summaryrefslogtreecommitdiffstats
path: root/src/usr/hwpf/hwp/pstates/pstates/p8_build_pstate_datablock.C
blob: 03f926b2c6ef685dcebad27233fb69c6c5d3ac3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/hwpf/hwp/pstates/pstates/p8_build_pstate_datablock.C $ */
/*                                                                        */
/* IBM CONFIDENTIAL                                                       */
/*                                                                        */
/* COPYRIGHT International Business Machines Corp. 2013                   */
/*                                                                        */
/* p1                                                                     */
/*                                                                        */
/* Object Code Only (OCO) source materials                                */
/* Licensed Internal Code Source Materials                                */
/* IBM HostBoot Licensed Internal Code                                    */
/*                                                                        */
/* The source code for this program is not published or otherwise         */
/* divested of its trade secrets, irrespective of what has been           */
/* deposited with the U.S. Copyright Office.                              */
/*                                                                        */
/* Origin: 30                                                             */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
// $Id: p8_build_pstate_datablock.C,v 1.22 2013/09/30 18:35:35 jimyac Exp $
// $Source: /afs/awd/projects/eclipz/KnowledgeBase/.cvsroot/eclipz/chips/p8/working/procedures/ipl/fapi/p8_build_pstate_datablock.C,v $
//------------------------------------------------------------------------------
// *! (C) Copyright International Business Machines Corp. 2012
// *! All Rights Reserved -- Property of IBM
// *! *** IBM Confidential ***
//------------------------------------------------------------------------------
// *! OWNER NAME: Jim Yacynych         Email: jimyac@us.ibm.com
// *!

/// \file p8_build_pstate_datablock.C
/// \brief
///
/// \todo
///   High-level procedure flow:
/// \verbatim
///
/// Procedure Prereq:
///   o System clocks are running
/// \endverbatim
//------------------------------------------------------------------------------


// ----------------------------------------------------------------------
// Includes
// ----------------------------------------------------------------------
#include <fapi.H>
#include "pstate_tables.h"
#include "lab_pstates.h"
#include "pstates.h"

#include "p8_build_pstate_datablock.H"

extern "C" {

using namespace fapi;

// ----------------------------------------------------------------------
// Function prototypes
// ----------------------------------------------------------------------
ReturnCode proc_get_mvpd_data   (const Target& i_target, uint32_t attr_mvpd_data[PV_D][PV_W], ivrm_mvpd_t *ivrm_mvpd);
ReturnCode proc_get_attributes  (const Target& i_target, AttributeList *attr_list);
ReturnCode proc_get_extint_bias (uint32_t attr_mvpd_data[PV_D][PV_W], const AttributeList *attr, double *volt_int_vdd_bias, double *volt_int_vcs_bias);
ReturnCode proc_boost_gpst      (PstateSuperStructure *pss, uint32_t attr_boost_percent);
ReturnCode proc_upd_cpmrange    (PstateSuperStructure *pss, const AttributeList *attr);

// ----------------------------------------------------------------------
// Function definitions
// ----------------------------------------------------------------------
/// \param[in]      i_target           Chip Target
/// \param[in/out]  *io_pss            Reference to PstateSuperStructure

/// \retval FAPI_RC_SUCCESS
/// \retval ERROR defined in xml

ReturnCode
p8_build_pstate_datablock(const Target& i_target,
                          PstateSuperStructure *io_pss)
{
  fapi::ReturnCode l_rc;
  int rc;

  AttributeList attr;
  ChipCharacterization* characterization;
  uint8_t i           = 0;

  double volt_int_vdd_bias = 1.0;
  double volt_int_vcs_bias = 1.0;

  uint32_t frequency_step_khz = 0;
  uint32_t attr_mvpd_voltage_control[PV_D][PV_W];

  ivrm_mvpd_t ivrm_mvpd;

  FAPI_INF("Executing p8_build_pstate_datablock ....");

  // -------------------------
  // get all attributes needed
  // -------------------------
  l_rc = proc_get_attributes(i_target ,  &attr );
  if (l_rc)
    return l_rc;

  // calculate pstate frequency step in Khz
  frequency_step_khz = (attr.attr_freq_proc_refclock * 1000)/attr.attr_proc_dpll_divider;

  // ----------------
  // get #V & #M data
  // ----------------
  // clear array
  memset(attr_mvpd_voltage_control, 0, sizeof(attr_mvpd_voltage_control));
  memset(&ivrm_mvpd,                0, sizeof(ivrm_mvpd));

  l_rc = proc_get_mvpd_data(i_target, attr_mvpd_voltage_control, &ivrm_mvpd);
  if (l_rc)
    return l_rc;

  // ---------------------------------------------
  // process external and internal bias attributes
  // ---------------------------------------------
  l_rc = proc_get_extint_bias(attr_mvpd_voltage_control, &attr, &volt_int_vdd_bias, &volt_int_vcs_bias);
  if (l_rc)
    return l_rc;

  // -----------------------------------------------
  // populate VpdOperatingPoint with MVPD attributes
  // -----------------------------------------------
  // Assumes a constant 100mV dead zone
  VpdOperatingPoint s132a_vpd[S132A_POINTS];

  for (i = 0; i < S132A_POINTS; i++) {
    s132a_vpd[i].frequency_mhz  = attr_mvpd_voltage_control[pv_op_order[i]][0];
    s132a_vpd[i].vdd_5mv        = attr_mvpd_voltage_control[pv_op_order[i]][1];
    s132a_vpd[i].idd_500ma      = attr_mvpd_voltage_control[pv_op_order[i]][2];
    s132a_vpd[i].vdd_maxreg_5mv = attr_mvpd_voltage_control[pv_op_order[i]][1] - DEAD_ZONE_5MV;
    s132a_vpd[i].vcs_5mv        = attr_mvpd_voltage_control[pv_op_order[i]][3];
    s132a_vpd[i].ics_500ma      = attr_mvpd_voltage_control[pv_op_order[i]][4];
    s132a_vpd[i].vcs_maxreg_5mv = attr_mvpd_voltage_control[pv_op_order[i]][3] - DEAD_ZONE_5MV;
  }

  // -------------------------------------------------------------------
  // Create s132a_points and filled in by chip_characterization_create()
  // -------------------------------------------------------------------
  OperatingPoint s132a_points[S132A_POINTS];

  // -------------------------------------------------
  // populate OperatingPointParameters with attributes
  // -------------------------------------------------
  // Parameters from a P7 system, consistent with s132a. We'll assume the
  // package/header drop is 100uOhm for both Vdd and Vcs.

  OperatingPointParameters s132a_parms;
  s132a_parms.pstate0_frequency_khz = ((s132a_vpd[S132A_POINTS-1].frequency_mhz * 1000) / frequency_step_khz) * frequency_step_khz;   // pstate0 is turbo rounded down and forced to be a multiple of freq_step_khz
  s132a_parms.frequency_step_khz    =  frequency_step_khz;                                                                            // ATTR_REFCLK_FREQUENCY/ATTR_DPLL_DIVIDER
  s132a_parms.vdd_load_line_uohm    = attr.attr_proc_r_loadline_vdd;
  s132a_parms.vcs_load_line_uohm    = attr.attr_proc_r_loadline_vcs;
  s132a_parms.vdd_distribution_uohm = attr.attr_proc_r_distloss_vdd;
  s132a_parms.vcs_distribution_uohm = attr.attr_proc_r_distloss_vcs;

  // --------------------------------------
  // Create Chip characterization structure
  // --------------------------------------

  ChipCharacterization s132a_characterization;
  s132a_characterization.vpd        = s132a_vpd;
  s132a_characterization.ops        = s132a_points;
  s132a_characterization.parameters = &s132a_parms;
  s132a_characterization.points     = S132A_POINTS;

  // ---------------------------
  // Finish the characterization
  // ---------------------------
  characterization = &s132a_characterization;

  rc = chip_characterization_create(characterization,
                                    characterization->vpd,
                                    characterization->ops,
                                    characterization->parameters,
                                    characterization->points);

  if (rc) {
    int & RETURN_CODE = rc;
    FAPI_ERR("**** ERROR : Procedure chip_characterization_create() returned %d", rc);
    FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_CHIP_CHARACTERIZE_ERROR);
    return l_rc;
  }

  // -----------------------------------------------------------
  // Clear the PstateSuperStructure and install the magic number
  // -----------------------------------------------------------
  memset(io_pss, 0, sizeof(*io_pss));
  (*io_pss).magic = revle64(PSTATE_SUPERSTRUCTURE_MAGIC);

  // ------------------------------
  // Create the Global Pstate table
  // ------------------------------
  rc = gpst_create(&((*io_pss).gpst),
                   characterization,
                   PSTATE_STEPSIZE,
                   EVRM_DELAY_NS);

  FAPI_DBG("GPST vpd pmin = %d  vpd pmax = %d  vpd points = %d", s132a_characterization.ops[0].pstate, s132a_characterization.ops[s132a_characterization.points - 1].pstate, s132a_characterization.points);
  FAPI_DBG("GPST pmin = %d  entries = %u", (*io_pss).gpst.pmin, (*io_pss).gpst.entries);
  FAPI_DBG("GPST refclock(Mhz) = %d  pstate0_freq(Khz) = %d  frequency_step(Khz) = %d", attr.attr_freq_proc_refclock, s132a_parms.pstate0_frequency_khz, s132a_parms.frequency_step_khz);

  if (rc) {
    int & RETURN_CODE = rc;
    FAPI_ERR("**** ERROR : Procedure gpst_create() returned %d", rc);
    FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_GPST_CREATE_ERROR);
    return l_rc;
  }

  // -----------------------------
  // Boost the Global Pstate table
  // -----------------------------
  l_rc = proc_boost_gpst (io_pss, attr.attr_cpm_turbo_boost_percent);
  if (l_rc)
    return l_rc;

  // -----------------------------------------------------------------
  // calculate safe_pstate & pvsafe pstate from attr_pm_safe_frequency
  // -----------------------------------------------------------------
// jwy   Pstate psafe_pstate;
// jwy   rc = freq2pState(&((*io_pss).gpst), (attr.attr_pm_safe_frequency * 1000), &psafe_pstate);
// jwy
// jwy   if (rc) {
// jwy     fprintf(stderr, " freq2pState() returned %d\n", rc);
// jwy     exit(1);
// jwy   }
// jwy
// jwy   rc = pstate_minmax_chk(&(pss->gpst), &psafe_pstate);
// jwy
// jwy   (*io_pss).gpst.psafe  = psafe_pstate;
// jwy   (*io_pss).gpst.pvsafe = psafe_pstate;

  // -----------------------------
  // Create the Local Pstate table
  // -----------------------------
  rc = lpst_create( &((*io_pss).gpst), &((*io_pss).lpsa), DEAD_ZONE_5MV, volt_int_vdd_bias, volt_int_vcs_bias);

  if (rc == -LPST_INVALID_OBJECT) {
    int & RETURN_CODE = rc;
    FAPI_ERR("**** ERROR : Procedure lpst_create() returned %d", rc);
    FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_LPST_CREATE_ERROR);
    return l_rc;
  }

  if (rc == -LPST_GPST_WARNING) {
    FAPI_INF("No Local Pstate Generated due Global Pstate Table data" );
  }

  // -----------------------
  // Create VDS & VIN tables
  // -----------------------
  ivrm_parm_data_t        ivrm_parms;

  // Set defaults
  ivrm_parms.vin_min                   = 600;        // Minimum input voltage
  ivrm_parms.vin_max                   = 1375;       // Maximum input voltage
  ivrm_parms.vin_table_step_size       = 25;         // Granularity of Vin table entries
  ivrm_parms.vin_table_setsperrow      = 4;          // Vin sets per Vds row
  ivrm_parms.vin_table_pfetstrperset   = 8;          // PFET Strength values per Vin set
  ivrm_parms.vout_min                  = 600;        // Minimum regulated output voltage
  ivrm_parms.vout_max                  = 1200;       // Maximum regulated output voltage
  ivrm_parms.vin_entries_per_vds       = 32;         // Vin array entries per vds region
  ivrm_parms.vds_min_range_upper_bound = 100;        // Starting point for vds regions
  ivrm_parms.vds_step_percent          = 25;         // vds region step muliplier
  ivrm_parms.vds_region_entries        = 16;         // vds region array entries (in hardware)
  ivrm_parms.pfetstr_default           = 0x11;       // Default PFET Strength with no calibration
  ivrm_parms.positive_guardband        = 11;         // Plus side guardband (%)
  ivrm_parms.negative_guardband        = 6;          // Negative side guardband (%)
  ivrm_parms.number_of_coefficients    = 4;          // Number of coefficents in cal data
  ivrm_parms.force_pfetstr_values      = 1;          // 0 - calculated; 1 = forced
  ivrm_parms.forced_pfetstr_value      = 0x03;

  // create vds
  build_vds_region_table(&ivrm_parms, io_pss);

  // loop over chiplets and find ones with valid data
  // break after first valid chiplet since superstructure does not handle separate vin table for each chiplet
  for (i = 0; i < CHIPLETS; i++) {

    if (ivrm_mvpd.data.ex[i].point_valid > 0) {

      // perform least squares fit to get coefficients & then fill in VIN table
      fit_file(ivrm_parms.number_of_coefficients,
               ivrm_mvpd.header.version,
               ivrm_mvpd.data.ex[3].Coef,
               &(ivrm_mvpd.data.ex[3]) );

      write_HWtab_bin(&ivrm_parms,
                      ivrm_mvpd.data.ex[3].Coef,
                      io_pss);
      break;
    }
  }

  // ---------------------------------------
  // Update CPM Range info in Superstructure
  // ---------------------------------------
  l_rc = proc_upd_cpmrange (io_pss, &attr);
  if (l_rc)
    return l_rc;

  // ------------------------
  // Force optional overrides
  // ------------------------
  (*io_pss).gpst.options.options = revle32(revle32((*io_pss).gpst.options.options) |
                                                          PSTATE_NO_INSTALL_RESCLK |
                                                          PSTATE_FORCE_INITIAL_PMIN);

//  Attributes to write
//  -------------------
//  uint32_t ATTR_PM_PSTATE0_FREQUENCY // Binary in Khz

  return l_rc;
} // end p8_build_pstate_datablock


/// -----------------------------------------------------------------------
/// \brief Get needed attributes
/// \param[in]    i_target          => Chip Target
/// \param[inout] attr              => pointer to attribute list structure
/// -----------------------------------------------------------------------

ReturnCode proc_get_attributes(const Target& i_target,
                               AttributeList *attr)
{
  ReturnCode l_rc;
  int        i     = 0;

  do 
  {
    // --------------------------
    // attributes not yet defined
    // --------------------------
    attr->attr_dpll_bias                 = 0;
    attr->attr_undervolting              = 0;

    // ---------------------------------------------------------------
    // set ATTR_PROC_DPLL_DIVIDER to 4 and do not read attribute value
    attr->attr_proc_dpll_divider = 4;
    FAPI_INF("ATTR_PROC_DPLL_DIVIDER - set to 4");

    // ----------------------------
    // attributes currently defined
    // ----------------------------
    #define DATABLOCK_GET_ATTR(attr_name, target, attr_assign) \
              l_rc = FAPI_ATTR_GET(attr_name, target, attr->attr_assign); \
              if (l_rc) break; \
              FAPI_INF("%s = 0x%08x %u", #attr_name, attr->attr_assign, attr->attr_assign); 

      DATABLOCK_GET_ATTR(ATTR_FREQ_EXT_BIAS_UP,                                &i_target, attr_freq_ext_bias_up);     
      DATABLOCK_GET_ATTR(ATTR_FREQ_EXT_BIAS_DOWN,                              &i_target, attr_freq_ext_bias_down);     
      DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VDD_BIAS_UP,                         &i_target, attr_voltage_ext_vdd_bias_up); 
      DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VCS_BIAS_UP,                         &i_target, attr_voltage_ext_vcs_bias_up); 
      DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VDD_BIAS_DOWN,                       &i_target, attr_voltage_ext_vdd_bias_down); 
      DATABLOCK_GET_ATTR(ATTR_VOLTAGE_EXT_VCS_BIAS_DOWN,                       &i_target, attr_voltage_ext_vcs_bias_down); 
      DATABLOCK_GET_ATTR(ATTR_VOLTAGE_INT_VDD_BIAS_UP,                         &i_target, attr_voltage_int_vdd_bias_up); 
      DATABLOCK_GET_ATTR(ATTR_VOLTAGE_INT_VCS_BIAS_UP,                         &i_target, attr_voltage_int_vcs_bias_up); 
      DATABLOCK_GET_ATTR(ATTR_VOLTAGE_INT_VDD_BIAS_DOWN,                       &i_target, attr_voltage_int_vdd_bias_down); 
      DATABLOCK_GET_ATTR(ATTR_VOLTAGE_INT_VCS_BIAS_DOWN,                       &i_target, attr_voltage_int_vcs_bias_down); 
      DATABLOCK_GET_ATTR(ATTR_FREQ_PROC_REFCLOCK,                                   NULL, attr_freq_proc_refclock);        
      // jwy    DATABLOCK_GET_ATTR(ATTR_PROC_DPLL_DIVIDER,                               &i_target, attr_proc_dpll_divider);         
      DATABLOCK_GET_ATTR(ATTR_FREQ_CORE_MAX,                                        NULL, attr_freq_core_max);             
      DATABLOCK_GET_ATTR(ATTR_PM_SAFE_FREQUENCY,                                    NULL, attr_pm_safe_frequency);         
      DATABLOCK_GET_ATTR(ATTR_BOOT_FREQ_MHZ,                                        NULL, attr_boot_freq_mhz);             
      DATABLOCK_GET_ATTR(ATTR_CPM_TURBO_BOOST_PERCENT,                              NULL, attr_cpm_turbo_boost_percent);   
      DATABLOCK_GET_ATTR(ATTR_PROC_R_LOADLINE_VDD,                                  NULL, attr_proc_r_loadline_vdd);       
      DATABLOCK_GET_ATTR(ATTR_PROC_R_LOADLINE_VCS,                                  NULL, attr_proc_r_loadline_vcs);       
      DATABLOCK_GET_ATTR(ATTR_PROC_R_DISTLOSS_VDD,                                  NULL, attr_proc_r_distloss_vdd);       
      DATABLOCK_GET_ATTR(ATTR_PROC_R_DISTLOSS_VCS,                                  NULL, attr_proc_r_distloss_vcs);       
      DATABLOCK_GET_ATTR(ATTR_PROC_VRM_VOFFSET_VDD,                                 NULL, attr_proc_vrm_voffset_vdd);      
      DATABLOCK_GET_ATTR(ATTR_PROC_VRM_VOFFSET_VCS,                                 NULL, attr_proc_vrm_voffset_vcs);      
      DATABLOCK_GET_ATTR(ATTR_PM_RESONANT_CLOCK_FULL_CLOCK_SECTOR_BUFFER_FREQUENCY, NULL, attr_pm_resonant_clock_full_clock_sector_buffer_frequency); 
      DATABLOCK_GET_ATTR(ATTR_PM_RESONANT_CLOCK_LOW_BAND_LOWER_FREQUENCY,           NULL, attr_pm_resonant_clock_low_band_lower_frequency);           
      DATABLOCK_GET_ATTR(ATTR_PM_RESONANT_CLOCK_LOW_BAND_UPPER_FREQUENCY,           NULL, attr_pm_resonant_clock_low_band_upper_frequency);           
      DATABLOCK_GET_ATTR(ATTR_PM_RESONANT_CLOCK_HIGH_BAND_LOWER_FREQUENCY,          NULL, attr_pm_resonant_clock_high_band_lower_frequency);          
      DATABLOCK_GET_ATTR(ATTR_PM_RESONANT_CLOCK_HIGH_BAND_UPPER_FREQUENCY,          NULL, attr_pm_resonant_clock_high_band_upper_frequency);          

      // Read array attribute
      l_rc = FAPI_ATTR_GET(ATTR_CPM_INFLECTION_POINTS, &i_target, attr->attr_cpm_inflection_points); if (l_rc) break;
      
      for (i = 0; i < 16; i++) {
        FAPI_INF("ATTR_CPM_INFLECTION_POINTS(%d) = 0x%08x %u",i, attr->attr_cpm_inflection_points[i], attr->attr_cpm_inflection_points[i]);
      }
      
    // --------------------------------------------------------------
    // do basic attribute value checking and generate error if needed
    // --------------------------------------------------------------

  // jwy  FIXME Add this error check once attr_pm_safe_frequency attribute is updated to be uint32
  // jwy  if (attr->attr_pm_safe_frequency > attr->attr_boot_freq_mhz) {
  // jwy    FAPI_ERR("ATTR_PM_SAFE_FREQUENCY (%u) is greater than ATTR_BOOT_FREQ_MHZ (%u)", attr->attr_pm_safe_frequency, attr->attr_boot_freq_mhz);
  // jwy    FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_LPST_CREATE_ERROR);
  // jwy    return l_rc;
  // jwy  }

    // ----------------------------------------------------
    // Check Valid Frequency and Voltage Biasing Attributes
    //  - cannot have both up and down bias set
    // ----------------------------------------------------
    if (attr->attr_freq_ext_bias_up > 0 && attr->attr_freq_ext_bias_down > 0) {
      FAPI_ERR("**** ERROR : Frequency bias up and down both defined");
      FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_FREQ_BIAS_ERROR);
      break;
    }

    if (attr->attr_voltage_ext_vdd_bias_up > 0 && attr->attr_voltage_ext_vdd_bias_down > 0) {
      FAPI_ERR("**** ERROR : External voltage bias up and down both defined");
      FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_EXT_VOLTAGE_BIAS_ERROR);
      break;
    }

    if (attr->attr_voltage_ext_vcs_bias_up > 0 && attr->attr_voltage_ext_vcs_bias_down > 0) {
      FAPI_ERR("**** ERROR : External voltage bias up and down both defined");
      FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_EXT_VOLTAGE_BIAS_ERROR);
      break;
    }

    if (attr->attr_voltage_int_vdd_bias_up > 0 && attr->attr_voltage_int_vdd_bias_down > 0) {
      FAPI_ERR("**** ERROR : Internal voltage bias up and down both defined");
      FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_INT_VOLTAGE_BIAS_ERROR);
      break;
    }

    if (attr->attr_voltage_int_vcs_bias_up > 0 && attr->attr_voltage_int_vcs_bias_down > 0) {
      FAPI_ERR("**** ERROR : Internal voltage bias up and down both defined");
      FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_INT_VOLTAGE_BIAS_ERROR);
      break;
    }

    // print debug message if double biasing is enabled
    if ( (attr->attr_voltage_ext_vdd_bias_up + attr->attr_voltage_ext_vdd_bias_down > 0) &&
         (attr->attr_voltage_int_vdd_bias_up + attr->attr_voltage_int_vdd_bias_down > 0) )
    {
      FAPI_DBG("Double Biasing enabled on external and internal VDD");
    }

    if ( (attr->attr_voltage_ext_vcs_bias_up + attr->attr_voltage_ext_vcs_bias_down > 0) &&
         (attr->attr_voltage_int_vcs_bias_up + attr->attr_voltage_int_vcs_bias_down > 0) )
    {
      FAPI_DBG("Double Biasing enabled on external and internal VCS");
    }

    // ------------------------------------------------------
    // do attribute default value setting if the are set to 0
    // ------------------------------------------------------
    if (attr->attr_freq_proc_refclock == 0){
      attr->attr_freq_proc_refclock = 133;
      FAPI_DBG("Attribute value was 0 - setting to default value ATTR_FREQ_PROC_REFCLOCK = 133");
    }

    if (attr->attr_pm_safe_frequency  == 0) {
      attr->attr_pm_safe_frequency = attr->attr_boot_freq_mhz;
      FAPI_DBG("Attribute value was 0 - setting to default value ATTR_PM_SAFE_FREQUENCY = ATTR_BOOT_FREQ_MHZ");
    }

    if (attr->attr_proc_r_loadline_vdd == 0) {
      attr->attr_proc_r_loadline_vdd = 570;
      FAPI_DBG("Attribute value was 0 - setting to default value ATTR_PROC_R_LOADLINE_VDD = 570");
    }

    if (attr->attr_proc_r_loadline_vcs == 0) {
      attr->attr_proc_r_loadline_vcs = 570;
      FAPI_DBG("Attribute value was 0 - setting to default value ATTR_PROC_R_LOADLINE_VCS = 570");
    }

    if (attr->attr_proc_r_distloss_vdd == 0) {
      attr->attr_proc_r_distloss_vdd = 500;
      FAPI_DBG("Attribute value was 0 - setting to default value ATTR_PROC_R_DISTLOSS_VDD = 500");
    }

    if (attr->attr_proc_r_distloss_vcs == 0) {
      attr->attr_proc_r_distloss_vcs = 800;
      FAPI_DBG("Attribute value was 0 - setting to default value ATTR_PROC_R_DISTLOSS_VCS = 800");
    }
  } while (0);  

  return l_rc;
}

/// ----------------------------------------------------------------
/// \brief Get #V data and put into array
/// \param[in]    i_target          => Chip Target
/// \param[inout] attr_mvpd_data    => 5x5 array to hold the #V data
/// ----------------------------------------------------------------

ReturnCode proc_get_mvpd_data(const Target& i_target,
                              uint32_t attr_mvpd_data[PV_D][PV_W],
                              ivrm_mvpd_t *ivrm_mvpd)
{
  ReturnCode l_rc;
  std::vector<fapi::Target>       l_exChiplets;
  uint8_t                         l_functional = 0;
  uint8_t *  l_buffer         =  reinterpret_cast<uint8_t *>(malloc(512) );
  uint8_t *  l_buffer_pdm     =  reinterpret_cast<uint8_t *>(malloc(512) );
  uint8_t *  l_buffer_inc;
  uint8_t *  l_buffer_pdm_inc;
  uint32_t   l_bufferSize     = 512;
  uint32_t   l_bufferSize_pdm = 512;
  uint32_t   l_record         = 0;
  uint32_t   chiplet_mvpd_data[PV_D][PV_W];
  uint8_t    j                = 0;
  uint8_t    i                = 0;
  uint8_t    ii               = 0;
  uint8_t    first_chplt      = 1;
  uint8_t    version_pdm      = 0;
  uint8_t    bucket_id        = 0;
  uint16_t   cal_data[4];

  // -----------------------------------------------------------------
  // get list of chiplets and loop over each and get #V data from each
  // -----------------------------------------------------------------
  // check that frequency is the same per chiplet
  // for voltage, get the max for use for the chip

  l_rc = fapiGetChildChiplets (i_target, TARGET_TYPE_EX_CHIPLET, l_exChiplets, TARGET_STATE_PRESENT);
  if (l_rc) {
    FAPI_ERR("Error from fapiGetChildChiplets!");
    return l_rc;
  }

  for (j=0; j < l_exChiplets.size(); j++) {

    // Determine if it's functional
    l_rc = FAPI_ATTR_GET(ATTR_FUNCTIONAL, &l_exChiplets[j], l_functional);
    if (l_rc) {
      FAPI_ERR("fapiGetAttribute of ATTR_FUNCTIONAL error");
      return l_rc;
    }
    else {

      if ( l_functional ) {
        l_bufferSize     = 512;
        l_bufferSize_pdm = 512;
        uint8_t l_chipNum = 0xFF;
        l_rc = FAPI_ATTR_GET(ATTR_CHIP_UNIT_POS, &l_exChiplets[j], l_chipNum);
        if (l_rc) {
          FAPI_ERR("fapiGetAttribute of ATTR_CHIP_UNIT_POS error");
          return l_rc;
        }

        // set l_record to appropriate lprx record (add core number to lrp0)
        l_record = (uint32_t)fapi::MVPD_RECORD_LRP0 + l_chipNum;

        // Get Chiplet MVPD data and put in chiplet_mvpd_data using accessor function
        l_rc = fapiGetMvpdField((fapi::MvpdRecord)l_record,
                                fapi::MVPD_KEYWORD_PDV,
                                i_target,
                                l_buffer,
                                l_bufferSize);
        if (!l_rc.ok()) {
          FAPI_ERR("**** ERROR : Unexpected error encountered in fapiGetMvpdField");
          return l_rc;
        }

        // check buffer size
        if (l_bufferSize < PDV_BUFFER_SIZE) {
          FAPI_ERR("**** ERROR : Wrong size buffer returned from fapiGetMvpdField for #V => %d", l_bufferSize );
          FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_PDV_BUFFER_SIZE_ERROR);
          return l_rc;
        }

        // clear array
        memset(chiplet_mvpd_data, 0, sizeof(chiplet_mvpd_data));

        // fill chiplet_mvpd_data 2d array with data iN buffer (skip first byte - bucket id)
        #define UINT16_GET(__uint8_ptr)   ((uint16_t)( ( (*((const uint8_t *)(__uint8_ptr)) << 8) | *((const uint8_t *)(__uint8_ptr) + 1) ) ))

        // use copy of allocated buffer pointer to increment through buffer
        l_buffer_inc = l_buffer;

        bucket_id = *l_buffer_inc;
        l_buffer_inc++;

        FAPI_DBG("#V chiplet = %u bucket id = %u", l_chipNum, bucket_id);

        for (i=0; i<=4; i++) {

          for (ii=0; ii<=4; ii++) {
            chiplet_mvpd_data[i][ii] = (uint32_t) UINT16_GET(l_buffer_inc);
            FAPI_DBG("#V data = 0x%04X  %-6d", chiplet_mvpd_data[i][ii], chiplet_mvpd_data[i][ii]);
            // increment to next MVPD value in buffer
            l_buffer_inc+= 2;
          }
        }

        // on first chiplet put each bucket's data into attr_mvpd_voltage_control
        if (first_chplt) {

          for (i=0; i<=4; i++) {

            for (ii=0; ii<=4; ii++) {
              attr_mvpd_data[i][ii] = chiplet_mvpd_data[i][ii];
            }
          }
          first_chplt = 0;
        }
        else {
          // on subsequent chiplets, check that frequencies are same for each bucket for each chiplet
          if ( (attr_mvpd_data[0][0] != chiplet_mvpd_data[0][0]) ||
               (attr_mvpd_data[1][0] != chiplet_mvpd_data[1][0]) ||
               (attr_mvpd_data[2][0] != chiplet_mvpd_data[2][0]) ||
               (attr_mvpd_data[3][0] != chiplet_mvpd_data[3][0]) ||
               (attr_mvpd_data[4][0] != chiplet_mvpd_data[4][0]) ) {

            FAPI_ERR("**** ERROR : Procedure gpst_create() returned ");
            FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_MVPD_CHIPLET_VOLTAGE_NOT_EQUAL);
            return l_rc;
          }
        }

        // check each bucket for max voltage and if max, put bucket's data into attr_mvpd_voltage_control
        for (i=0; i <= 4; i++) {

          if (attr_mvpd_data[i][1] < chiplet_mvpd_data[i][1]) {
            attr_mvpd_data[i][0] = chiplet_mvpd_data[i][0];
            attr_mvpd_data[i][1] = chiplet_mvpd_data[i][1];
            attr_mvpd_data[i][2] = chiplet_mvpd_data[i][2];
            attr_mvpd_data[i][3] = chiplet_mvpd_data[i][3];
            attr_mvpd_data[i][4] = chiplet_mvpd_data[i][4];
          }
        }

        // --------------------------------------------
        // Process #M Data
        // --------------------------------------------

        // Get Chiplet #M MVPD data
        l_rc = fapiGetMvpdField((fapi::MvpdRecord)l_record,
                               fapi::MVPD_KEYWORD_PDM,
                               i_target,
                               l_buffer_pdm,
                               l_bufferSize_pdm);
        if (!l_rc.ok()) {
          FAPI_ERR("**** ERROR : Unexpected error encountered in fapiGetMvpdField");
          return l_rc;
        }

        // check buffer size
        if (l_bufferSize_pdm < PDM_BUFFER_SIZE) {
          FAPI_ERR("**** ERROR : Wrong size buffer returned from fapiGetMvpdField for #M => %d", l_bufferSize_pdm );
          FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_PDM_BUFFER_SIZE_ERROR);
          return l_rc;
        }

        // use copy of allocated buffer pointer to increment through buffer
        l_buffer_pdm_inc = l_buffer_pdm;

        // get #M version and advance pointer 1-byte to beginning of #M data
        version_pdm = *l_buffer_pdm_inc;
        ivrm_mvpd->header.version = version_pdm ;
        l_buffer_pdm_inc++;

        // loop over 13 entries of #M data with 4 measurements per entry
        FAPI_DBG("#M chiplet = %u  version = %u", l_chipNum, version_pdm);

        for (i=0; i<13; i++) {

          for (ii=0; ii<4; ii++) {
            cal_data[ii] = UINT16_GET(l_buffer_pdm_inc);
            l_buffer_pdm_inc+= 2;
          }

          ivrm_mvpd->data.ex[j].point[i].gate_voltage   = cal_data[0];
          ivrm_mvpd->data.ex[j].point[i].drain_voltage  = cal_data[1];
          ivrm_mvpd->data.ex[j].point[i].source_voltage = cal_data[2];
          ivrm_mvpd->data.ex[j].point[i].drain_current  = cal_data[3];

          FAPI_DBG("#M data = %5u %5u %5u %5u", cal_data[0], cal_data[1], cal_data[2], cal_data[3]);
        }

        // set number of samples to 13
        ivrm_mvpd->data.ex[j].point_valid = 13;

      } // end if l_functional
      else {            // Not Functional so skip it
      }
    }
  } // end for loop

  free (l_buffer);
  free (l_buffer_pdm);

  return l_rc;

} // end proc_get_mvpd_data


/// ---------------------------------------------------------------------------
/// \brief Check and process #V bias attributes for external and internal
/// \param[in]    attr_mvpd_data         => 5x5 array to hold the #V data
/// \param[in]    *attr                  => pointer to attribute list structure
/// \param[inout] * volt_int_vdd_bias    => pointer to internal vdd bias
/// \param[inout] * volt_int_vcs_bias    => pointer to internal vcs bias
/// ---------------------------------------------------------------------------
ReturnCode proc_get_extint_bias(uint32_t attr_mvpd_data[PV_D][PV_W],
                                const AttributeList *attr,
                                double *volt_int_vdd_bias,
                                double *volt_int_vcs_bias)
{
  ReturnCode l_rc;
  int    i                 = 0;
  double freq_bias         = 1.0;
  double volt_ext_vdd_bias = 1.0;
  double volt_ext_vcs_bias = 1.0;

  // --------------------------------------------------------------------------
  // Apply specified Frequency and Voltage Biasing to attr_mvpd_voltage_control
  //   - at least one bias value is guaranteed to be 0
  //   - convert freq/voltage to double
  //   - compute biased freq/voltage and round
  //   - convert back to integer
  // --------------------------------------------------------------------------

  freq_bias          = 1.0 + (BIAS_PCT_UNIT * (double)attr->attr_freq_ext_bias_up)        - (BIAS_PCT_UNIT * (double)attr->attr_freq_ext_bias_down);
  volt_ext_vdd_bias  = 1.0 + (BIAS_PCT_UNIT * (double)attr->attr_voltage_ext_vdd_bias_up) - (BIAS_PCT_UNIT * (double)attr->attr_voltage_ext_vdd_bias_down);
  volt_ext_vcs_bias  = 1.0 + (BIAS_PCT_UNIT * (double)attr->attr_voltage_ext_vcs_bias_up) - (BIAS_PCT_UNIT * (double)attr->attr_voltage_ext_vcs_bias_down);
  *volt_int_vdd_bias = 1.0 + (BIAS_PCT_UNIT * (double)attr->attr_voltage_int_vdd_bias_up) - (BIAS_PCT_UNIT * (double)attr->attr_voltage_int_vdd_bias_down);
  *volt_int_vcs_bias = 1.0 + (BIAS_PCT_UNIT * (double)attr->attr_voltage_int_vcs_bias_up) - (BIAS_PCT_UNIT * (double)attr->attr_voltage_int_vcs_bias_down);

  // loop over each operating point
  for (i=0; i <= 4; i++) {
    attr_mvpd_data[i][0] = (uint32_t) ((( (double)attr_mvpd_data[i][0]) * freq_bias) + 0.5);
    attr_mvpd_data[i][1] = (uint32_t) ((( (double)attr_mvpd_data[i][1]) * volt_ext_vdd_bias) + 0.5);
    attr_mvpd_data[i][3] = (uint32_t) ((( (double)attr_mvpd_data[i][3]) * volt_ext_vcs_bias) + 0.5);
  }

  FAPI_DBG("BIAS freq    = %f", freq_bias);
  FAPI_DBG("BIAS vdd ext = %f  vcs ext = %f", volt_ext_vdd_bias, volt_ext_vcs_bias);
  FAPI_DBG("BIAS vdd int = %f  vcs int = %f", *volt_int_vdd_bias, *volt_int_vcs_bias);

  return l_rc;
} // end proc_get_extint_bias


/// ------------------------------------------------------------
/// \brief Update CPM Range table
/// \param[inout] *pss   => pointer to pstate superstructure
/// \param[in]    *attr  => pointer to attribute list structure
/// ------------------------------------------------------------

ReturnCode proc_upd_cpmrange (PstateSuperStructure *pss,
                              const AttributeList *attr)
{
  ReturnCode l_rc;
  int        rc           = 0;
  uint8_t    i            = 0;
  uint8_t    valid_points = 0;
  Pstate     pstate;
  uint32_t   freq_khz;

  do
  {
    // extract valid points from attribute and put into superstructure
    valid_points                      = attr->attr_cpm_inflection_points[8];
    pss->cpmranges.validRanges = valid_points;

    FAPI_DBG("CPM valid points = %u", valid_points);

    // loop over valid points in attribute and convert to Khz and then convert to pstate value
    for (i = 0; i < valid_points; i++) {
      freq_khz = attr->attr_cpm_inflection_points[i] * revle32(pss->gpst.frequency_step_khz);
      rc = freq2pState(&(pss->gpst), freq_khz, &pstate);  if (rc) break;
      rc = pstate_minmax_chk(&(pss->gpst), &pstate);      if (rc) break;
      pss->cpmranges.inflectionPoint[i] = pstate;

      FAPI_DBG("CPM point  freq_khz = %u  pstate = %d",freq_khz, pstate);
    }

    if (rc) break;

    // convert pMax attribute to Khz and then convert to pstate value
    freq_khz = attr->attr_cpm_inflection_points[9] * revle32(pss->gpst.frequency_step_khz);
    rc = freq2pState(&(pss->gpst), freq_khz, &pstate);   if (rc) break;
    rc = pstate_minmax_chk(&(pss->gpst), &pstate);       if (rc) break;
    pss->cpmranges.pMax = pstate;

    FAPI_DBG("CPM pMax   freq_khz = %u  pstate = %d",freq_khz, pstate);
  } while (0);

  // ------------------------------------------------------
  // check error code from freq2pState or pstate_minmax_chk
  // ------------------------------------------------------
  if (rc) {
    int & RETURN_CODE = rc;

    if (rc == -PSTATE_LT_PSTATE_MIN || rc == -PSTATE_LT_PSTATE_MIN) {
      FAPI_ERR("**** ERROR : Computed pstate for freq (%d khz) out of bounds of MAX/MIN possible rc = %d", freq_khz, rc);
      FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_PSTATE_MINMAX_BOUNDS_ERROR);
    }
    else if (rc == -GPST_PSTATE_GT_GPST_PMAX){
      FAPI_ERR("**** ERROR : Computed pstate is greater than max pstate in gpst (max pstate = %d  computed pstate = %d  rc = %d", pstate, gpst_pmax(&(pss->gpst)), rc );
      FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_PSTATE_GT_GPSTPMAX_ERROR);
    }
    else {
      FAPI_ERR("**** ERROR : Bad Return code rc = %d", rc );
      FAPI_SET_HWP_ERROR(l_rc, RC_PROCPM_PSTATE_DATABLOCK_ERROR);
    }
  }

  return l_rc;
} // end proc_upd_cpmrange


/// -------------------------------------------------------------------
/// \brief Boost max frequency in pstate table based on boost attribute
/// \param[inout] *pss   => pointer to pstate superstructure
/// \param[in]    *attr  => pointer to attribute list structure
/// -------------------------------------------------------------------

ReturnCode proc_boost_gpst (PstateSuperStructure *pss,
                            uint32_t attr_boost_percent)
{
  ReturnCode l_rc;
  uint8_t    i;
  uint8_t    idx;
  double    boosted_pct;
  uint32_t   boosted_freq_khz;
  uint32_t   pstate0_frequency_khz;
  uint32_t   frequency_step_khz;
  uint32_t   pstate_diff;
  gpst_entry_t entry;
  uint8_t    gpsi_max;

  // calculate percent to boost
  boosted_pct = 1.0 + (BOOST_PCT_UNIT * (double)attr_boost_percent);

  // get turbo frequency (pstate0 frequency)
  pstate0_frequency_khz = revle32(pss->gpst.pstate0_frequency_khz);

  // get pstate frequency step
  frequency_step_khz    = revle32(pss->gpst.frequency_step_khz);

  // calculate boosted frequency
  boosted_freq_khz = (uint32_t) ( (double)pstate0_frequency_khz * boosted_pct);

  // if boosted frequency is <= turbo frequency, then no boost is to be done
  if (boosted_freq_khz <= pstate0_frequency_khz)
    return l_rc;

  // calculate # pstates that boosted frequency is above turbo
  pstate_diff = (boosted_freq_khz/frequency_step_khz) - (pstate0_frequency_khz/frequency_step_khz);

  // pstate difference is 0 then no boost is to be done, else update global pstate table
  if (pstate_diff == 0) {
    return l_rc;
  }
  else {
    gpsi_max    = pss->gpst.entries - 1;
    entry.value = revle64(pss->gpst.pstate[gpsi_max].value);

    FAPI_DBG("Boosting Pstate Table : %% = %f num pstates added = %d", boosted_pct, pstate_diff);

   for (i = 1; i <= pstate_diff; i++) {
      idx = gpsi_max + i;
      pss->gpst.pstate[idx].value = revle64(entry.value);
    }

    pss->gpst.entries += pstate_diff;

  }

  return l_rc;
} // end proc_boost_gpst


} //end extern C

OpenPOWER on IntegriCloud