NX_BUID_SCOM_ADDR)
                );
            if(err)
            {
                break;
            }
        }

    } while(0);
    return err;
}

//----------------------------------------------------------------------------

errlHndl_t IntrRp::hw_resetIRSNregs(TARGETING::Target * i_proc)
{
    errlHndl_t err = NULL;
    size_t scom_len = sizeof(uint64_t);
    do
    {
        // PSI
        PSIHB_ISRN_REG_t reg1; // zeros self
        reg1.irsn -= 1;  // default all '1's according to scom spec
        // all other fields = 0

        err = deviceWrite
          (
           i_proc,
           &reg1,
           scom_len,
           DEVICE_SCOM_ADDRESS(PSIHB_ISRN_REG_t::PSIHB_ISRN_REG)
           );
        if(err)
        {
            break;
        }

        // PE
        for(size_t i = 0;
            i < sizeof(cv_PE_BAR_SCOM_LIST)/sizeof(cv_PE_BAR_SCOM_LIST[0]);
            ++i)
        {
            uint64_t reg = 0;
            scom_len = sizeof(uint64_t);
            // Note: no default value specified in scom spec - assume 0
            err = deviceWrite
                (
                 i_proc,
                 &reg,
                 scom_len,
                 DEVICE_SCOM_ADDRESS(cv_PE_IRSN_COMP_SCOM_LIST[i])
                );
            if(err)
            {
                break;
            }

            scom_len = sizeof(uint64_t);
            // Note: no default value specified in scom spec - assume 0
            err = deviceWrite
                (
                 i_proc,
                 &reg,
                 scom_len,
                 DEVICE_SCOM_ADDRESS(cv_PE_IRSN_MASK_SCOM_LIST[i])
                );
            if(err)
            {
                break;
            }
        }
        if(err)
        {
            break;
        }

        // NX [1:19] is BUID [20:32] mask
        // No default value specified in scom spec. assume 0
        uint64_t reg = 0;
        scom_len = sizeof(uint64_t);
        err = deviceWrite
            (
             i_proc,
             &reg,
             scom_len,
             DEVICE_SCOM_ADDRESS(NX_BUID_SCOM_ADDR)
            );
        if(err)
        {
            break;
        }
    } while(0);
    return err;
}

//----------------------------------------------------------------------------

errlHndl_t IntrRp::blindIssueEOIs(TARGETING::Target * i_proc)
{
    errlHndl_t err = NULL;

    TARGETING::TargetHandleList procCores;
    getChildChiplets(procCores, i_proc, TYPE_CORE, false); //state can change

    do
    {
        //Issue eio to IPIs first
        for(TARGETING::TargetHandleList::iterator
            core = procCores.begin();
            core != procCores.end();
            ++core)
        {
            FABRIC_CHIP_ID_ATTR chip = i_proc->getAttr<ATTR_FABRIC_CHIP_ID>();
            FABRIC_NODE_ID_ATTR node = i_proc->getAttr<ATTR_FABRIC_NODE_ID>();
            CHIP_UNIT_ATTR coreId =
                                (*core)->getAttr<TARGETING::ATTR_CHIP_UNIT>();

            PIR_t pir(0);
            pir.nodeId = node;
            pir.chipId = chip;
            pir.coreId = coreId;

            size_t threads = cpu_thread_count();
            for(size_t thread = 0; thread < threads; ++thread)
            {
                pir.threadId = thread;
                uint64_t xirrAddr = iv_baseAddr +
                  cpuOffsetAddr(pir);
                 uint32_t * xirrPtr =
                  reinterpret_cast<uint32_t*>(xirrAddr + XIRR_OFFSET);
                uint8_t * mfrrPtr = reinterpret_cast<uint8_t*>(
                                                 xirrAddr + MFRR_OFFSET);

                //need to set mfrr to 0xFF first
                TRACDCOMP(g_trac_intr,"Clearing IPI to xirrPtr[%p]", xirrPtr);
                *mfrrPtr = 0xFF;
                *xirrPtr = 0xFF000002;
            }
        }

        PIR_t pir(iv_masterCpu);
        pir.threadId = 0;
        //Can just write all EOIs to master core thread 0 XIRR
        uint64_t xirrAddr = iv_baseAddr + cpuOffsetAddr(pir);
        volatile uint32_t * xirrPtr =
                   reinterpret_cast<uint32_t*>(xirrAddr +XIRR_OFFSET);


        //Issue eio to PSI logic
        uint32_t l_psiBaseIsn;
        uint32_t l_maxInt = 0;
        err = getPsiIRSN(i_proc, l_psiBaseIsn, l_maxInt);
        if(err)
        {
            break;
        }

        //Only issue if ISN is non zero (ie set)
        if(l_psiBaseIsn)
        {
            l_psiBaseIsn |= 0xFF000000;
            uint32_t l_psiMaxIsn = l_psiBaseIsn + l_maxInt;

            TRACFCOMP(g_trac_intr,"Issuing EOI to PSIHB range %x - %x",
                      l_psiBaseIsn, l_psiMaxIsn);

            for(uint32_t l_isn = l_psiBaseIsn; l_isn < l_psiMaxIsn; ++l_isn)
            {
                TRACDCOMP(g_trac_intr,"   xirrPtr[%p] xirr[%x]\n", xirrPtr, l_isn);
                *xirrPtr = l_isn;
            }
        }

        //Don't need to issue EOIs to PHBs
        //since PHB ETU reset cleans them up

        //Issue eio to NX logic
        uint32_t l_nxBaseIsn;
        err = getNxIRSN(i_proc, l_nxBaseIsn, l_maxInt);
        if(err)
        {
            break;
        }

        //Only issue if ISN is non zero (ie set)
        if(l_nxBaseIsn)
        {
            l_nxBaseIsn |= 0xFF000000;
            uint32_t l_nxMaxIsn = l_nxBaseIsn + l_maxInt;
            TRACFCOMP(g_trac_intr,"Issuing EOI to NX range %x - %x",
                      l_nxBaseIsn, l_nxMaxIsn);

            for(uint32_t l_isn = l_nxBaseIsn; l_isn < l_nxMaxIsn; ++l_isn)
            {
                *xirrPtr = l_isn;
            }
        }
    } while(0);
    return err;
}


//----------------------------------------------------------------------------

errlHndl_t IntrRp::findProcs_Cores(TARGETING::TargetHandleList & o_procs,
                                   TARGETING::TargetHandleList& o_cores)
{
    errlHndl_t err = NULL;

    do
    {
        //Build a list of "functional" processors.  This needs to be
        //done without targetting support (just blueprint) since
        //on MPIPL the targeting information is obtained in
        //discover_targets -- much later in the IPL.

        //Since this is MPIPL we will rely on two things:
        // 1) FSI will be active to present chips
        // 2) The MPIPL HW bit in CFAM 2839 will be set

        //force FSI to init so we can rely on slave data
        err = FSI::initializeHardware();
        if(err)
        {
            break;
        }

        TARGETING::TargetHandleList procChips;
        TARGETING::PredicateCTM predProc( TARGETING::CLASS_CHIP,
                                          TARGETING::TYPE_PROC );

        TARGETING::TargetService& tS = TARGETING::targetService();
        TARGETING::Target * sysTarget = NULL;
        tS.getTopLevelTarget( sysTarget );
        assert( sysTarget != NULL );

        TARGETING::Target* masterProcTarget = NULL;
        TARGETING::targetService().masterProcChipTargetHandle(
                                                        masterProcTarget );

        tS.getAssociated( procChips,
                          sysTarget,
                          TARGETING::TargetService::CHILD,
                          TARGETING::TargetService::ALL,
                          &predProc );

        for(TARGETING::TargetHandleList::iterator proc = procChips.begin();
            proc != procChips.end();
            ++proc)
        {
            //if master proc -- just add it as we are running on it
            if (*proc == masterProcTarget)
            {
                o_procs.push_back(*proc);
                continue;
            }

            //First see if present
            if(FSI::isSlavePresent(*proc))
            {
                TRACFCOMP(g_trac_intr,"Proc %x detected via FSI", TARGETING::get_huid(*proc));

                //Second check to see if MPIPL bit is on cfam "2839" which
                //Note 2839 is ecmd addressing, real address is 0x28E4 (byte)
                uint64_t l_addr = 0x28E4;
                uint32_t l_data = 0;
                size_t l_size = sizeof(uint32_t);
                err = deviceRead(*proc,
                                   &l_data,
                                   l_size,
                                   DEVICE_FSI_ADDRESS(l_addr));
                if (err)
                {
                    TRACFCOMP(g_trac_intr,"Failed to read CFAM 2839 on %x",
                              TARGETING::get_huid(*proc));
                    break;
                }

                TRACFCOMP(g_trac_intr,"Proc %x 2839 val [%x]", TARGETING::get_huid(*proc),
                          l_data);

                if(l_data & 0x80000000)
                {
                    //Chip is present and functional -- add it to our list
                    o_procs.push_back(*proc);

                    //Also need to force it to use Xscom
                    //Note that it has to support (ie it is part of the SMP)
                    ScomSwitches l_switches =
                                     (*proc)->getAttr<ATTR_SCOM_SWITCHES>();

                    l_switches.useFsiScom = 0;
                    l_switches.useXscom = 1;

                    (*proc)->setAttr<ATTR_SCOM_SWITCHES>(l_switches);
                }
            }
        }
        if (err)
        {
            break;
        }


        //Build up a list of all possible cores (don't care if func/present,
        //just that they exist in the blueprint
        TARGETING::TargetHandleList l_cores;
        for(TARGETING::TargetHandleList::iterator proc = o_procs.begin();
            proc != o_procs.end();
            ++proc)
        {
            l_cores.clear();
            getChildChiplets(l_cores, *proc, TYPE_CORE, false);
            for(TARGETING::TargetHandleList::iterator core = l_cores.begin();
                core != l_cores.end();
                ++core)
            {
                o_cores.push_back(*core);
            }
        }
    }while(0);

    return err;
}

void IntrRp::allowAllInterrupts(TARGETING::Target* i_core)
{
    const TARGETING::Target * proc = getParentChip(i_core);

    FABRIC_CHIP_ID_ATTR chip = proc->getAttr<ATTR_FABRIC_CHIP_ID>();
    FABRIC_NODE_ID_ATTR node = proc->getAttr<ATTR_FABRIC_NODE_ID>();
    CHIP_UNIT_ATTR coreId = i_core->getAttr<TARGETING::ATTR_CHIP_UNIT>();

    PIR_t pir(0);
    pir.nodeId = node;
    pir.chipId = chip;
    pir.coreId = coreId;

    size_t threads = cpu_thread_count();
    for(size_t thread = 0; thread < threads; ++thread)
    {
        pir.threadId = thread;
        uint64_t cpprAddr=cpuOffsetAddr(pir)+iv_baseAddr+CPPR_OFFSET;
        uint8_t *cppr = reinterpret_cast<uint8_t*>(cpprAddr);
        *cppr = 0xff; // allow all interrupts
    }

}

void IntrRp::disableAllInterrupts(TARGETING::Target* i_core)
{
    const TARGETING::Target * proc = getParentChip(i_core);

    FABRIC_CHIP_ID_ATTR  chip = proc->getAttr<ATTR_FABRIC_CHIP_ID>();
    FABRIC_NODE_ID_ATTR node = proc->getAttr<ATTR_FABRIC_NODE_ID>();
    CHIP_UNIT_ATTR coreId = i_core->getAttr<TARGETING::ATTR_CHIP_UNIT>();

    PIR_t pir(0);
    pir.nodeId = node;
    pir.chipId = chip;
    pir.coreId = coreId;

    size_t threads = cpu_thread_count();
    for(size_t thread = 0; thread < threads; ++thread)
    {
        pir.threadId = thread;
        disableInterruptPresenter(pir);
    }
}

void IntrRp::drainMpIplInterrupts(TARGETING::TargetHandleList & i_cores)
{
    TRACFCOMP(g_trac_intr,"Drain pending interrupts");
    bool interrupt_found = false;
    size_t retryCount = 10;

    do
    {
        interrupt_found = false;
        nanosleep(0,1000000);   // 1 ms

        for(TARGETING::TargetHandleList::iterator
            core = i_cores.begin();
            core != i_cores.end();
            ++core)
        {
            const TARGETING::Target * proc = getParentChip(*core);

            FABRIC_CHIP_ID_ATTR chip = proc->getAttr<ATTR_FABRIC_CHIP_ID>();
            FABRIC_NODE_ID_ATTR node = proc->getAttr<ATTR_FABRIC_NODE_ID>();
            CHIP_UNIT_ATTR coreId =
                              (*core)->getAttr<TARGETING::ATTR_CHIP_UNIT>();

            PIR_t pir(0);
            pir.nodeId = node;
            pir.chipId = chip;
            pir.coreId = coreId;

            TRACFCOMP(g_trac_intr,"  n%d p%d c%d", node, chip, coreId);
            size_t threads = cpu_thread_count();
            for(size_t thread = 0; thread < threads; ++thread)
            {
                pir.threadId = thread;
                uint64_t xirrAddr = iv_baseAddr +
                  cpuOffsetAddr(pir) + XIRR_RO_OFFSET;
                volatile uint32_t * xirrPtr =
                  reinterpret_cast<uint32_t*>(xirrAddr);
                uint32_t xirr = *xirrPtr & 0x00FFFFFF;
                TRACDCOMP(g_trac_intr,"   xirrPtr[%p] xirr[%x]\n", xirrPtr, xirr);
                if(xirr)
                {
                    // Found pending interrupt!
                    interrupt_found = true;

                    TRACFCOMP(g_trac_intr,
                              ERR_MRK
                              "Pending interrupt found on MPIPL."
                              " CpuId:0x%x XIRR:0x%x",
                              pir.word,
                              xirr);
                    uint8_t * mfrrPtr =
                      reinterpret_cast<uint8_t*>(xirrAddr + MFRR_OFFSET);
                    // Signal EOI - read then write xirr value
                    ++xirrPtr;        // move to RW XIRR reg
                    volatile uint32_t xirr_rw = *xirrPtr;

                    //If IPI need to set mfrr to 0xFF
                    if(INTERPROC_XISR == xirr)
                    {
                        *mfrrPtr = 0xFF;
                    }

                    *xirrPtr = xirr_rw;
                    --xirrPtr;      // back to RO XIRR reg
                }
            }
        }
    } while(interrupt_found == true && --retryCount != 0);

    if(interrupt_found && (retryCount == 0))
    {
        // traces above should identify stuck interrupt
        INITSERVICE::doShutdown(INTR::RC_PERSISTENT_INTERRUPTS);
    }
}



errlHndl_t IntrRp::hw_disableIntrMpIpl()
{
    errlHndl_t err = NULL;
    TARGETING::TargetHandleList funcProc, procCores;

    //Need to clear out all pending interrupts.  This includes
    //ones that PHYP already accepted and ones "hot" in the XIRR
    //register.   Must be done for all processors prior to opening
    //up traffic for mailbox (since we switch the IRSN).  PHYP
    //can route PSI interrupts to any chip in the system so all
    //must be cleaned up prior to switching

    do
    {
        //extract the node layout for later
        err = extractHbNodeInfo();
        if(err)
        {
            break;
        }

        //Get the procs/cores
        err = findProcs_Cores(funcProc, procCores);
        if(err)
        {
            break;
        }

        //since HB will need to use PSI interrupt block, we need to
        //perform the extra step of disabling FSP PSI interrupts at
        //source(theoretically upstream disable should have handled,
        //but it seesms to slip through somehow and doesn't get fully
        //cleaned up cause we clear the XIVR
        for(TARGETING::TargetHandleList::iterator proc = funcProc.begin();
            (proc != funcProc.end()) && !err;
            ++proc)
        {
            uint64_t reg = PSI_FSP_INT_ENABLE;
            size_t scom_len = sizeof(uint64_t);
            err = deviceWrite
              (
               (*proc),
               &reg,
               scom_len,
               DEVICE_SCOM_ADDRESS(PSI_HBCR_AND_SCOM_ADDR)
               );
        }
        if(err)
        {
            break;
        }

        // Disable upstream intr routing on all processor chips
        TRACFCOMP(g_trac_intr,"Disable upstream interrupt");
        for(TARGETING::TargetHandleList::iterator proc = funcProc.begin();
            (proc != funcProc.end()) && !err;
            ++proc)
        {
            // disable upstream intr routing
            err = hw_disableRouting(*proc,INTR_UPSTREAM);
        }
        if(err)
        {
            break;
        }

        err = syncNodes(INTR_MPIPL_UPSTREAM_DISABLED);
        if ( err )
        {
            break;
        }

        // Set interrupt presenter to allow all interrupts
        TRACFCOMP(g_trac_intr,"Allow interrupts");
        for(TARGETING::TargetHandleList::iterator
            core = procCores.begin();
            core != procCores.end();
            ++core)
        {
            allowAllInterrupts(*core);
        }

        // Now look for interrupts
        drainMpIplInterrupts(procCores);

        // Issue blind EOIs to all threads IPIs and  to clean up stale XIRR
        TRACFCOMP(g_trac_intr,"Issue blind EOIs to all ISRN and IPIs");
        for(TARGETING::TargetHandleList::iterator proc = funcProc.begin();
            (proc != funcProc.end()) && !err;
            ++proc)
        {
            err = blindIssueEOIs(*proc);
        }
        if(err)
        {
            break;
        }

        err = syncNodes(INTR_MPIPL_DRAINED);
        if( err )
        {
            break;
        }

        // Disable all interrupt presenters
        for(TARGETING::TargetHandleList::iterator core = procCores.begin();
            core != procCores.end();
            ++core)
        {
            disableAllInterrupts(*core);
        }

        // disable downstream routing and clean up IRSN regs
        for(TARGETING::TargetHandleList::iterator proc = funcProc.begin();
            proc != funcProc.end();
            ++proc)
        {
            // disable downstream routing
            err = hw_disableRouting(*proc,INTR_DOWNSTREAM);
            if(err)
            {
                break;
            }

            // reset IRSN values
            err = hw_resetIRSNregs(*proc);
            if(err)
            {
                break;
            }

            //Now mask off all XIVRs under the PSI unit
            //This prevents hot PSI mbox interrupts from flowing up to HB
            //and allows PHYP to deal with them
            err = maskXIVR(*proc);
            if(err)
            {
                break;
            }
        }
        if(err)
        {
            break;
        }
    } while(0);
    return err;
}


errlHndl_t syncNodesError(void * i_p, uint64_t i_len)
{
    TRACFCOMP(g_trac_intr,"Failure calling mm_block_map: phys_addr=%p",
              i_p);
    /*@
     * @errortype    ERRL_SEV_UNRECOVERABLE
     * @moduleid     INTR::MOD_INTR_SYNC_NODES
     * @reasoncode   INTR::RC_CANNOT_MAP_MEMORY
     * @userdata1    physical address
     * @userdata2    Block size requested
     * @devdesc      Error mapping in memory
     */
    return new ERRORLOG::ErrlEntry
        (
         ERRORLOG::ERRL_SEV_UNRECOVERABLE,
         INTR::MOD_INTR_SYNC_NODES,
         INTR::RC_CANNOT_MAP_MEMORY,
         reinterpret_cast<uint64_t>(i_p),
         i_len,
         true /*Add HB Software Callout*/);
}

errlHndl_t IntrRp::syncNodes(intr_mpipl_sync_t i_sync_type)
{
    errlHndl_t err = NULL;
    bool reported[MAX_NODES_PER_SYS] = { false,};

    uint64_t hrmorBase = KernelIpc::ipc_data_area.hrmor_base;

    void * node_info_ptr =
        reinterpret_cast<void *>((iv_masterCpu.nodeId * hrmorBase) +
                                 VMM_INTERNODE_PRESERVED_MEMORY_ADDR);

    internode_info_t * this_node_info =
        reinterpret_cast<internode_info_t *>
        (mm_block_map(node_info_ptr,INTERNODE_INFO_SIZE));

    do
    {

        if(this_node_info == NULL)
        {
            err = syncNodesError(this_node_info, INTERNODE_INFO_SIZE);
            break;
        }


        if(this_node_info->eye_catcher != NODE_INFO_EYE_CATCHER)
        {
            TRACFCOMP(g_trac_intr, INFO_MRK
                      "MPIPL, but INTR node data sync area unintialized."
                      " Assuming single HB Intance system");

            break;
        }

        // Map the internode data areas to a virtual address
        internode_info_t * vaddr[MAX_NODES_PER_SYS];

        for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
        {
            if (node == iv_masterCpu.nodeId)
            {
                vaddr[node] = this_node_info;
            }
            else if(this_node_info->exist[node])
            {
                node_info_ptr =
                    reinterpret_cast<void *>
                    ((node*hrmorBase)+VMM_INTERNODE_PRESERVED_MEMORY_ADDR);

                internode_info_t * node_info =
                    reinterpret_cast<internode_info_t *>
                    (mm_block_map(node_info_ptr,
                                  INTERNODE_INFO_SIZE));

                if(node_info == NULL)
                {
                    err = syncNodesError(node_info_ptr,
                                         INTERNODE_INFO_SIZE);
                    break;
                }
                vaddr[node] = node_info;
                reported[node] = false;
            }
        }
        if (err)
        {
            break;
        }


        // This node has hit the sync point
        this_node_info->mpipl_intr_sync = i_sync_type;
        lwsync();

        bool synched = false;
        // Loop until all nodes have reached the sync point
        while(synched == false)
        {
            synched = true;

            for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
            {
                if(this_node_info->exist[node])
                {
                    intr_mpipl_sync_t sync_type =
                        vaddr[node]->mpipl_intr_sync;
                    if(sync_type < i_sync_type)
                    {
                        synched = false;
                        // Insure simics does a context switch
                        setThreadPriorityLow();
                        setThreadPriorityHigh();
                    }
                    else if(reported[node] == false)
                    {
                        reported[node] = true;
                        TRACFCOMP( g_trac_intr, INFO_MRK
                                   "MPIPL node %ld reached syncpoint %d",
                                   node, (uint32_t)i_sync_type);
                    }
                }
            }
        }
        isync();

        for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
        {
            if(this_node_info->exist[node])
            {
                // We are still using this_node_info area
                // so unmap it later.
                if(node != iv_masterCpu.nodeId)
                {
                    mm_block_unmap(vaddr[node]);
                }
            }
        }

        mm_block_unmap(this_node_info);

    } while(0);

    return err;
}


errlHndl_t  IntrRp::initializeMpiplSyncArea()
{
    errlHndl_t err = NULL;
    uint64_t hrmorBase = KernelIpc::ipc_data_area.hrmor_base;
    void * node_info_ptr =
        reinterpret_cast<void *>((iv_masterCpu.nodeId * hrmorBase) +
                                 VMM_INTERNODE_PRESERVED_MEMORY_ADDR);

    internode_info_t * this_node_info =
        reinterpret_cast<internode_info_t *>
        (mm_block_map(node_info_ptr,INTERNODE_INFO_SIZE));

    if(this_node_info)
    {
        TRACFCOMP( g_trac_intr,
                   "MPIPL SYNC at phys %p virt %p value %lx\n",
                   node_info_ptr, this_node_info, NODE_INFO_EYE_CATCHER );


        this_node_info->eye_catcher = NODE_INFO_EYE_CATCHER;
        this_node_info->version = NODE_INFO_VERSION;
        this_node_info->mpipl_intr_sync = INTR_MPIPL_SYNC_CLEAR;
        for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
        {
            if(iv_masterCpu.nodeId == node)
            {
                this_node_info->exist[node] = true;
            }
            else
            {
                this_node_info->exist[node] = false;
            }
        }

        mm_block_unmap(this_node_info);
    }
    else
    {
        TRACFCOMP( g_trac_intr, "Failure calling mm_block_map : phys_addr=%p",
                   node_info_ptr);
        /*@
         * @errortype    ERRL_SEV_UNRECOVERABLE
         * @moduleid     INTR::MOD_INTR_INIT_MPIPLAREA
         * @reasoncode   INTR::RC_CANNOT_MAP_MEMORY
         * @userdata1    physical address
         * @userdata2    Size
         * @devdesc      Error mapping in memory
         */
        err = new ERRORLOG::ErrlEntry(
                                      ERRORLOG::ERRL_SEV_UNRECOVERABLE,
                                      INTR::MOD_INTR_INIT_MPIPLAREA,
                                      INTR::RC_CANNOT_MAP_MEMORY,
                                      reinterpret_cast<uint64_t>(node_info_ptr),
                                      INTERNODE_INFO_SIZE,
                                      true /*Add HB Software Callout*/);

    }
    return err;
}

errlHndl_t  IntrRp::addHbNodeToMpiplSyncArea(uint64_t i_hbNode)
{
    errlHndl_t err = NULL;
    uint64_t hrmorBase = KernelIpc::ipc_data_area.hrmor_base;
    void * node_info_ptr =
        reinterpret_cast<void *>((iv_masterCpu.nodeId * hrmorBase) +
                                 VMM_INTERNODE_PRESERVED_MEMORY_ADDR);

    internode_info_t * this_node_info =
        reinterpret_cast<internode_info_t *>
        (mm_block_map(node_info_ptr,INTERNODE_INFO_SIZE));

    if(this_node_info)
    {
        if(this_node_info->eye_catcher != NODE_INFO_EYE_CATCHER)
        {
            // Initialize the mutli-node area for this node.
            err = initializeMpiplSyncArea();
        }

        this_node_info->exist[i_hbNode] = true;
        this_node_info->mpipl_intr_sync = INTR_MPIPL_SYNC_CLEAR;

        mm_block_unmap(this_node_info);
    }
    else
    {
        TRACFCOMP( g_trac_intr, "Failure calling mm_block_map : phys_addr=%p",
                   node_info_ptr);
        /*@
         * @errortype    ERRL_SEV_UNRECOVERABLE
         * @moduleid     INTR::MOD_INTR_SYNC_ADDNODE
         * @reasoncode   INTR::RC_CANNOT_MAP_MEMORY
         * @userdata1    physical address
         * @userdata2    Size
         * @devdesc      Error mapping in memory
         */
        err = new ERRORLOG::ErrlEntry(
                                      ERRORLOG::ERRL_SEV_UNRECOVERABLE,
                                      INTR::MOD_INTR_SYNC_ADDNODE,
                                      INTR::RC_CANNOT_MAP_MEMORY,
                                      reinterpret_cast<uint64_t>(node_info_ptr),
                                      INTERNODE_INFO_SIZE,
                                      true /*Add HB Software Callout*/);

    }
    return err;
}

errlHndl_t  IntrRp::extractHbNodeInfo(void)
{
    errlHndl_t err = NULL;
    uint64_t hrmorBase = KernelIpc::ipc_data_area.hrmor_base;
    TARGETING::ATTR_HB_EXISTING_IMAGE_type hb_existing_image = 0;
    void * node_info_ptr =
        reinterpret_cast<void *>((iv_masterCpu.nodeId * hrmorBase) +
                                 VMM_INTERNODE_PRESERVED_MEMORY_ADDR);

    internode_info_t * this_node_info =
        reinterpret_cast<internode_info_t *>
        (mm_block_map(node_info_ptr,INTERNODE_INFO_SIZE));

    if(this_node_info)
    {
        if(this_node_info->eye_catcher != NODE_INFO_EYE_CATCHER)
        {
            TRACFCOMP(g_trac_intr, INFO_MRK
                      "MPIPL, but INTR node data sync area unintialized."
                      " Assuming single HB Intance system");
        }
        else //multinode
        {
            TARGETING::ATTR_HB_EXISTING_IMAGE_type mask = 0x1 <<
              (MAX_NODES_PER_SYS -1);

            for(uint64_t node = 0; node < MAX_NODES_PER_SYS; ++node)
            {
                //If comm area indicates node exists, add to map
                if(this_node_info->exist[node])
                {
                    hb_existing_image |= (mask >> node);
                }
            }
        }

        mm_block_unmap(this_node_info);
    }
    else
    {
        TRACFCOMP( g_trac_intr, "Failure calling mm_block_map : phys_addr=%p",
                   node_info_ptr);
        /*@
         * @errortype    ERRL_SEV_UNRECOVERABLE
         * @moduleid     INTR::MOD_INTR_EXTRACTNODEINFO
         * @reasoncode   INTR::RC_CANNOT_MAP_MEMORY
         * @userdata1    physical address
         * @userdata2    Size
         * @devdesc      Error mapping in memory
         */
        err = new ERRORLOG::ErrlEntry(
                                      ERRORLOG::ERRL_SEV_UNRECOVERABLE,
                                      INTR::MOD_INTR_EXTRACTNODEINFO,
                                      INTR::RC_CANNOT_MAP_MEMORY,
                                      reinterpret_cast<uint64_t>(node_info_ptr),
                                      INTERNODE_INFO_SIZE,
                                      true /*Add HB Software Callout*/);

    }

    TARGETING::Target * sys = NULL;
    TARGETING::targetService().getTopLevelTarget(sys);
    sys->setAttr<TARGETING::ATTR_HB_EXISTING_IMAGE>(hb_existing_image);
    TRACFCOMP( g_trac_intr, "extractHbNodeInfo found map: %x", hb_existing_image);

    return err;
}


//----------------------------------------------------------------------------
// External interfaces
//----------------------------------------------------------------------------

// Register a message queue with a particular intr type
errlHndl_t INTR::registerMsgQ(msg_q_t i_msgQ,
                              uint32_t i_msg_type,
                              ext_intr_t i_intr_type)
{
    errlHndl_t err = NULL;
    // Can't add while handling an interrupt, so
    // send msg instead of direct call
    msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
    if(intr_msgQ)
    {
        msg_t * msg = msg_allocate();
        msg->type = MSG_INTR_REGISTER_MSGQ;
        msg->data[0] = reinterpret_cast<uint64_t>(i_msgQ);
        msg->data[1] = static_cast<uint64_t>(i_intr_type);
        msg->data[1] |= static_cast<uint64_t>(i_msg_type) << 32;

        int rc = msg_sendrecv(intr_msgQ, msg);
        if(!rc)
        {
            err = reinterpret_cast<errlHndl_t>(msg->data[1]);
        }
        else
        {
            TRACFCOMP(g_trac_intr,ERR_MRK
                      "INTR::registerMsgQ - msg_sendrecv failed. errno = %d",
                      rc);
        }

        msg_free(msg);

    }
    else
    {
        /*@ errorlog tag
         * @errortype       ERRL_SEV_INFORMATIONAL
         * @moduleid        INTR::MOD_INTR_REGISTER
         * @reasoncode      INTR::RC_REGISTRY_NOT_READY
         * @userdata1       Interrupt type to register
         * @userdata2       0
         *
         * @devdesc         Interrupt resource provider not initialized yet.
         *
         */
        err = new ERRORLOG::ErrlEntry
            (
             ERRORLOG::ERRL_SEV_INFORMATIONAL,    // severity
             INTR::MOD_INTR_REGISTER,             // moduleid
             INTR::RC_REGISTRY_NOT_READY,         // reason code
             static_cast<uint64_t>(i_intr_type),
             0
            );
    }
    return err;
}

// Unregister message queue from interrupt handler
msg_q_t INTR::unRegisterMsgQ(ext_intr_t i_type)
{
    msg_q_t msgQ = NULL;
    msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
    if(intr_msgQ)
    {
        msg_t * msg = msg_allocate();
        msg->type = MSG_INTR_UNREGISTER_MSGQ;
        msg->data[0] = static_cast<uint64_t>(i_type);

        int rc = msg_sendrecv(intr_msgQ,msg);

        if(!rc)
        {
            msgQ = reinterpret_cast<msg_q_t>(msg->data[1]);
        }
        else
        {
            TRACFCOMP(g_trac_intr,ERR_MRK
                      "INTR::unRegisterMsgQ - msg_sendrecv failed. errno = %d",
                      rc);
        }

        msg_free(msg);
    }
    return msgQ;
}


/*
 * Enable hardware to report external interrupts
 */
errlHndl_t INTR::enableExternalInterrupts()
{
    errlHndl_t err = NULL;
    msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
   if(intr_msgQ)
    {
        msg_t * msg = msg_allocate();
        msg->type = MSG_INTR_ENABLE;

        msg_sendrecv(intr_msgQ, msg);

        err = reinterpret_cast<errlHndl_t>(msg->data[1]);
        msg_free(msg);
    }
    else
    {
        /*@ errorlog tag
         * @errortype       ERRL_SEV_INFORMATIONAL
         * @moduleid        INTR::MOD_INTR_ENABLE
         * @reasoncode      INTR::RC_RP_NOT_INITIALIZED
         * @userdata1       MSG_INTR_ENABLE
         * @userdata2       0
         *
         * @devdesc         Interrupt resource provider not initialized yet.
         *
         */
        err = new ERRORLOG::ErrlEntry
            (
             ERRORLOG::ERRL_SEV_INFORMATIONAL,      // severity
             INTR::MOD_INTR_ENABLE,                 // moduleid
             INTR::RC_RP_NOT_INITIALIZED,           // reason code
             static_cast<uint64_t>(MSG_INTR_ENABLE),
             0
            );
    }
    return err;
}

/*
 * Disable hardware from reporting external interrupts
 */
errlHndl_t INTR::disableExternalInterrupts()
{
    errlHndl_t err = NULL;
    // Can't disable while handling interrupt, so send msg to serialize
    msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
    if(intr_msgQ)
    {
        msg_t * msg = msg_allocate();
        msg->type = MSG_INTR_DISABLE;

        msg_sendrecv(intr_msgQ, msg);

        err = reinterpret_cast<errlHndl_t>(msg->data[1]);
        msg_free(msg);
    }
    else
    {
        /*@ errorlog tag
         * @errortype       ERRL_SEV_INFORMATIONAL
         * @moduleid        INTR::MOD_INTR_DISABLE
         * @reasoncode      INTR::RC_RP_NOT_INITIALIZED
         * @userdata1       MSG_INTR_DISABLE
         * @userdata2       0
         *
         * @devdesc         Interrupt resource provider not initialized yet.
         *
         */
        err = new ERRORLOG::ErrlEntry
            (
             ERRORLOG::ERRL_SEV_INFORMATIONAL,      // severity
             INTR::MOD_INTR_DISABLE,                // moduleid
             INTR::RC_RP_NOT_INITIALIZED,           // reason code
             static_cast<uint64_t>(MSG_INTR_DISABLE),
             0
            );
    }
    return err;
}

errlHndl_t INTR::enablePsiIntr(TARGETING::Target * i_target)
{
    errlHndl_t err = NULL;
    msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
    if(intr_msgQ)
    {
        msg_t * msg = msg_allocate();
        msg->type = MSG_INTR_ENABLE_PSI_INTR;
        msg->data[0] = reinterpret_cast<uint64_t>(i_target);

        msg_sendrecv(intr_msgQ, msg);

        err = reinterpret_cast<errlHndl_t>(msg->data[1]);
        msg_free(msg);
    }
    else
    {
        /*@ errorlog tag
         * @errortype       ERRL_SEV_INFORMATIONAL
         * @moduleid        INTR::MOD_INTR_ENABLE_PSI_INTR
         * @reasoncode      INTR::RC_RP_NOT_INITIALIZED
         * @userdata1       MSG_INTR_ENABLE_PSI_INTR
         * @userdata2       0
         *
         * @devdesc         Interrupt resource provider not initialized yet.
         *
         */
        err = new ERRORLOG::ErrlEntry
            (
             ERRORLOG::ERRL_SEV_INFORMATIONAL,      // severity
             INTR::MOD_INTR_ENABLE_PSI_INTR,        // moduleid
             INTR::RC_RP_NOT_INITIALIZED,           // reason code
             static_cast<uint64_t>(MSG_INTR_ENABLE_PSI_INTR),
             0
            );
    }
    return err;
}

uint64_t INTR::getIntpAddr(const TARGETING::Target * i_ex, uint8_t i_thread)
{
    const TARGETING::Target * l_proc = getParentChip(i_ex);
    uint64_t l_intB =l_proc->getAttr<TARGETING::ATTR_INTP_BASE_ADDR>();

    PIR_t pir(0);
    pir.nodeId = l_proc->getAttr<TARGETING::ATTR_FABRIC_NODE_ID>();
    pir.chipId = l_proc->getAttr<TARGETING::ATTR_FABRIC_CHIP_ID>();
    pir.coreId = i_ex->getAttr<TARGETING::ATTR_CHIP_UNIT>();
    pir.threadId = i_thread;

    return (l_intB+ InterruptMsgHdlr::mmio_offset(
              pir.word & (InterruptMsgHdlr::P8_PIR_THREADID_MSK |
                          InterruptMsgHdlr::P8_PIR_COREID_MSK)));
}

void* INTR::IntrRp::handleCpuTimeout(void* _pir)
{
    uint64_t pir = reinterpret_cast<uint64_t>(_pir);
    task_detach();

    int count = 0;
    int rc = 0;

    // Allocate a message to send to the RP thread.
    msg_t* msg = msg_allocate();
    msg->type = MSG_INTR_ADD_CPU_TIMEOUT;
    msg->data[0] = pir;
    msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);

    do
    {
        // Sleep for the right amount.
        nanosleep(0, CPU_WAKEUP_INTERVAL_NS);

        // Check the status with the RP thread.
        msg->data[1] = count;
        msg_sendrecv(intr_msgQ, msg);

        // Get the status from the response message.
        rc = msg->data[1];
        count++;

    } while(rc == EAGAIN);

    msg_free(msg);

    return NULL;
}

errlHndl_t INTR::addHbNode(uint64_t i_hbNode)
{
    errlHndl_t err = NULL;
    msg_q_t intr_msgQ = msg_q_resolve(VFS_ROOT_MSG_INTR);
    TRACFCOMP( g_trac_intr,"Add node %d for MPIPL",i_hbNode);
    if(intr_msgQ)
    {
        msg_t * msg = msg_allocate();
        msg->data[0] = i_hbNode;
        msg->type = MSG_INTR_ADD_HBNODE;
        msg_send(intr_msgQ, msg);
    }
    else
    {
        /*@ errorlog tag
         * @errortype       ERRL_SEV_INFORMATIONAL
         * @moduleid        INTR::MOD_INTR_ADDHBNODE
         * @reasoncode      INTR::RC_RP_NOT_INITIALIZED
         * @userdata1       MSG_INTR_ADD_HBNODE
         * @userdata2       hbNode to add
         *
         * @devdesc         Interrupt resource provider not initialized yet.
         *
         */
        err = new ERRORLOG::ErrlEntry
            (
             ERRORLOG::ERRL_SEV_INFORMATIONAL,      // severity
             INTR::MOD_INTR_ADDHBNODE,              // moduleid
             INTR::RC_RP_NOT_INITIALIZED,           // reason code
             static_cast<uint64_t>(MSG_INTR_ADD_HBNODE),
             i_hbNode
            );
    }

    return err;
}

OpenPOWER on IntegriCloud