summaryrefslogtreecommitdiffstats
path: root/src/usr/hwpf/hwp/mc_config/mss_eff_config/opt_memmap.C
blob: ba3eacc0474ef66c9dbbb458dc34764f13eb9521 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/hwpf/hwp/mc_config/mss_eff_config/opt_memmap.C $      */
/*                                                                        */
/* IBM CONFIDENTIAL                                                       */
/*                                                                        */
/* COPYRIGHT International Business Machines Corp. 2012,2013              */
/*                                                                        */
/* p1                                                                     */
/*                                                                        */
/* Object Code Only (OCO) source materials                                */
/* Licensed Internal Code Source Materials                                */
/* IBM HostBoot Licensed Internal Code                                    */
/*                                                                        */
/* The source code for this program is not published or otherwise         */
/* divested of its trade secrets, irrespective of what has been           */
/* deposited with the U.S. Copyright Office.                              */
/*                                                                        */
/* Origin: 30                                                             */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
// $Id: opt_memmap.C,v 1.16 2013/10/28 21:17:47 jmcgill Exp $
// $Source: /afs/awd/projects/eclipz/KnowledgeBase/.cvsroot/eclipz/chips/p8/working/procedures/ipl/fapi/opt_memmap.C,v $


//------------------------------------------------------------------------------
// *|
// *! (C) Copyright International Business Machines Corp. 2011
// *! All Rights Reserved -- Property of IBM
// *! *** IBM Confidential ***
// *|
// *! TITLE       : opt_memmap.C
// *! DESCRIPTION : Layout non-mirrored/mirrored address map (FAPI)
// *!
// *! OWNER NAME  : Joe McGill    Email: jmcgill@us.ibm.com
// *! BACKUP NAME : Mark Bellows  Email: bellows@us.ibm.com
// *! BACKUP NAME : Van Lee       Email: vanlee@us.ibm.com
// *!
//------------------------------------------------------------------------------

//------------------------------------------------------------------------------
// CHANGE HISTORY:
//------------------------------------------------------------------------------
// Version:|  Author: |  Date:  | Comment:
//---------|----------|---------|-----------------------------------------------
//  1.16   | jmcgill  | 10/28/13| Offset drawers by 32TB rather than 1TB
//  1.15   | jmcgill  | 09/17/13| Add logic to offset memory map based on
//         |          |         | drawer number (required for multi-drawer
//         |          |         | Brazos)
//  1.14   | thi      | 08/29/13| Init variable to avoid HB compiler error.
//  1.13   | jmcgill  | 08/29/13| Remove use of reverse iter (HB doesn't support)
//  1.12   | jmcgill  | 07/10/13| Update to match new attributes, selective
//         |          |         | aligment policy changes
//  1.11   | jmcgill  | 06/11/13| Update for alternate BAR support (mirrored)
//  1.10   | jmcgill  | 05/24/13| Updates for alternate BAR support
//  1.9    | jmcgill  | 05/23/13| Address FW review issues
//  1.8    | jmcgill  | 04/28/13| Add HTM/OCC memory allocation, fix namespace
//  1.7    | jmcgill  | 04/20/13| Rewrite to add additional sorting capabilities
//         |          |         | desired for exercisor mirroring testing
//  1.6    | vanlee   | 02/22/13| Update sort logic of ProcBase class
//  1.5    | vanlee   | 02/20/13| Add init paramter
//  1.4    | vanlee   | 01/04/13| Added version string
//  1.1    | vanlee   | 12/01/12| First drop
//------------------------------------------------------------------------------

//------------------------------------------------------------------------------
// Design flow:
//
// opt_memmap() interacts with mss_eff_grouping() to define the assignment
// of non-mirrored/mirrored real address space on each chip in the drawer
//
// opt_memmap() will be called twice in the IPL flow, once before and once
// after mss_eff_grouping()
//
// 1) Call opt_memmap() with i_init = true
//    - Each proc's ATTR_PROC_MEM_BASE attribute is set to 0 (512TB for flipped
//      alignment)
//    - Each proc's ATTR_PROC_MIRROR_BASE attribute is set to 512TB (0 for
//      flipped alignment, 8TB for selective alignment)
//
//    This provides a basis for mss_eff_grouping() to stack all on-chip
//    groups.
//
// 2) mss_eff_grouping() call
//    - The HWP updates each proc's ATTR_PROC_[MEM|MIRROR]_[BASES|SIZES]
//      attributes based on the address regions allocated for installed memory
//      behind each proc
//    - ATTR_PROC_[MEM|MIRROR]_[BASES|SIZES]_ACK are updated to reflect
//      the stackable size of each on chip memory region
//
// 3) Call opt_memmap() with i_init = false
//    - Consume mss_eff_grouping() attributes for each proc to determine
//      "effective stackable" size of non-mirrored/mirrored regions
//      on each proc
//    - Stack procs based on their effective size and desired placement
//      policy
//                                         non-mirrored    mirrored
//         mirror       eff. stacking       stacking       stacking
//         policy       sort criteria        origin         origin
//        --------      -------------      ------------    --------
//         NORMAL            nm                0TB           512TB
//         DRAWER            nm             1TB*drawer     512TB+(1TB*drawer/2)
//         FLIPPED           m                512TB           0TB
//        SELECTIVE         nm+m               0TB            8TB
//
//    - Write ATTR_PROC_[MEM|MIRROR]_BASE attributes to their final
//      value
//
// 4) mss_eff_grouping() call
//    - Second run will produce properly aligned output attributes based
//      on final per-chip base address attributes determine in prior step
//
//------------------------------------------------------------------------------

//------------------------------------------------------------------------------
//  Includes
//------------------------------------------------------------------------------

#include <opt_memmap.H>


//------------------------------------------------------------------------------
//  Constant definitions
//------------------------------------------------------------------------------

extern "C" {

using namespace fapi;


//------------------------------------------------------------------------------
//  Function definitions
//------------------------------------------------------------------------------


// round to next largest power of 2
inline uint64_t PowerOf2Roundedup(uint64_t i_number)
{
    if (i_number)
    {
        --i_number;
        i_number |= i_number >> 1;
        i_number |= i_number >> 2;
        i_number |= i_number >> 4;
        i_number |= i_number >> 8;
        i_number |= i_number >> 16;
        i_number |= i_number >> 32;
        ++i_number;
    }
    return i_number;
}


// class to represent memory region
// filled by attribute data from mss_eff_grouping procedure
class MemRegion
{

public:

    // region type (mirrored/non-mirrored)
    enum group_type { nm = 0, m = 1 };

    // region type
    group_type iv_group_type;

    // region parameters
    uint64_t iv_base;
    uint64_t iv_size;

    // comparison operator for sort
    bool operator < (MemRegion rhs) const
    {
        bool l_lt = true;
        if (iv_base > rhs.iv_base ||
            ((iv_base == rhs.iv_base) && (iv_size > rhs.iv_size)))
        {
            l_lt = false;
        }
        return l_lt;
    }

    // constructor
    MemRegion(MemRegion::group_type type, uint64_t base, uint64_t size) :
        iv_group_type(type), iv_base(base), iv_size(size) {}

    // debug function
    void dump()
    {
        FAPI_DBG("Region [ %s ]", (iv_group_type == nm)?("nm"):("m"));
        FAPI_DBG("  Base: %016llX", iv_base);
        FAPI_DBG("  Size: %016llX", iv_size);
    }
};


// class to represent memory map (non-mirrored/mirrored) on one processor chip
class ProcChipMemmap
{

public:
    // pointer to processor chip target
    Target *iv_target;
    // mirroring policy
    uint8_t iv_mirror_policy;

    // chip location information
    uint8_t iv_pos;
    uint8_t iv_node_id;
    uint8_t iv_chip_id;

    // chip non-mirrored base, effective size, and member regions
    uint64_t iv_nm_base;
    uint64_t iv_nm_eff_size;
    std::vector<MemRegion> iv_nm_regions;

    // chip mirrored base, effective size, and member regions
    uint64_t iv_m_base;
    uint64_t iv_m_eff_size;
    std::vector<MemRegion> iv_m_regions;

    // comparison operator for sort
    // sort in increasing size, and decreasing proc position
    // e.g. proc0 and proc2 have same size, then the order will be
    // proc2 then proc0
    bool operator < (ProcChipMemmap rhs) const
    {
        bool l_lt = true;
        uint64_t l_this_eff_size = 0;
        uint64_t l_rhs_eff_size = 0;

        // compute effective size based on mirror policy
        // sort by non-mirrored size
        if (((iv_mirror_policy == ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_NORMAL) &&
             (rhs.iv_mirror_policy == ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_NORMAL)) ||
            ((iv_mirror_policy == ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_DRAWER) &&
             (rhs.iv_mirror_policy == ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_DRAWER)) ||
            ((iv_mirror_policy == ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_SELECTIVE) &&
             (rhs.iv_mirror_policy == ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_SELECTIVE)))
        {
            l_this_eff_size = iv_nm_eff_size;
            l_rhs_eff_size  = rhs.iv_nm_eff_size;
        }
        // sort by mirrored size
        else if ((iv_mirror_policy == ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_FLIPPED) &&
                 (rhs.iv_mirror_policy == ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_FLIPPED))
        {
            l_this_eff_size = iv_m_eff_size;
            l_rhs_eff_size  = rhs.iv_m_eff_size;
        }
        // perform sort comparison
        if (l_this_eff_size > l_rhs_eff_size ||
            (l_this_eff_size == l_rhs_eff_size && iv_pos < rhs.iv_pos))
        {
            l_lt = false;
        }
        return l_lt;
    }

    // constructor
    ProcChipMemmap(Target* t, uint8_t mirror_policy) :
        iv_target(t), iv_mirror_policy(mirror_policy) {}

    // process chip data from attributes
    ReturnCode processAttributes()
    {
        ReturnCode rc;
        uint64_t l_nm_bases[OPT_MEMMAP_MAX_NM_REGIONS];
        uint64_t l_nm_sizes[OPT_MEMMAP_MAX_NM_REGIONS];
        uint64_t l_m_bases[OPT_MEMMAP_MAX_M_REGIONS];
        uint64_t l_m_sizes[OPT_MEMMAP_MAX_M_REGIONS];

        do
        {
            // obtain node/chip ID
            rc = FAPI_ATTR_GET(ATTR_FABRIC_NODE_ID,
                               iv_target,
                               iv_node_id);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_FABRIC_NODE)");
                break;
            }

            rc = FAPI_ATTR_GET(ATTR_FABRIC_CHIP_ID,
                               iv_target,
                               iv_chip_id);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_FABRIC_CHIP)");
                break;
            }
            iv_pos = ((4*iv_node_id)+iv_chip_id);

            // retrieve base address for each chip
            rc = FAPI_ATTR_GET(ATTR_PROC_MEM_BASE,
                               iv_target,
                               iv_nm_base);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_PROC_MEM_BASE)");
                break;
            }

            rc = FAPI_ATTR_GET(ATTR_PROC_MIRROR_BASE,
                               iv_target,
                               iv_m_base);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_PROC_MIRROR_BASE)");
                break;
            }

            // retrieve regions (bases and sizes) computed by mss_eff_grouping
            rc = FAPI_ATTR_GET(ATTR_PROC_MEM_BASES_ACK,
                               iv_target,
                               l_nm_bases);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_PROC_MEM_BASES_ACK)");
                break;
            }

            rc = FAPI_ATTR_GET(ATTR_PROC_MEM_SIZES_ACK,
                               iv_target,
                               l_nm_sizes);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_PROC_MEM_SIZES_ACK)");
                break;
            }
            rc = FAPI_ATTR_GET(ATTR_PROC_MIRROR_BASES_ACK,
                               iv_target,
                               l_m_bases);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_PROC_MIRROR_BASES_ACK)");
                break;
            }

            rc = FAPI_ATTR_GET(ATTR_PROC_MIRROR_SIZES_ACK,
                               iv_target,
                               l_m_sizes);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_PROC_MIRROR_SIZES_ACK)");
                break;
            }

            // populate non-mirrored regions
            FAPI_INF("Chip n%d:p%d", iv_node_id, iv_chip_id);
            for (uint8_t i = 0; i < OPT_MEMMAP_MAX_NM_REGIONS; i++)
            {
                if (l_nm_sizes[i] != 0)
                {
                    FAPI_INF("  l_nm_bases[%d] = %016llX", i, l_nm_bases[i]);
                    FAPI_INF("  l_nm_sizes[%d] = %016llX", i, l_nm_sizes[i]);
                    MemRegion r(MemRegion::nm, l_nm_bases[i], l_nm_sizes[i]);
                    iv_nm_regions.push_back(r);
                }
            }

            // populate mirrored regions
            for (uint8_t i = 0; i < OPT_MEMMAP_MAX_M_REGIONS; i++)
            {
                if (l_m_sizes[i] != 0)
                {
                    // align to common origin
                    FAPI_INF("  l_m_bases[%d] = %016llX", i, l_m_bases[i]);
                    FAPI_INF("  l_m_sizes[%d] = %016llX", i, l_m_sizes[i]);
                    MemRegion r(MemRegion::m, l_m_bases[i], l_m_sizes[i]);
                    iv_m_regions.push_back(r);
                }
            }

            // sort regions for effective size calculations
            std::sort(iv_nm_regions.begin(), iv_nm_regions.end());
            std::sort(iv_m_regions.begin(), iv_m_regions.end());

            // compute effective size of chip address space
            // this is simply the end address of the last region in
            // each stack (rounded up to a power of 2)
            if (iv_nm_regions.size() != 0)
            {
                if (iv_nm_base != iv_nm_regions[0].iv_base)
                {
                    const uint64_t& ADDR = iv_nm_base;
                    FAPI_ERR("Unexpected value returned for ATTR_PROC_MEM_BASE (=%016llX)",
                             iv_nm_base);
                    FAPI_SET_HWP_ERROR(rc, RC_OPT_MEMMAP_MEM_BASE_ERR);
                    break;
                }

                iv_nm_eff_size = iv_nm_regions[iv_nm_regions.size()-1].iv_base -
                    iv_nm_regions[0].iv_base;
                iv_nm_eff_size += iv_nm_regions[iv_nm_regions.size()-1].iv_size;
                iv_nm_eff_size = PowerOf2Roundedup(iv_nm_eff_size);
            }
            else
            {
                iv_nm_eff_size = 0;
            }
            FAPI_INF("  nm_eff_size = %016llX", iv_nm_eff_size);

            if (iv_m_regions.size() != 0)
            {
                if (iv_m_base != iv_m_regions[0].iv_base)
                {
                    const uint64_t& ADDR = iv_m_base;
                    FAPI_ERR("Unexpected value returned for ATTR_PROC_MIRROR_BASE (=%016llX)",
                             iv_m_base);
                    FAPI_SET_HWP_ERROR(rc, RC_OPT_MEMMAP_MIRROR_BASE_ERR);
                    break;
                }

                iv_m_eff_size = iv_m_regions[iv_m_regions.size()-1].iv_base -
                    iv_m_regions[0].iv_base;
                iv_m_eff_size += iv_m_regions[iv_m_regions.size()-1].iv_size;
                iv_m_eff_size = PowerOf2Roundedup(iv_m_eff_size);
            }
            else
            {
                iv_m_eff_size = 0;
            }
            FAPI_INF("  m_eff_size = %016llX", iv_m_eff_size);

        } while(0);

        return rc;
    }

    // establish new non-mirrored base address for this chip
    void setNMBase(const uint64_t& base)
    {
        iv_nm_base = base;
    }

    // establish new mirrored base address for this chip
    void setMBase(const uint64_t& base)
    {
        iv_m_base = base;
    }

    // flush state back to attributes
    ReturnCode flushAttributes()
    {
        ReturnCode rc;

        do
        {
            // set base addresses
            rc = FAPI_ATTR_SET(ATTR_PROC_MEM_BASE,
                               iv_target,
                               iv_nm_base);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_SET (ATTR_PROC_MEM_BASE)");
                break;
            }

            rc = FAPI_ATTR_SET(ATTR_PROC_MIRROR_BASE,
                               iv_target,
                               iv_m_base);
            if (!rc.ok())
            {
                FAPI_ERR("Error from FAPI_ATTR_SET (ATTR_PROC_MIRROR_BASE)");
                break;
            }

        } while(0);
        return rc;
    }
};


ReturnCode opt_memmap(std::vector<fapi::Target> & i_procs, bool i_init)
{
    ReturnCode rc;
    std::vector<ProcChipMemmap> l_drawer_memmap;
    uint8_t l_mirror_policy;

    do
    {
        // retrieve mirroring placement policy attribute
        rc = FAPI_ATTR_GET(ATTR_MEM_MIRROR_PLACEMENT_POLICY,
                           NULL,
                           l_mirror_policy);
        if (!rc.ok())
        {
            FAPI_ERR("Error querying ATTR_MEM_MIRROR_PLACEMENT_POLICY");
            break;
        }

        FAPI_INF("opt_memmap called with i_init = %d, mirror_policy: %d",
                 (i_init)?(1):(0), l_mirror_policy);

        // first pass of execution
        if (i_init)
        {
            uint64_t mem_base;
            uint64_t mirror_base;

            if (l_mirror_policy ==
                ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_NORMAL)
            {
                mem_base = OPT_MEMMAP_BASE_ORIGIN;
                mirror_base = OPT_MEMMAP_OFFSET_ORIGIN;
            }
            else if (l_mirror_policy ==
                     ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_FLIPPED)
            {
                mem_base = OPT_MEMMAP_OFFSET_ORIGIN;
                mirror_base = OPT_MEMMAP_BASE_ORIGIN;
            }
            else if (l_mirror_policy ==
                     ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_SELECTIVE)
            {
                mem_base = OPT_MEMMAP_BASE_ORIGIN;
                mirror_base = OPT_MEMMAP_SELECTIVE_ORIGIN;
            }

            // loop across all chips in drawer, set common
            // base for non-mirrored/mirrored memory on each chip in preparation
            // for mss_eff_grouping call
            for (std::vector<fapi::Target>::iterator l_iter = i_procs.begin();
                 l_iter != i_procs.end();
                 ++l_iter)
            {
                if ((l_mirror_policy ==
                     ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_DRAWER) &&
                    (l_iter == i_procs.begin()))
                {
                    uint8_t drawer_id;
                    rc = FAPI_ATTR_GET(ATTR_FABRIC_NODE_ID,
                                       &(*l_iter),
                                       drawer_id);
                    if (!rc.ok())
                    {
                        FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_FABRIC_NODE_ID)");
                        break;
                    }

                    mem_base = drawer_id * 32 * OPT_MEMMAP_TB;
                    mirror_base = OPT_MEMMAP_OFFSET_ORIGIN + (mem_base / 2);
                }

                rc = FAPI_ATTR_SET(ATTR_PROC_MEM_BASE,
                                   &(*l_iter),
                                   mem_base);
                if (!rc.ok())
                {
                    FAPI_ERR("Error from FAPI_ATTR_SET (ATTR_PROC_MEM_BASE)!");
                    break;
                }

                rc = FAPI_ATTR_SET(ATTR_PROC_MIRROR_BASE,
                                   &(*l_iter),
                                   mirror_base);
                if (!rc.ok())
                {
                    FAPI_ERR("Error from FAPI_ATTR_SET (ATTR_PROC_MIRROR_BASE)!");
                    break;
                }
            }
            if (!rc.ok())
            {
                break;
            }
        }
        // second pass of execution
        // reorder chips based on their effective stackable size
        else
        {
            // base for alignment of mirrored/non-mirrored regions
            uint64_t l_m_base_curr = 0;
            uint64_t l_nm_base_curr = 0;

            if (l_mirror_policy ==
                ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_NORMAL)
            {
                // non-mirrored at zero, mirrored at offset
                l_nm_base_curr = OPT_MEMMAP_BASE_ORIGIN;
                l_m_base_curr  = OPT_MEMMAP_OFFSET_ORIGIN;
            }
            else if (l_mirror_policy ==
                     ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_FLIPPED)
            {
                // mirrored at zero, non-mirrored at offset
                l_nm_base_curr = OPT_MEMMAP_OFFSET_ORIGIN;
                l_m_base_curr  = OPT_MEMMAP_BASE_ORIGIN;
            }
            else if (l_mirror_policy ==
                     ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_SELECTIVE)
            {
                l_nm_base_curr = OPT_MEMMAP_BASE_ORIGIN;
                l_m_base_curr  = OPT_MEMMAP_SELECTIVE_ORIGIN;
            }

            // loop across all chips in drawer, consume results of
            // mss_eff_grouping call
            for (std::vector<fapi::Target>::iterator l_iter = i_procs.begin();
                 l_iter != i_procs.end();
                 ++l_iter)
            {
                if ((l_mirror_policy ==
                     ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_DRAWER) &&
                    (l_iter == i_procs.begin()))
                {
                    uint8_t drawer_id;
                    rc = FAPI_ATTR_GET(ATTR_FABRIC_NODE_ID,
                                       &(*l_iter),
                                       drawer_id);
                    if (!rc.ok())
                    {
                        FAPI_ERR("Error from FAPI_ATTR_GET (ATTR_FABRIC_NODE_ID)");
                        break;
                    }

                    l_nm_base_curr = drawer_id * 32 * OPT_MEMMAP_TB;
                    l_m_base_curr = OPT_MEMMAP_OFFSET_ORIGIN + (l_nm_base_curr / 2);
                }

                ProcChipMemmap p(&(*l_iter), l_mirror_policy);
                rc = p.processAttributes();
                if (!rc.ok())
                {
                    FAPI_ERR("Error from processAttributes");
                    break;
                }
                l_drawer_memmap.push_back(p);
            }
            if (!rc.ok())
            {
                break;
            }

            // sort chips based on their effective stackable size
            std::sort(l_drawer_memmap.begin(), l_drawer_memmap.end());

            // walk through chips, from largest->smallest effective size &
            // assign base addresses for each group
            for (uint8_t i = l_drawer_memmap.size();
                 i != 0;
                 --i)
            {
                FAPI_DBG("Stacking chip n%d:p%d (eff nm size = %lld GB, eff m size = %lld GB)...",
                         l_drawer_memmap[i-1].iv_node_id,
                         l_drawer_memmap[i-1].iv_chip_id,
                         l_drawer_memmap[i-1].iv_nm_eff_size / OPT_MEMMAP_GB,
                         l_drawer_memmap[i-1].iv_m_eff_size / OPT_MEMMAP_GB);

                if (l_mirror_policy ==
                    ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_SELECTIVE)
                {
                    l_m_base_curr += l_drawer_memmap[i-1].iv_nm_eff_size;
                }

                // establish base addresses for this chip & realign
                // all groups on this chip to reflect this
                l_drawer_memmap[i-1].setNMBase(l_nm_base_curr);
                l_drawer_memmap[i-1].setMBase(l_m_base_curr);
                FAPI_DBG("nm base: %016llX", l_nm_base_curr);
                FAPI_DBG("m base: %016llX", l_m_base_curr);
                if ((l_mirror_policy ==
                     ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_NORMAL) ||
                    (l_mirror_policy ==
                     ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_DRAWER))
                {
                    l_nm_base_curr += l_drawer_memmap[i-1].iv_nm_eff_size;
                    l_m_base_curr += l_drawer_memmap[i-1].iv_nm_eff_size / 2;
                }
                else if (l_mirror_policy ==
                         ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_FLIPPED)
                {
                    l_nm_base_curr += l_drawer_memmap[i-1].iv_nm_eff_size;
                    l_m_base_curr += l_drawer_memmap[i-1].iv_m_eff_size;
                }
                else if (l_mirror_policy ==
                         ENUM_ATTR_MEM_MIRROR_PLACEMENT_POLICY_SELECTIVE)
                {
                    l_nm_base_curr += l_drawer_memmap[i-1].iv_nm_eff_size;
                    l_m_base_curr += l_drawer_memmap[i-1].iv_nm_eff_size / 2;
                }

                // flush attributes for this chip
                rc = l_drawer_memmap[i-1].flushAttributes();
                if (!rc.ok())
                {
                    FAPI_ERR("Error from flushAttributes");
                    break;
                }
            }
            if (!rc.ok())
            {
                break;
            }
        }
    } while(0);

    return rc;
}


} //end extern C
OpenPOWER on IntegriCloud