summaryrefslogtreecommitdiffstats
path: root/src/usr/hwpf/hwp/mc_config/mss_eff_config/mss_eff_config_thermal.C
blob: fe312334495eb410a3261f791dae6ab6f6fde7cf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/hwpf/hwp/mc_config/mss_eff_config/mss_eff_config_thermal.C $ */
/*                                                                        */
/* IBM CONFIDENTIAL                                                       */
/*                                                                        */
/* COPYRIGHT International Business Machines Corp. 2012,2013              */
/*                                                                        */
/* p1                                                                     */
/*                                                                        */
/* Object Code Only (OCO) source materials                                */
/* Licensed Internal Code Source Materials                                */
/* IBM HostBoot Licensed Internal Code                                    */
/*                                                                        */
/* The source code for this program is not published or otherwise         */
/* divested of its trade secrets, irrespective of what has been           */
/* deposited with the U.S. Copyright Office.                              */
/*                                                                        */
/* Origin: 30                                                             */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
// $Id: mss_eff_config_thermal.C,v 1.14 2012/12/12 20:10:33 pardeik Exp $
// $Source: /afs/awd/projects/eclipz/KnowledgeBase/.cvsroot/eclipz/chips/
//          centaur/working/procedures/ipl/fapi/mss_eff_config_thermal.C,v $
//------------------------------------------------------------------------------
// *! (C) Copyright International Business Machines Corp. 2011
// *! All Rights Reserved -- Property of IBM
// *! *** IBM Confidential ***
//------------------------------------------------------------------------------
// *! TITLE       : mss_eff_config_thermal
// *! DESCRIPTION : see additional comments below
// *! OWNER NAME  : Joab Henderson    Email: joabhend@us.ibm.com
// *! BACKUP NAME : Michael Pardeik   Email: pardeik@us.ibm.com
// *! ADDITIONAL COMMENTS :
//
// applicable CQ component memory_screen
//
// DESCRIPTION:
// The purpose of this procedure is to set the default throttle and power
// attributes for dimms in a given system
// -- The power attributes are the slope/intercept values.  Note that these
//    values are in cW.
//    -- ISDIMM will calculate values based on various attributes
//    -- CDIMM will get values from VPD
// -- The throttle attributes will setup values for safemode and runtime
//
//
//------------------------------------------------------------------------------
// Don't forget to create CVS comments when you check in your changes!
//------------------------------------------------------------------------------
// CHANGE HISTORY:
//------------------------------------------------------------------------------
// Version:|  Author: |  Date:  | Comment:
//---------|----------|---------|-----------------------------------------------
//   1.14  | pardeik  |03-DEC-12| update lines to have a max width of 80 chars
//         |          |         | added FAPI_ERR before return code lines
//         |          |         | made trace statements for procedures FAPI_IMP
//         |          |         | changed some FAPI_INF to FAPI_DBG
//         |          |         | set per_chip safemode throttles to 32
//         |          |         | updates for FAPI_SET_HWP_ERROR
//   1.13  | pardeik  |28-NOV-12| fixed hostboot compile errors
//   1.12  | pardeik  |07-NOV-12| updated to use new SI attributes and their
//         |          |         | enums
//   1.11  | pardeik  |22-OCT-12| Use the schmoo attributes to find wc
//         |          |         | termination, updated hwp errors, removed
//         |          |         | unneeded variables, added CQ component comment
//         |          |         | line, updated safemode throttle default values
//   1.10  | pardeik  |19-OCT-12| Enable TYPE_1D for ODT mapping.  Set ISDIMM
//         |          |         | supplier power curve to master power curve
//   1.9   | pardeik  |11-OCT-12| updated to use new attributes, termination
//         |          |         | power calculation added in
//   1.8   | pardeik  |13-JUN-12| Major rewrite to have dimm power determined by
//         |          |         | dram generation and width, with uplifts
//         |          |         | applied (not based on dimm size lookup table
//         |          |         | any longer)
//   1.7   | pardeik  |04-MAY-12| removed typedef from structures, use fapi to
//         |          |         | define dimm type enums
//   1.6   | pardeik  |10-APR-12| update cdimm power/int default, change
//         |          |         | power_thermal_values_t to use int32_t instead
//         |          |         | of uint32_t in order to identify a negative
//         |          |         | value correctly, added dimm config to the
//         |          |         | messages printed out
//   1.5   | pardeik  |03-APR-12| fix cdimm size/rank addition to cycle through
//         |          |         | both mba's
//   1.4   | pardeik  |26-MAR-12| Rewrite to iterate through the MBA's using
//         |          |         | fapi functions
//         | pardeik  |01-DEC-11| Updated to align with procedure definition
//   1.3   | asaetow  |03-NOV-11| Fixed to comply with mss_eff_config_thermal.H
//   1.2   | asaetow  |03-NOV-11| Changed format of file and made function lower
//         |          |         | case. 
//   1.1   | pardeik  |01-NOV-11| First Draft.

/*
TODO ITEMS:

Waiting for platinit attributes to enable sections in this procedure:
1.  Power Curves to originate from CDIMM VPD (platinit)
2.  Thermal memory power limit from MRW (platinit)
3.  Safemode throttles from MRW (platinit)
5.  Need runtime throttles non-volatile and initialized to zero by firmware on
    the first IPL
6.  Call out error for CDIMM and lab VPD power curves when it makes sense
7.  Update power table after hardware measurements are done

*/

//------------------------------------------------------------------------------
//  My Includes
//------------------------------------------------------------------------------
#include <mss_eff_config_thermal.H>
#include <mss_bulk_pwr_throttles.H>

//------------------------------------------------------------------------------
//  Includes
//------------------------------------------------------------------------------
#include <fapi.H>

//------------------------------------------------------------------------------
//  Constants
//------------------------------------------------------------------------------
const uint8_t NUM_PORTS = 2;
const uint8_t NUM_DIMMS = 2;
const uint8_t NUM_RANKS = 4;
const uint32_t ISDIMM_POWER_SLOPE_DEFAULT = 940;
const uint32_t ISDIMM_POWER_INT_DEFAULT = 900;
const uint32_t CDIMM_POWER_SLOPE_DEFAULT = 0x8240;
const uint32_t CDIMM_POWER_INT_DEFAULT = 0x80CE;
// These are based on what was used when ISDIMM power values were taken from the
// power calculator
const uint8_t IDLE_DIMM_UTILIZATION = 0;
const uint8_t ACTIVE_DIMM_UTILIZATION = 70;
const uint8_t DATA_BUS_READ_PERCENT = 66;
const uint8_t DATA_BUS_WRITE_PERCENT = 34;


extern "C" {

    using namespace fapi;

//------------------------------------------------------------------------------
// Funtions in this file
//------------------------------------------------------------------------------
    fapi::ReturnCode mss_eff_config_thermal(const fapi::Target & i_target_mba);

    fapi::ReturnCode mss_eff_config_thermal_term
      (
       const char nom_or_wc_term[4],
       uint8_t i_port,
       uint8_t i_dimm,
       uint8_t i_rank,
       uint32_t i_dimm_voltage,
       uint8_t i_dram_width,
       uint8_t i_dram_tdqs,
       uint8_t i_ibm_type[NUM_PORTS][NUM_DIMMS],
       uint8_t i_dimm_ranks_configed_array[NUM_PORTS][NUM_DIMMS],
       uint8_t i_dimm_dram_ron[NUM_PORTS][NUM_DIMMS],
       uint8_t i_dimm_rank_odt_rd[NUM_PORTS][NUM_DIMMS][NUM_RANKS],
       uint8_t i_dimm_rank_odt_wr[NUM_PORTS][NUM_DIMMS][NUM_RANKS],
       uint8_t i_dram_rtt_nom[NUM_PORTS][NUM_DIMMS][NUM_RANKS],
       uint8_t i_dram_rtt_wr[NUM_PORTS][NUM_DIMMS][NUM_RANKS],
       uint8_t i_cen_dq_dqs_rcv_imp[NUM_PORTS],
       uint8_t i_cen_dq_dqs_drv_imp[NUM_PORTS],
       float &o_dimm_power_adder_termination
       );

    fapi::ReturnCode mss_eff_config_thermal_get_wc_term
      (
       const fapi::Target &i_target_mba,
       uint8_t i_port,
       uint8_t &o_cen_dq_dqs_rcv_imp_wc,
       uint8_t &o_cen_dq_dqs_drv_imp_wc
       );

    fapi::ReturnCode mss_eff_config_thermal_get_cen_drv_value
      (
       uint8_t i_cen_dq_dqs_drv_imp,
       uint8_t &o_cen_dq_dqs_drv_imp
       );

//------------------------------------------------------------------------------
// @brief mss_eff_config_thermal(): This function determines the power and
// throttle attribute values to use
//
// @param[in]	const fapi::Target & i_target_mba:  MBA Target passed in
//
// @return fapi::ReturnCode
//------------------------------------------------------------------------------

    fapi::ReturnCode mss_eff_config_thermal(const fapi::Target & i_target_mba)
    {
	fapi::ReturnCode rc = fapi::FAPI_RC_SUCCESS;

	char procedure_name[32];
	sprintf(procedure_name, "mss_eff_config_thermal");
	FAPI_IMP("*** Running %s ***", procedure_name);

	enum
	{
	    CDIMM  = fapi::ENUM_ATTR_EFF_DIMM_TYPE_CDIMM,
	    RDIMM  = fapi::ENUM_ATTR_EFF_DIMM_TYPE_RDIMM,
	    UDIMM  = fapi::ENUM_ATTR_EFF_DIMM_TYPE_UDIMM,
	    LRDIMM = fapi::ENUM_ATTR_EFF_DIMM_TYPE_LRDIMM,
	    DDR3 = fapi::ENUM_ATTR_EFF_DRAM_GEN_DDR3,
	    DDR4 = fapi::ENUM_ATTR_EFF_DRAM_GEN_DDR4,
	    X4 = fapi::ENUM_ATTR_EFF_DRAM_WIDTH_X4,
	    X8 = fapi::ENUM_ATTR_EFF_DRAM_WIDTH_X8,
	};

// Structure types for the table that holds dimm power and adjustment values
// that will be used

	struct dimm_power_t
	{
	    uint32_t	idle;
	    uint32_t	active;
	};
	struct dimm_type_t
	{
	    int32_t	udimm;
	    int32_t	lrdimm;
	    int32_t	rdimm;
	};
	struct power_data_t
	{
	    uint8_t		dram_generation;
	    uint8_t		dram_width;
	    uint8_t		dimm_ranks;
	    dimm_power_t	rank_power;
	    dimm_type_t		dimm_type_adder;
	    int32_t		dimm_voltage_base;
	    int32_t		dimm_frequency_base;	    
	};

//------------------------------------------------------------------------------
// Master Ranks column uses the values in the same table entry for the number of
// master ranks specified.  Default is to have it use same power for each master
// rank, so that is why master ranks = 1.  If we need to separate power based on
// number of master ranks, then have the table setup for descending master rank
// values.  We always need an entry for master ranks of 1.  Table lookup will
// stop after first matching entry is found (DRAM Generation, DRAM Width, and
// Master Ranks = dimm_master_ranks_array OR 1)
//
// These values need to cover the power of all IBM dimms.  Values will come from
// the power calculator and be verified by hardware measurements.
//
// Base Voltage and Base Frequency values need to match what mss_volt/mss_freq
// uses.
//
//            DRAM  DRAM  Master RankPower  DIMMType    Base    Base
//            Gen   Width Ranks	 idle,full  Adder       Volt    Freq
//                               cW         U,LR,RDIMM  mV      MHz
//------------------------------------------------------------------------------
	power_data_t power_table[] =
	{
	    { DDR3, X4,   1,     { 70,373}, {0,93,104}, 1350,	1066 },
	    { DDR3, X8,   1,     { 52,300}, {0,93,104}, 1350,	1066 },
	    { DDR4, X4,   1,     { 70,373}, {0,93,104}, 1350,	1066 },
	    { DDR4, X8,   1,     { 52,300}, {0,93,104}, 1350,	1066 },
	};

// other variables used in this function
	fapi::Target target_chip;
	std::vector<fapi::Target> target_mba_array;
	std::vector<fapi::Target> target_dimm_array;
	uint8_t port;
	uint8_t dimm;
	uint8_t mba_port;
	uint8_t mba_dimm;
	uint8_t rank;
	uint8_t entry;
	uint8_t dimm_type;
	uint8_t dimm_ranks_array[NUM_PORTS][NUM_DIMMS];
	uint32_t power_table_size;
	uint32_t power_slope_array[NUM_PORTS][NUM_DIMMS];
	uint32_t power_int_array[NUM_PORTS][NUM_DIMMS];
	uint32_t power_slope2_array[NUM_PORTS][NUM_DIMMS];
	uint32_t power_int2_array[NUM_PORTS][NUM_DIMMS];
	uint8_t found_entry_in_table;
	uint8_t dram_width;
	uint8_t dram_tdqs;
	uint8_t dram_gen;
	uint32_t dimm_voltage;
	uint32_t dimm_frequency;
	uint8_t dimm_ranks_configed_array[NUM_PORTS][NUM_DIMMS];
	uint8_t dimm_master_ranks_array[NUM_PORTS][NUM_DIMMS];
	int32_t dimm_power_adder_type;
	float dimm_power_multiplier_volt;
	float dimm_power_mulitiplier_freq;
	float dimm_idle_power;
	float dimm_active_power;
	float dimm_power_adder_termination;
	float dimm_power_adder_termination_largest = 0;
	uint8_t dimm_rank_odt_rd[NUM_PORTS][NUM_DIMMS][NUM_RANKS];
	uint8_t dimm_rank_odt_wr[NUM_PORTS][NUM_DIMMS][NUM_RANKS];
	uint8_t dimm_dram_ron[NUM_PORTS][NUM_DIMMS];
	uint8_t cen_dq_dqs_rcv_imp[NUM_PORTS];
	uint8_t cen_dq_dqs_drv_imp[NUM_PORTS];
	float dimm_power_adder_termination_wc;
	float dimm_power_adder_termination_largest_wc = 0;
	uint8_t cen_dq_dqs_rcv_imp_wc[NUM_PORTS];
	uint8_t cen_dq_dqs_drv_imp_wc[NUM_PORTS];
	uint8_t num_dimms_on_port;
	uint32_t throttle_n_per_mba;
	uint32_t throttle_n_per_chip;
	uint32_t throttle_d;
	uint32_t runtime_throttle_n_per_mba;
	uint32_t runtime_throttle_n_per_chip;
	uint32_t runtime_throttle_d;
	uint8_t dram_rtt_nom[NUM_PORTS][NUM_DIMMS][NUM_RANKS];
	uint8_t dram_rtt_wr[NUM_PORTS][NUM_DIMMS][NUM_RANKS];
	uint8_t ibm_type[NUM_PORTS][NUM_DIMMS];
	char dram_gen_str[4];
	uint32_t dimm_thermal_power_limit;
	uint32_t channel_pair_thermal_power_limit;
	uint8_t num_mba_with_dimms = 0;
	uint8_t mba_index;
	uint8_t dimm_number_registers[NUM_PORTS][NUM_DIMMS];
	uint8_t dimm_index;
	uint32_t cdimm_master_power_slope;
	uint32_t cdimm_master_power_intercept;
	uint32_t cdimm_supplier_power_slope;
	uint32_t cdimm_supplier_power_intercept;
	uint32_t safemode_throttle_n_per_mba;
	uint32_t safemode_throttle_n_per_chip;
	uint32_t safemode_throttle_d;

	power_table_size = (sizeof(power_table))/(sizeof(power_data_t));

//------------------------------------------------------------------------------
// Get input attributes
//------------------------------------------------------------------------------
	rc = FAPI_ATTR_GET(ATTR_EFF_DRAM_GEN, &i_target_mba, dram_gen);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_DRAM_GEN");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_DIMM_TYPE, &i_target_mba, dimm_type);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_DIMM_TYPE");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_DRAM_WIDTH, &i_target_mba, dram_width);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_DRAM_WIDTH");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_DRAM_TDQS, &i_target_mba, dram_tdqs);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_DRAM_TDQS");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_NUM_RANKS_PER_DIMM,
			   &i_target_mba, dimm_ranks_array);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_NUM_RANKS_PER_DIMM");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_NUM_MASTER_RANKS_PER_DIMM,
			   &i_target_mba, dimm_master_ranks_array);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_NUM_MASTER_RANKS_PER_DIMM");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_DIMM_RANKS_CONFIGED,
			   &i_target_mba, dimm_ranks_configed_array);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_DIMM_RANKS_CONFIGED");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_DRAM_RON, &i_target_mba, dimm_dram_ron);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_DRAM_RON");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_ODT_RD, &i_target_mba, dimm_rank_odt_rd);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_ODT_RD");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_ODT_WR, &i_target_mba, dimm_rank_odt_wr);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_ODT_WR");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_CEN_RCV_IMP_DQ_DQS,
			   &i_target_mba, cen_dq_dqs_rcv_imp);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_CEN_RCV_IMP_DQ_DQS");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_CEN_DRV_IMP_DQ_DQS,
			   &i_target_mba, cen_dq_dqs_drv_imp);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_CEN_DRV_IMP_DQ_DQS");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_DRAM_RTT_NOM, &i_target_mba, dram_rtt_nom);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_DRAM_RTT_NOM");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_DRAM_RTT_WR, &i_target_mba, dram_rtt_wr);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_DRAM_RTT_WR");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_IBM_TYPE, &i_target_mba, ibm_type);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_IBM_TYPE");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_NUM_DROPS_PER_PORT,
			   &i_target_mba, num_dimms_on_port);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_NUM_DROPS_PER_PORT");
	    return rc;
	}
// TODO:  use vpd values when power curve data is available from CDIMM VPD
// (platinit), remove hardcoding
	cdimm_master_power_slope = CDIMM_POWER_SLOPE_DEFAULT;
	cdimm_master_power_intercept = CDIMM_POWER_INT_DEFAULT;
	cdimm_supplier_power_slope = CDIMM_POWER_SLOPE_DEFAULT;
	cdimm_supplier_power_intercept = CDIMM_POWER_INT_DEFAULT;
/*
	rc = FAPI_ATTR_GET(ATTR_SPD_CDIMM_MASTER_POWER_SLOPE,
			   &i_target_mba, cdimm_master_power_slope);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_SPD_CDIMM_MASTER_POWER_SLOPE");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_SPD_CDIMM_MASTER_POWER_INTERCEPT,
			   &i_target_mba, cdimm_master_power_intercept);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_SPD_CDIMM_MASTER_POWER_INTERCEPT");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_SPD_CDIMM_SUPPLIER_POWER_SLOPE,
			   &i_target_mba, cdimm_supplier_power_slope);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_SPD_CDIMM_SUPPLIER_POWER_SLOPE");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_SPD_CDIMM_SUPPLIER_POWER_INTERCEPT,
			   &i_target_mba, cdimm_supplier_power_intercept);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_SPD_CDIMM_SUPPLIER_POWER_INTERCEPT");
	    return rc;
	}
*/
// TODO:  Get Safemode throttles from MRW (platinit), hardcode until available
	safemode_throttle_n_per_mba = 96;
	safemode_throttle_n_per_chip = 32;
	safemode_throttle_d = 512;
/*
	rc = FAPI_ATTR_GET(ATTR_MRW_SAFEMODE_MEM_THROTTLE_NUMERATOR_PER_MBA,
			   &i_target_mba, safemode_throttle_n_per_mba);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_MRW_SAFEMODE_MEM_THROTTLE_NUMERATOR_PER_MBA");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_MRW_SAFEMODE_MEM_THROTTLE_NUMERATOR_PER_CHIP,
			   &i_target_mba, safemode_throttle_n_per_chip);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_MRW_SAFEMODE_MEM_THROTTLE_NUMERATOR_PER_CHIP");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_MRW_SAFEMODE_MEM_THROTTLE_DENOMINATOR,
			   &i_target_mba, safemode_throttle_d);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_MRW_SAFEMODE_MEM_THROTTLE_DENOMINATOR");
	    return rc;
	}
*/
// TODO:  Get Thermal power Limit from MRW (platinit), hardcode until available
	if (dimm_type == CDIMM)
	{
	    dimm_thermal_power_limit = 5000; // in cW, per CDIMM, high limit
	}
	else
	{
	    dimm_thermal_power_limit = 2000; // in cW, per ISDIMM, high limit
	}
/*
	rc = FAPI_ATTR_GET(ATTR_MRW_THERMAL_MEMORY_POWER_LIMIT,
			   &i_target_mba, dimm_thermal_power_limit);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_MRW_THERMAL_MEMORY_POWER_LIMIT");
	    return rc;
	}
*/

// Get Centaur target for the given MBA
	rc = fapiGetParentChip(i_target_mba, target_chip);
	if (rc) {
	    FAPI_ERR("Error from fapiGetParentChip");
	    return rc;
	}
// Get voltage and frequency attributes
	rc = FAPI_ATTR_GET(ATTR_MSS_VOLT, &target_chip, dimm_voltage);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_MSS_VOLT");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_MSS_FREQ, &target_chip, dimm_frequency);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_MSS_FREQ");
	    return rc;
	}


// get any attributes from DIMM SPD
	if (dimm_type != CDIMM)
	{
	    rc = fapiGetAssociatedDimms(i_target_mba, target_dimm_array,
					fapi::TARGET_STATE_PRESENT);
	    if (rc) {
		FAPI_ERR("Error from fapiGetAssociatedDimms");
		return rc;
	    }
	    for (dimm_index=0;
		 dimm_index < target_dimm_array.size();
		 dimm_index++)
	    {
		rc = FAPI_ATTR_GET(ATTR_MBA_PORT,
				   &target_dimm_array[dimm_index], port);
		if (rc) {
		    FAPI_ERR("Error getting attribute ATTR_MBA_PORT");
		    return rc;
		}
		rc = FAPI_ATTR_GET(ATTR_MBA_DIMM,
				   &target_dimm_array[dimm_index], dimm);
		if (rc) {
		    FAPI_ERR("Error getting attribute ATTR_MBA_DIMM");
		    return rc;
		}
		rc = FAPI_ATTR_GET(ATTR_SPD_NUM_OF_REGISTERS_USED_ON_RDIMM,
				   &target_dimm_array[dimm_index],
				   dimm_number_registers[port][dimm]);
		if (rc) {
		    FAPI_ERR("Error getting attribute ATTR_SPD_NUM_OF_REGISTERS_USED_ON_RDIMM");
		    return rc;
		}
	    }
	}

// Get number of Centaur MBAs that have dimms present
	if (dimm_type == CDIMM)
	{
	    rc = fapiGetChildChiplets(target_chip,
				      fapi::TARGET_TYPE_MBA_CHIPLET,
				      target_mba_array,
				      fapi::TARGET_STATE_PRESENT);
	    if (rc) {
		FAPI_ERR("Error from fapiGetChildChiplets");
		return rc;
	    }
	    num_mba_with_dimms = 0;
	    for (mba_index=0; mba_index < target_mba_array.size(); mba_index++)
	    {
		rc = fapiGetAssociatedDimms(target_mba_array[mba_index],
					    target_dimm_array,
					    fapi::TARGET_STATE_PRESENT);
		if (rc) {
		    FAPI_ERR("Error from fapiGetAssociatedDimms");
		    return rc;
		}
		if (target_dimm_array.size() > 0)
		{
		    num_mba_with_dimms++;
		}
	    }
	}

// determine worst case termination settings here for ISDIMMs (to be used later)
	if (dimm_type != CDIMM)
	{
// get worst case termination values that will be used
// Only look at Centaur DQ/DQS Driver and Receiver termination settings
// Note that the DRAM rtt_nom, rtt_wr, and ron will not be allowed to change,
// all these will stay at the nominal settings
	    for (port=0; port < NUM_PORTS; port++)
	    {
		rc = mss_eff_config_thermal_get_wc_term
		  (
		   i_target_mba,
		   port,
		   cen_dq_dqs_rcv_imp_wc[port],
		   cen_dq_dqs_drv_imp_wc[port]
		   );
		if (rc)
		{
		    FAPI_ERR("Error (0x%x) calling mss_eff_config_thermal_get_wc_term", static_cast<uint32_t>(rc));
		    return rc;
		}
	    }
	}

//------------------------------------------------------------------------------
// Power Curve Determination
//------------------------------------------------------------------------------
// Iterate through the MBA ports to get power slope/intercept values
	for (port=0; port < NUM_PORTS; port++)
	{
// Get termination power for ISDIMM
	    if (dimm_type != CDIMM)
	    {
		dimm_power_adder_termination_largest=0;
		dimm_power_adder_termination_largest_wc=0;

// iterate through the dimms on each port to determine termination power to use
		for (dimm=0; dimm < NUM_DIMMS; dimm++)
		{
// calculate the effective net termination for each rank
		    for (rank=0; rank < NUM_RANKS; rank++)
		    {
// nominal termination
			rc = mss_eff_config_thermal_term
			  (
			   "NOM",
			   port,
			   dimm,
			   rank,
			   dimm_voltage,
			   dram_width,
			   dram_tdqs,
			   ibm_type,
			   dimm_ranks_configed_array,
			   dimm_dram_ron,
			   dimm_rank_odt_rd,
			   dimm_rank_odt_wr,
			   dram_rtt_nom,
			   dram_rtt_wr,
			   cen_dq_dqs_rcv_imp,
			   cen_dq_dqs_drv_imp,
			   dimm_power_adder_termination
			   );
			if (rc)
			{
			    FAPI_ERR("Error (0x%x) calling mss_eff_config_thermal_term", static_cast<uint32_t>(rc));
			    return rc;
			}
			if (dimm_power_adder_termination >
			    dimm_power_adder_termination_largest)
			{
			    dimm_power_adder_termination_largest =
			      dimm_power_adder_termination;
			}

// worst case termination
			rc = mss_eff_config_thermal_term
			  (
			   "WC",
			   port,
			   dimm,
			   rank,
			   dimm_voltage,
			   dram_width,
			   dram_tdqs,
			   ibm_type,
			   dimm_ranks_configed_array,
			   dimm_dram_ron,
			   dimm_rank_odt_rd,
			   dimm_rank_odt_wr,
			   dram_rtt_nom,
			   dram_rtt_wr,
			   cen_dq_dqs_rcv_imp_wc,
			   cen_dq_dqs_drv_imp_wc,
			   dimm_power_adder_termination_wc
			   );
			if (rc)
			{
			    FAPI_ERR("Error (0x%x) calling mss_eff_config_thermal_term", static_cast<uint32_t>(rc));
			    return rc;
			}
			if (dimm_power_adder_termination_wc >
			    dimm_power_adder_termination_largest_wc)
			{
			    dimm_power_adder_termination_largest_wc =
			      dimm_power_adder_termination_wc;
			}
		    }
		}
	    }

// iterate through the dimms on each port again to determine power slope and
// intercept
	    for (dimm=0; dimm < NUM_DIMMS; dimm++)
	    {
// initialize dimm entries to zero
		power_slope_array[port][dimm] = 0;
		power_int_array[port][dimm] = 0;
		power_slope2_array[port][dimm] = 0;
		power_int2_array[port][dimm] = 0;
// only update values for dimms that are physically present
		if (dimm_ranks_array[port][dimm] > 0)
		{

// CDIMM power slope/intercept will come from VPD
// Data in VPD needs to be the power per virtual dimm on the CDIMM
		    if (dimm_type == CDIMM)
		    {
			power_slope_array[port][dimm] =
			  cdimm_master_power_slope;
			power_int_array[port][dimm] =
			  cdimm_master_power_intercept;
			power_slope2_array[port][dimm] =
			  cdimm_supplier_power_slope;
			power_int2_array[port][dimm] =
			  cdimm_supplier_power_intercept;

// check to see if data is valid
			if (
			    (((cdimm_master_power_slope & 0x8000) != 0) &&
			     ((cdimm_master_power_intercept & 0x8000) != 0))
			    &&
			    (((cdimm_supplier_power_slope & 0x8000) != 0) &&
			     ((cdimm_supplier_power_intercept & 0x8000) != 0))
			    )
			{
			    power_slope_array[port][dimm] =
			      cdimm_master_power_slope & 0x1FFF;
			    power_int_array[port][dimm] =
			      cdimm_master_power_intercept & 0x1FFF;
			    power_slope2_array[port][dimm] =
			      cdimm_supplier_power_slope & 0x1FFF;
			    power_int2_array[port][dimm] =
			      cdimm_supplier_power_intercept & 0x1FFF;
// check to see if data is lab data
			    if (
				(((cdimm_master_power_slope & 0x4000) == 0) ||
				 ((cdimm_master_power_intercept & 0x4000) == 0))
				||
				(((cdimm_supplier_power_slope & 0x4000) == 0) ||
				 ((cdimm_supplier_power_intercept &
				   0x4000) == 0))
				)
			    {
// TODO:  enable error reporting for this when it makes sense to do (after ship
// level power curve data is known), remove warning message.  Log error and
// allow IPL to continue and use the lab data if it is there.
				FAPI_INF("WARNING:  power curve data is lab data, not ship level data. Using data anyways.");
/*
				power_slope_array[port][dimm] =
				  CDIMM_POWER_SLOPE_DEFAULT;
				power_int_array[port][dimm] =
				  CDIMM_POWER_INT_DEFAULT;
				power_slope2_array[port][dimm] =
				  CDIMM_POWER_SLOPE_DEFAULT;
				power_int2_array[port][dimm] =
				  CDIMM_POWER_INT_DEFAULT;
				FAPI_ERR("power curve data is lab data, not ship level data.  Use default values");
				const fapi::Target & MEM_CHIP = target_chip;
				uint32_t FFDC_DATA_1 = cdimm_master_power_slope;
				uint32_t FFDC_DATA_2 =
				  cdimm_master_power_intercept;
				uint32_t FFDC_DATA_3 =
				  cdimm_supplier_power_slope;
				uint32_t FFDC_DATA_4 =
				  cdimm_supplier_power_intercept;
				FAPI_SET_HWP_ERROR
				  (rc, RC_MSS_DIMM_POWER_CURVE_DATA_LAB);
				if (rc) fapiLogError(rc);
*/
			    }
			}
			else
			{
			    power_slope_array[port][dimm] =
			      CDIMM_POWER_SLOPE_DEFAULT;
			    power_int_array[port][dimm] =
			      CDIMM_POWER_INT_DEFAULT;
			    power_slope2_array[port][dimm] =
			      CDIMM_POWER_SLOPE_DEFAULT;
			    power_int2_array[port][dimm] =
			      CDIMM_POWER_INT_DEFAULT;
			    FAPI_ERR("power curve data not valid, use default values");
			    const fapi::Target & MEM_CHIP = target_chip;
			    uint32_t FFDC_DATA_1 = cdimm_master_power_slope;
			    uint32_t FFDC_DATA_2 = cdimm_master_power_intercept;
			    uint32_t FFDC_DATA_3 = cdimm_supplier_power_slope;
			    uint32_t FFDC_DATA_4 =
			      cdimm_supplier_power_intercept;
			    FAPI_SET_HWP_ERROR
			      (rc, RC_MSS_DIMM_POWER_CURVE_DATA_INVALID);
			    if (rc) fapiLogError(rc);
			}
			FAPI_DBG("CDIMM Power [P%d:D%d][SLOPE=%d:INT=%d cW][SLOPE2=%d:INT2=%d cW]", port, dimm, power_slope_array[port][dimm], power_int_array[port][dimm], power_slope2_array[port][dimm], power_int2_array[port][dimm]);
		    }
// ISDIMM power slope/intercept will come from equation
		    else
		    {
// Get the dimm power from table and add on any adjustments (if not found in
//  table - should never happen - then default values will be used)
			power_slope_array[port][dimm] =
			  ISDIMM_POWER_SLOPE_DEFAULT;
			power_int_array[port][dimm] = ISDIMM_POWER_INT_DEFAULT;

			found_entry_in_table = 0;
			for (entry = 0; entry < power_table_size; entry++)
			{
			    if (
				(power_table[entry].dram_generation == dram_gen)
				&&
				(power_table[entry].dram_width == dram_width)
				&&
				((power_table[entry].dimm_ranks ==
				  dimm_master_ranks_array[port][dimm]) ||
				 (power_table[entry].dimm_ranks == 1))
				)
			    {
// get adder for dimm type
				if (dimm_type == UDIMM)
				{
				    dimm_power_adder_type =
				      power_table[entry].dimm_type_adder.udimm;
				}
				else if (dimm_type == LRDIMM)
				{
				    dimm_power_adder_type =
				      power_table[entry].dimm_type_adder.lrdimm;
				}
				else // RDIMM
				{
				    dimm_power_adder_type =
				      power_table[entry].dimm_type_adder.rdimm;
				}


				if (dimm_type == RDIMM) {
				    dimm_power_adder_type =
				      dimm_power_adder_type *
				      dimm_number_registers[port][dimm];
				}

// get adder for dimm voltage
				dimm_power_multiplier_volt =
				  (
				   (float(dimm_voltage) /
				    power_table[entry].dimm_voltage_base)
				   *
				   (float(dimm_voltage) /
				    power_table[entry].dimm_voltage_base)
				   );
// get adder for dimm frequency
				dimm_power_mulitiplier_freq =
				  (float(dimm_frequency) /
				   power_table[entry].dimm_frequency_base);
// get adder for termination using equation (in cW)
				dimm_power_adder_termination =
				  dimm_power_adder_termination_largest * 100;
				dimm_power_adder_termination_wc =
				  dimm_power_adder_termination_largest_wc * 100;
// add up power for each dimm on channel and divide by number of dimms to get an
// average power for each dimm
// calculate idle and active dimm power (active power includes worst case
// termination power)
				dimm_idle_power =
				  (
				   (float(
					  (
					   (
					    power_table[entry].rank_power.idle
					    *
					    (
					     dimm_master_ranks_array[port][dimm]
					     + (dimm_ranks_array[port][dimm] -
						dimm_master_ranks_array
						[port][dimm])
					     ) + dimm_power_adder_type
					    )
					   * (dimm_power_multiplier_volt)
					   * (dimm_power_mulitiplier_freq)
					   )
					  *
					  num_dimms_on_port
					  )
				    / (num_dimms_on_port)
				    )
				   );
//------------------------------------------------------------------------------
				dimm_active_power =
				  (
				   (float(
					  (
					   (
					    (power_table[entry].rank_power.idle
					     *
					     (
					      dimm_master_ranks_array[port][dimm]
					      +
					      (
					       dimm_ranks_array[port][dimm] -
					       dimm_master_ranks_array
					       [port][dimm]
					       )
					      )
					     +
					     (
					      power_table[entry].rank_power.active
					      -
					      power_table[entry].rank_power.idle
					      )
					     )
					    +
					    dimm_power_adder_type
					    )
					   * (dimm_power_multiplier_volt)
					   * (dimm_power_mulitiplier_freq)
					   )
					  * num_dimms_on_port -
					  (power_table[entry].rank_power.active
					   - power_table[entry].rank_power.idle)
					  * (num_dimms_on_port - 1)
					  + dimm_power_adder_termination
					  + (dimm_power_adder_termination_wc -
					     dimm_power_adder_termination)
					  )
				    /
				    (num_dimms_on_port)
				    )
				   );
//------------------------------------------------------------------------------
// calculate dimm power slope and intercept (add on 0.5 so value is effectively
// rounded to nearest integer)
				power_slope_array[port][dimm] =
				  int(
				      (dimm_active_power - dimm_idle_power) /
				      (float(ACTIVE_DIMM_UTILIZATION -
					     IDLE_DIMM_UTILIZATION) / 100)
				      + 0.5
				      );
				power_int_array[port][dimm] =
				  int(dimm_idle_power + 0.5);
				power_slope2_array[port][dimm] =
				  power_slope_array[port][dimm];
				power_int2_array[port][dimm] =
				  power_int_array[port][dimm];
				if (power_table[entry].dram_generation == DDR3)
				{
				    sprintf(dram_gen_str, "DDR3");
				}
				if (power_table[entry].dram_generation == DDR4)
				{
				    sprintf(dram_gen_str, "DDR4");
				}

				found_entry_in_table = 1;
				FAPI_DBG("FOUND ENTRY:  GEN=%s WIDTH=X%d RANK=%d IDLE(%d%%)=%d ACTIVE(%d%%)=%d ADDER[TYPE=%d WCTERM=%4.2f] Multiplier[VOLT=%4.2f FREQ=%4.2f]", dram_gen_str, power_table[entry].dram_width, power_table[entry].dimm_ranks, IDLE_DIMM_UTILIZATION, power_table[entry].rank_power.idle, ACTIVE_DIMM_UTILIZATION, power_table[entry].rank_power.active, dimm_power_adder_type, dimm_power_adder_termination_wc, dimm_power_multiplier_volt, dimm_power_mulitiplier_freq);
				FAPI_DBG("ISDIMM Power [P%d:D%d][%s:X%d:R%d/%d:%d:%d][IDLE(%d%%)=%4.2f:ACTIVE(%d%%)=%4.2f cW][SLOPE=%d:INT=%d cW]", port, dimm, dram_gen_str, power_table[entry].dram_width, dimm_master_ranks_array[port][dimm], (dimm_ranks_array[port][dimm] - dimm_master_ranks_array[port][dimm]), dimm_voltage, dimm_frequency, IDLE_DIMM_UTILIZATION, dimm_idle_power, ACTIVE_DIMM_UTILIZATION, dimm_active_power, power_slope_array[port][dimm], power_int_array[port][dimm]);
				FAPI_DBG("ISDIMM Power [P%d:D%d][SLOPE=%d:INT=%d cW][SLOPE2=%d:INT2=%d cW]", port, dimm, power_slope_array[port][dimm], power_int_array[port][dimm], power_slope2_array[port][dimm], power_int2_array[port][dimm]);
				break;
			    }

			}
//------------------------------------------------------------------------------
			if (found_entry_in_table == 0)
			{
			    FAPI_ERR("Failed to Find DIMM Power Values on %s.  Default values will be used [P%d:D%d][Slope=%d:INT=%d cW]", i_target_mba.toEcmdString(), port, dimm, power_slope_array[port][dimm], power_int_array[port][dimm]);

// get dimm target, we should always find a valid dimm target from this
// since we have ranks present on this dimm if we are here in the code
			    for (dimm_index=0;
				 dimm_index < target_dimm_array.size();
				 dimm_index++)
			    {
				rc = FAPI_ATTR_GET
				  (ATTR_MBA_PORT,
				   &target_dimm_array[dimm_index], mba_port);
				if (rc) {
				    FAPI_ERR("Error getting attribute ATTR_MBA_PORT");
				    return rc;
				}
				rc = FAPI_ATTR_GET
				  (ATTR_MBA_DIMM,
				   &target_dimm_array[dimm_index], mba_dimm);
				if (rc) {
				    FAPI_ERR("Error getting attribute ATTR_MBA_DIMM");
				    return rc;
				}
				if ( (mba_port == port) && (mba_dimm == dimm)) {
				    break;
				}
			    }
			    const fapi::Target & MEM_DIMM =
			      target_dimm_array[dimm_index];
			    uint32_t FFDC_DATA_1 = dram_gen;
			    uint32_t FFDC_DATA_2 = dram_width;
			    uint8_t  FFDC_DATA_3 =
			      dimm_master_ranks_array[port][dimm];
			    FAPI_SET_HWP_ERROR
			      (rc, RC_MSS_DIMM_NOT_FOUND_IN_POWER_TABLE);
			    if (rc) fapiLogError(rc);
			}
		    }
		}
	    }
	}

// write output attributes
	rc = FAPI_ATTR_SET(ATTR_MSS_POWER_SLOPE,
			   &i_target_mba, power_slope_array);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_POWER_SLOPE");
	    return rc;
	}
	rc = FAPI_ATTR_SET(ATTR_MSS_POWER_INT, &i_target_mba, power_int_array);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_POWER_INT");
	    return rc;
	}

	rc = FAPI_ATTR_SET(ATTR_MSS_POWER_SLOPE2,
			   &i_target_mba, power_slope2_array);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_POWER_SLOPE2");
	    return rc;
	}
	rc = FAPI_ATTR_SET(ATTR_MSS_POWER_INT2,
			   &i_target_mba, power_int2_array);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_POWER_INT2");
	    return rc;
	}


//------------------------------------------------------------------------------
// Memory Throttle Determination
//------------------------------------------------------------------------------

// Runtime throttles will be non-volatile, so don't recalculate them if they
// have already been set

// TODO:  remove this section when firmware initializes attributes to zero AND
// runtime throttles are non-volatile
	runtime_throttle_n_per_mba = 0;
	runtime_throttle_n_per_chip = 0;
	runtime_throttle_d = 0;
	rc = FAPI_ATTR_SET(ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_MBA,
			   &i_target_mba, runtime_throttle_n_per_mba);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_MBA");
	    return rc;
	}
	rc = FAPI_ATTR_SET(ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_CHIP,
			   &i_target_mba, runtime_throttle_n_per_chip);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_CHIP");
	    return rc;
	}
	rc = FAPI_ATTR_SET(ATTR_MSS_RUNTIME_MEM_THROTTLE_DENOMINATOR,
			   &i_target_mba, runtime_throttle_d);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_RUNTIME_MEM_THROTTLE_DENOMINATOR");
	    return rc;
	}

// Get the runtime throttle attributes here
	rc = FAPI_ATTR_GET(ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_MBA,
			   &i_target_mba, runtime_throttle_n_per_mba);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_MBA");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_CHIP,
			   &i_target_mba, runtime_throttle_n_per_chip);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_CHIP");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_MSS_RUNTIME_MEM_THROTTLE_DENOMINATOR,
			   &i_target_mba, runtime_throttle_d);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_MSS_RUNTIME_MEM_THROTTLE_DENOMINATOR");
	    return rc;
	}
// check to see if runtime throttles are all zero here
	if (
	    (runtime_throttle_n_per_mba == 0) &&
	    (runtime_throttle_n_per_chip == 0) &&
	    (runtime_throttle_d == 0)
	    )
	{
// Values have not been initialized, so get them initialized
//------------------------------------------------------------------------------
// Determine the thermal power limit to use, which represents a single channel
// pair power limit for the dimms on that channel pair (ie.  power for all dimms
// attached to one MBA).   The procedure mss_bulk_power_throttles takes the
// input of channel pair power to determine throttles.
// CDIMM thermal power limit from MRW is per CDIMM, so divide by number of mbas
// that have dimms to get channel pair power
// CDIMM:  Allow all commands to be directed toward one MBA to achieve the power
// limit
//   This means that the power limit for a MBA channel pair must be the total
// CDIMM power limit minus the idle power of the other MBAs logical dimms
//------------------------------------------------------------------------------
	    if (dimm_type == CDIMM)
	    {
		channel_pair_thermal_power_limit =
		  dimm_thermal_power_limit / num_mba_with_dimms;
	    }
// ISDIMMs thermal power limit from MRW is per DIMM, so multiply by number of dimms on channel to get channel power and multiply by 2 to get channel pair power
	    else
	    {
		// ISDIMMs
		channel_pair_thermal_power_limit =
		  dimm_thermal_power_limit * num_dimms_on_port * 2;
	    }

// Update the channel pair power limit attribute
	    rc = FAPI_ATTR_SET(ATTR_MSS_MEM_WATT_TARGET,
			       &i_target_mba, channel_pair_thermal_power_limit);
	    if (rc) {
		FAPI_ERR("Error writing attribute ATTR_MSS_MEM_WATT_TARGET");
		return rc;
	    }

// Call the procedure function that takes a channel pair power limit and
// converts it to throttle values

	    FAPI_EXEC_HWP(rc, mss_bulk_pwr_throttles, i_target_mba);
	    if (rc)
	    {
		FAPI_ERR("Error (0x%x) calling mss_bulk_pwr_throttles", static_cast<uint32_t>(rc));
		return rc;
	    }

// Read back in the updated throttle attribute values (these are now set to values that will give dimm/channel power underneath the thermal power limit)
	    rc = FAPI_ATTR_GET(ATTR_MSS_MEM_THROTTLE_NUMERATOR_PER_MBA,
			       &i_target_mba, runtime_throttle_n_per_mba);
	    if (rc) {
		FAPI_ERR("Error getting attribute ATTR_MSS_MEM_THROTTLE_NUMERATOR_PER_MBA");
		return rc;
	    }
	    rc = FAPI_ATTR_GET(ATTR_MSS_MEM_THROTTLE_NUMERATOR_PER_CHIP,
			       &i_target_mba, runtime_throttle_n_per_chip);
	    if (rc) {
		FAPI_ERR("Error getting attribute ATTR_MSS_MEM_THROTTLE_NUMERATOR_PER_CHIP");
		return rc;
	    }
	    rc = FAPI_ATTR_GET(ATTR_MSS_MEM_THROTTLE_DENOMINATOR,
			       &i_target_mba, runtime_throttle_d);
	    if (rc) {
		FAPI_ERR("Error getting attribute ATTR_MSS_MEM_THROTTLE_DENOMINATOR");
		return rc;
	    }

// update output attributes
	    rc = FAPI_ATTR_SET(ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_MBA,
			       &i_target_mba, runtime_throttle_n_per_mba);
	    if (rc) {
		FAPI_ERR("Error writing attribute ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_MBA");
		return rc;
	    }
	    rc = FAPI_ATTR_SET(ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_CHIP,
			       &i_target_mba, runtime_throttle_n_per_chip);
	    if (rc) {
		FAPI_ERR("Error writing attribute ATTR_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_CHIP");
		return rc;
	    }
	    rc = FAPI_ATTR_SET(ATTR_MSS_RUNTIME_MEM_THROTTLE_DENOMINATOR,
			       &i_target_mba, runtime_throttle_d);
	    if (rc) {
		FAPI_ERR("Error writing attribute ATTR_MSS_RUNTIME_MEM_THROTTLE_DENOMINATOR");
		return rc;
	    }

	}

// Initialize the generic throttle attributes to safemode throttles (since the
// IPL will be done at the safemode throttles)
	throttle_n_per_mba = safemode_throttle_n_per_mba;
	throttle_n_per_chip = safemode_throttle_n_per_chip;
	throttle_d = safemode_throttle_d;

// write output attributes
	rc = FAPI_ATTR_SET(ATTR_MSS_MEM_THROTTLE_NUMERATOR_PER_MBA,
			   &i_target_mba, throttle_n_per_mba);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_MEM_THROTTLE_NUMERATOR_PER_MBA");
	    return rc;
	}
	rc = FAPI_ATTR_SET(ATTR_MSS_MEM_THROTTLE_NUMERATOR_PER_CHIP,
			   &i_target_mba, throttle_n_per_chip);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_MEM_THROTTLE_NUMERATOR_PER_CHIP");
	    return rc;
	}
	rc = FAPI_ATTR_SET(ATTR_MSS_MEM_THROTTLE_DENOMINATOR,
			   &i_target_mba, throttle_d);
	if (rc) {
	    FAPI_ERR("Error writing attribute ATTR_MSS_MEM_THROTTLE_DENOMINATOR");
	    return rc;
	}

	FAPI_IMP("*** %s COMPLETE ***", procedure_name);
	return rc;
    }

//------------------------------------------------------------------------------
// @brief mss_eff_config_thermal_term(): This function calculates the data bus
// termination power
//
// @param[in]   const char i_nom_or_wc_term[4]:  description of what is being
//              calculated (ie.  NOM or WC)
// @param[in]   uint8_t i_port:  MBA port being worked on
// @param[in]   uint8_t i_dimm:  DIMM being worked on
// @param[in]   uint8_t i_rank:  Rank being worked on
// @param[in]   uint32_t i_dimm_voltage:  DIMM Voltage
// @param[in]   uint8_t i_dram_width:  DRAM Width
// @param[in]   uint8_t i_dram_tdqs:  DRAM TDQS enable/disable
// @param[in]   uint8_t i_ibm_type[NUM_PORTS][NUM_DIMMS]:  IBM bus topology
//              type
// @param[in]   uint8_t i_dimm_ranks_configed_array[NUM_PORTS][NUM_DIMMS]:
//              Master Ranks configured
// @param[in]   uint8_t i_dimm_dram_ron[NUM_PORTS][NUM_DIMMS]:  DRAM RON driver
//              impedance
// @param[in]   uint8_t i_dimm_rank_odt_rd[NUM_PORTS][NUM_DIMMS][NUM_RANKS]:
//              Read ODT
// @param[in]   uint8_t i_dimm_rank_odt_wr[NUM_PORTS][NUM_DIMMS][NUM_RANKS]:
//              Write ODT
// @param[in]   uint8_t i_dram_rtt_nom[NUM_PORTS][NUM_DIMMS][NUM_RANKS]:  DRAM
//              RTT NOM
// @param[in]   uint8_t i_dram_rtt_wr[NUM_PORTS][NUM_DIMMS][NUM_RANKS]:  DRAM
//              RTT WR
// @param[in]   uint8_t i_cen_dq_dqs_rcv_imp[NUM_PORTS]:  Centaur DQ/DQS 
//              receiver impedance
// @param[in]	uint8_t i_cen_dq_dqs_drv_imp[NUM_PORTS]:  Centaur DQ/DQS driver
//              impedance
// @param[out]  float &o_dimm_power_adder_termination:  Termination Power
//              Calculated in Watts
//
// @return fapi::ReturnCode
//------------------------------------------------------------------------------

    fapi::ReturnCode mss_eff_config_thermal_term
      (
       const char i_nom_or_wc_term[4],
       uint8_t i_port,
       uint8_t i_dimm,
       uint8_t i_rank,
       uint32_t i_dimm_voltage,
       uint8_t i_dram_width,
       uint8_t i_dram_tdqs,
       uint8_t i_ibm_type[NUM_PORTS][NUM_DIMMS],
       uint8_t i_dimm_ranks_configed_array[NUM_PORTS][NUM_DIMMS],
       uint8_t i_dimm_dram_ron[NUM_PORTS][NUM_DIMMS],
       uint8_t i_dimm_rank_odt_rd[NUM_PORTS][NUM_DIMMS][NUM_RANKS],
       uint8_t i_dimm_rank_odt_wr[NUM_PORTS][NUM_DIMMS][NUM_RANKS],
       uint8_t i_dram_rtt_nom[NUM_PORTS][NUM_DIMMS][NUM_RANKS],
       uint8_t i_dram_rtt_wr[NUM_PORTS][NUM_DIMMS][NUM_RANKS],
       uint8_t i_cen_dq_dqs_rcv_imp[NUM_PORTS],
       uint8_t i_cen_dq_dqs_drv_imp[NUM_PORTS],
       float &o_dimm_power_adder_termination
       )
    {
	fapi::ReturnCode rc = fapi::FAPI_RC_SUCCESS;

	char procedure_name[32];
	sprintf(procedure_name, "mss_eff_config_thermal_term");
	FAPI_IMP("*** Running %s ***", procedure_name);

	uint8_t number_nets_term_rd;
	uint8_t number_nets_term_wr;
	uint8_t ma0odt01_dimm;
	uint8_t ma1odt01_dimm;
	uint8_t ma0odt0_rank;
	uint8_t ma0odt1_rank;
	uint8_t ma1odt0_rank;
	uint8_t ma1odt1_rank;
	uint8_t rank_mask;
	float eff_term_rd;
	float eff_net_term_rd;
	float term_odt_mult_rd;
	float eff_term_wr;
	float eff_net_term_wr;
	float term_odt_mult_wr;
	uint8_t cen_dq_dqs_drv_imp_value;

// Get number of nets that will have termination applied from ODT (DQ,DQS,DM,
// TDQS)
// number of nets for DQ (9 DRAMs x 8 bits each, or 18 DRAMs x 4 bits each = 72)
	number_nets_term_rd = 72;
	number_nets_term_wr = 72;
// add in number of nets for DQS + DM + TDQS (TDQS only supported for X8, DM
// only used for writes)
	if (i_dram_width == fapi::ENUM_ATTR_EFF_DRAM_WIDTH_X4)
	{
	    number_nets_term_rd = number_nets_term_rd + 36 + 0 + 0;
	    number_nets_term_wr = number_nets_term_wr + 36 + 0 + 0;
	}
	else if ((i_dram_width == fapi::ENUM_ATTR_EFF_DRAM_WIDTH_X8) &&
		 (i_dram_tdqs == fapi::ENUM_ATTR_EFF_DRAM_TDQS_DISABLE))
	{
	    number_nets_term_rd = number_nets_term_rd + 18 + 0 + 0;
	    number_nets_term_wr = number_nets_term_wr + 18 + 9 + 0;
	}
	else if ((i_dram_width == fapi::ENUM_ATTR_EFF_DRAM_WIDTH_X8) &&
		 (i_dram_tdqs == fapi::ENUM_ATTR_EFF_DRAM_TDQS_ENABLE))
	{
	    number_nets_term_rd = number_nets_term_rd + 18 + 0 + 18;
	    number_nets_term_wr = number_nets_term_wr + 18 + 0 + 18;
	}

// which rank is mapped to the [01]ODT[01] nets, from centaur spec, every type
// uses Ranks 0,1,4,5, with the following exceptions
// Type 1D used Ranks 0,2,4,6 in that order (0_ODT0,0_ODT1,1_ODT0,1_ODT1)
// expect that EFF_ODT_RD and EFF_ODT_WR will be setup correctly so we just need
// to add up any termination in parallel for the bits set in these attributes
// Also need to consider if ODT is tied high for writes (if rtt_wr is set for
// the rank being written to, then it will be assumed that ODT is tied high)

	if (i_ibm_type[i_port][i_dimm] == fapi::ENUM_ATTR_EFF_IBM_TYPE_TYPE_1D)
	{
	    ma0odt01_dimm = 0;
	    ma1odt01_dimm = 1;
	    ma0odt0_rank = 0;
	    ma0odt1_rank = 2;
	    ma1odt0_rank = 0;
	    ma1odt1_rank = 2;
	}
	else
	{
	    ma0odt01_dimm = 0;
	    ma1odt01_dimm = 1;
	    ma0odt0_rank = 0;
	    ma0odt1_rank = 1;
	    ma1odt0_rank = 0;
	    ma1odt1_rank = 1;
	}

// check to see if rank is configured, only get termination power for these
// ranks
	rank_mask = 0x00;
	if (i_rank == 0)
	{
	    rank_mask = 0x80;
	}
	else if (i_rank == 1)
	{
	    rank_mask = 0x40;
	}
	else if (i_rank == 2)
	{
	    rank_mask = 0x20;
	}
	else if (i_rank == 3)
	{
	    rank_mask = 0x10;
	}
	if ((i_dimm_ranks_configed_array[i_port][i_dimm] & rank_mask) != 0)
	{
// effective net termination = [(active termination in parallel || driver
// impedance) + active termination in parallel]



//------------------------------------------------------------------------------
// calculate out effective termination for reads
//------------------------------------------------------------------------------
	    eff_term_rd = 0;

//------------------------------------------------------------------------------
// 0ODT0
	    if (
		((i_dimm_rank_odt_rd[i_port][i_dimm][i_rank] & 0x80) != 0)
		&&
		(i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank] !=
		 fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE)
		)
	    {
		if (eff_term_rd == 0)
		{
		    eff_term_rd =
		      i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank];
		}
		else
		{
		    eff_term_rd =
		      (eff_term_rd *
		       i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank])
		      /
		      (eff_term_rd +
		       i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank]);
		}
		FAPI_DBG("[P%d:D%d:R%d] 0ODT0 RD TERMINATION = %4.2f (%d)", i_port, i_dimm, i_rank, eff_term_rd, i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank]);

	    }
//------------------------------------------------------------------------------
// 0ODT1
	    if (
		((i_dimm_rank_odt_rd[i_port][i_dimm][i_rank] & 0x40) != 0)
		&&
		(i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank] !=
		 fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE)
		)
	    {
		if (eff_term_rd == 0)
		{
		    eff_term_rd =
		      i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank];
		}
		else
		{
		    eff_term_rd =
		      (eff_term_rd *
		       i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank])
		      /
		      (eff_term_rd +
		       i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank]);
		}
		FAPI_DBG("[P%d:D%d:R%d] 0ODT1 RD TERMINATION = %4.2f (%d)", i_port, i_dimm, i_rank, eff_term_rd, i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank]);
	    }
//------------------------------------------------------------------------------
// 1ODT0
	    if (
		((i_dimm_rank_odt_rd[i_port][i_dimm][i_rank] & 0x20) != 0)
		&&
		(i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank] !=
		 fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE)
		)
	    {
		if (eff_term_rd == 0)
		{
		    eff_term_rd =
		      i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank];
		}
		else
		{
		    eff_term_rd =
		      (eff_term_rd *
		       i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank])
		      /
		      (eff_term_rd +
		       i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank]);
		}
		FAPI_DBG("[P%d:D%d:R%d] 1ODT0 RD TERMINATION = %4.2f (%d)", i_port, i_dimm, i_rank, eff_term_rd, i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank]);
	    }
//------------------------------------------------------------------------------
// 1ODT1
	    if (
		((i_dimm_rank_odt_rd[i_port][i_dimm][i_rank] & 0x10) != 0)
		&&
		(i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank] !=
		 fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE)
		)
	    {
		if (eff_term_rd == 0)
		{
		    eff_term_rd =
		      i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank];
		}
		else
		{
		    eff_term_rd =
		      (eff_term_rd *
		       i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank])
		      /
		      (eff_term_rd +
		       i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank]);
		}
		FAPI_DBG("[P%d:D%d:R%d] 1ODT1 RD TERMINATION = %4.2f (%d)", i_port, i_dimm, i_rank, eff_term_rd, i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank]);
	    }

// calculate out effective read termination
	    if (eff_term_rd != 0)
	    {
		eff_net_term_rd =
		  (float(
			 (float(eff_term_rd * i_cen_dq_dqs_rcv_imp[i_port]) /
			  (eff_term_rd + i_cen_dq_dqs_rcv_imp[i_port]))
			 * i_dimm_dram_ron[i_port][i_dimm]
			 )
		   /
		   (
		    (float(eff_term_rd * i_cen_dq_dqs_rcv_imp[i_port]) /
		     (eff_term_rd + i_cen_dq_dqs_rcv_imp[i_port])
		     )
		    + i_dimm_dram_ron[i_port][i_dimm]
		    )
		   )
		  +
		  (float(eff_term_rd * i_cen_dq_dqs_rcv_imp[i_port]) /
		   (eff_term_rd + i_cen_dq_dqs_rcv_imp[i_port]));
		term_odt_mult_rd = 1.25;
	    }
	    else
	    {
		eff_net_term_rd =
		  (float((i_cen_dq_dqs_rcv_imp[i_port]) *
			 i_dimm_dram_ron[i_port][i_dimm])
		   / ((i_cen_dq_dqs_rcv_imp[i_port]) +
		      i_dimm_dram_ron[i_port][i_dimm])
		   )
		  +
		  (i_cen_dq_dqs_rcv_imp[i_port]);
		term_odt_mult_rd = 1;
	    }
// writes
//------------------------------------------------------------------------------
// calculate out effective termination for writes
//------------------------------------------------------------------------------
	    eff_term_wr = 0;

// check to see if ODT is tied high (rank is not one of the ranks that get ODT
// driven to it, and rtt_wr or rtt_nom are enabled)
	    if (
		(
		 (((i_rank != ma0odt0_rank) && (i_rank != ma0odt1_rank)) &&
		  (i_dimm == 0))
		 ||
		 (((i_rank != ma1odt0_rank) && (i_rank != ma1odt1_rank)) &&
		  (i_dimm == 1))
		 )
		&&
		((i_dram_rtt_wr[i_port][i_dimm][i_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE) ||
		 (i_dram_rtt_nom[i_port][i_dimm][i_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE))
		)
	    {
// dynamic ODT enabled, so use rtt_wr (only if the rank being written to has
// it enabled)
		if (i_dram_rtt_wr[i_port][i_dimm][i_rank] !=
		    fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE)
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr = i_dram_rtt_wr[i_port][i_dimm][i_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr * i_dram_rtt_wr[i_port][i_dimm][i_rank])
			  /
			  (eff_term_wr + i_dram_rtt_wr[i_port][i_dimm][i_rank]);
		    }
		}

		// dynamic ODT disabled, so use rtt_nom
		else if (i_dram_rtt_nom[i_port][i_dimm][i_rank] !=
			 fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE)
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr = i_dram_rtt_nom[i_port][i_dimm][i_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr * i_dram_rtt_nom[i_port][i_dimm][i_rank])
			  /
			  (eff_term_wr +
			   i_dram_rtt_nom[i_port][i_dimm][i_rank]);
		    }

		}
		FAPI_DBG("[P%d:D%d:R%d] WR TERMINATION = %4.2f (%d/%d)", i_port, i_dimm, i_rank, eff_term_wr, i_dram_rtt_wr[i_port][i_dimm][i_rank], i_dram_rtt_nom[i_port][i_dimm][i_rank]);
	    }
//------------------------------------------------------------------------------
// 0ODT0
	    if (
		((i_dimm_rank_odt_wr[i_port][i_dimm][i_rank] & 0x80) != 0)
		&&
		((i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt0_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE) ||
		 (i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE))
		)
	    {
// dynamic ODT enabled, so use rtt_wr (only if the rank being written to has
// it enabled)
		if (
		    (i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt0_rank] !=
		     fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE)
		    && (i_dimm == 0)
		    && (i_rank == ma0odt0_rank)
		    )
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr =
			  i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt0_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr *
			   i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt0_rank])
			  /
			  (eff_term_wr +
			   i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt0_rank]);
		    }
		}
		// dynamic ODT disabled, so use rtt_nom
		else if (i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank] !=
			 fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE)
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr =
			  i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr *
			   i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank])
			  /
			  (eff_term_wr +
			   i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank]);
		    }

		}
		FAPI_DBG("[P%d:D%d:R%d] 0ODT0 WR TERMINATION = %4.2f (%d/%d)", i_port, i_dimm, i_rank, eff_term_wr, i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt0_rank], i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt0_rank]);
	    }
//------------------------------------------------------------------------------
// 0ODT1
	    if (
		((i_dimm_rank_odt_wr[i_port][i_dimm][i_rank] & 0x40) != 0)
		&&
		((i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt1_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE) ||
		 (i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE))
		)
	    {
// dynamic ODT enabled, so use rtt_wr (only if the rank being written to has
// it enabled)
		if (
		    (i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt1_rank] !=
		     fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE)
		    && (i_dimm == 0)
		    && (i_rank == ma0odt1_rank)
		    )
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr =
			  i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt1_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr *
			   i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt1_rank])
			  /
			  (eff_term_wr +
			   i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt1_rank]);
		    }
		}
// dynamic ODT disabled, so use rtt_nom
		else if (i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank] !=
			 fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE)
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr =
			  i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr *
			   i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank])
			  /
			  (eff_term_wr +
			   i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank]);
		    }

		}
		FAPI_DBG("[P%d:D%d:R%d] 0ODT1 WR TERMINATION = %4.2f (%d/%d)", i_port, i_dimm, i_rank, eff_term_wr, i_dram_rtt_nom[i_port][ma0odt01_dimm][ma0odt1_rank], i_dram_rtt_wr[i_port][ma0odt01_dimm][ma0odt1_rank]);
	    }
//------------------------------------------------------------------------------
// 1ODT0
	    if (
		((i_dimm_rank_odt_wr[i_port][i_dimm][i_rank] & 0x20) != 0)
		&&
		((i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt0_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE) ||
		 (i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE))
		)
	    {
// dynamic ODT enabled, so use rtt_wr (only if the rank being written to has
// it enabled)
		if (
		    (i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt0_rank] !=
		     fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE)
		    && (i_dimm == 1)
		    && (i_rank == ma1odt0_rank)
		    )
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr =
			  i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt0_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr *
			   i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt0_rank])
			  /
			  (eff_term_wr +
			   i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt0_rank]);
		    }
		}
		// dynamic ODT disabled, so use rtt_nom
		else if (i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank] !=
			 fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE)
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr =
			  i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr *
			   i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank])
			  /
			  (eff_term_wr +
			   i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank]);
		    }

		}
		FAPI_DBG("[P%d:D%d:R%d] 1ODT0 WR TERMINATION = %4.2f (%d/%d)", i_port, i_dimm, i_rank, eff_term_wr, i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt0_rank], i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt0_rank]);
	    }
//------------------------------------------------------------------------------
// 1ODT1
	    if (
		((i_dimm_rank_odt_wr[i_port][i_dimm][i_rank] & 0x10) != 0)
		&&
		((i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt1_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE) ||
		 (i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank] !=
		  fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE))
		)
	    {
// dynamic ODT enabled, so use rtt_wr (only if the rank being written to has
// it enabled)
		if (
		    (i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt1_rank] !=
		     fapi::ENUM_ATTR_EFF_DRAM_RTT_WR_DISABLE)
		    && (i_dimm == 1)
		    && (i_rank == ma1odt1_rank)
		    )
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr =
			  i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt1_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr *
			   i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt1_rank])
			  /
			  (eff_term_wr +
			   i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt1_rank]);
		    }
		}
		// dynamic ODT disabled, so use rtt_nom
		else if (i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank] !=
			 fapi::ENUM_ATTR_EFF_DRAM_RTT_NOM_DISABLE)
		{
		    if (eff_term_wr == 0)
		    {
			eff_term_wr =
			  i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank];
		    }
		    else
		    {
			eff_term_wr =
			  (eff_term_wr *
			   i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank])
			  /
			  (eff_term_wr +
			   i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank]);
		    }

		}
		FAPI_DBG("[P%d:D%d:R%d] 1ODT1 WR TERMINATION = %4.2f (%d/%d)", i_port, i_dimm, i_rank, eff_term_wr, i_dram_rtt_nom[i_port][ma1odt01_dimm][ma1odt1_rank], i_dram_rtt_wr[i_port][ma1odt01_dimm][ma1odt1_rank]);
	    }


// Translate enum value to a resistance value for i_cen_dq_dqs_drv_imp[i_port]
	    rc = mss_eff_config_thermal_get_cen_drv_value
	      (
	       i_cen_dq_dqs_drv_imp[i_port],
	       cen_dq_dqs_drv_imp_value
	       );
	    if (rc)
	    {
		FAPI_ERR("Error (0x%x) calling mss_eff_config_thermal_get_cen_drv_value", static_cast<uint32_t>(rc));
		return rc;
	    }

	    if (eff_term_wr != 0)
	    {
		eff_net_term_wr =
		  (float(eff_term_wr * cen_dq_dqs_drv_imp_value) /
		   (eff_term_wr + cen_dq_dqs_drv_imp_value)) + eff_term_wr;
		term_odt_mult_wr = 1.25;
	    }
	    else
	    {
		eff_net_term_wr = cen_dq_dqs_drv_imp_value;
		term_odt_mult_wr = 1;
	    }

//------------------------------------------------------------------------------
// From Warren:
// Termination power = (voltage/net termination) * number of nets *
// (% of traffic on bus*1.25)
// The net termination is the effective termination that exists between the
// power rail and ground. So in my calculations this is all the active
// termination in parallel with the driver impedance + all the active
//  termination in parallel. The value is different for reads and writes. 
// Number of nets includes the strobe nets (2 nets per strobe)
// % of traffic on bus is the % of the bus used for data traffic split out from
// reads and writes. The 1.25 factor is due to the odt_en signals being active
// longer then the data windows.
// Value here is in Watts (W)
	    o_dimm_power_adder_termination =
	      float(i_dimm_voltage) / 1000
	      *
	      (
	       ((float(i_dimm_voltage) / 1000 / eff_net_term_rd) *
		(number_nets_term_rd) *
		(float(ACTIVE_DIMM_UTILIZATION) / 100) *
		(float(DATA_BUS_READ_PERCENT) / 100) * (term_odt_mult_rd))
	       +
	       ((float(i_dimm_voltage) / 1000 / eff_net_term_wr) *
		(number_nets_term_wr) *
		(float(ACTIVE_DIMM_UTILIZATION) / 100) *
		(float(DATA_BUS_WRITE_PERCENT) / 100) * (term_odt_mult_wr))
	       );
	    FAPI_DBG("%s TERM:[P%d:D%d:R%d] CEN[DRV=%d RCV=%d] DRAM[DRV=%d ODT_RD=%4.2f ODT_WR=%4.2f]", i_nom_or_wc_term, i_port, i_dimm, i_rank, cen_dq_dqs_drv_imp_value, i_cen_dq_dqs_rcv_imp[i_port], i_dimm_dram_ron[i_port][i_dimm], eff_term_rd, eff_term_wr);
	    FAPI_DBG("%s TERM POWER:[P%d:D%d:R%d] RD[Nets=%d EffTerm=%3.2f ODTMult=%1.2f] WR[Nets=%d EffTerm=%3.2f ODTMult=%1.2f] TermPower(%d%%)=%2.2f W", i_nom_or_wc_term, i_port, i_dimm, i_rank, number_nets_term_rd, eff_net_term_rd, term_odt_mult_rd, number_nets_term_wr, eff_net_term_wr, term_odt_mult_wr, ACTIVE_DIMM_UTILIZATION, o_dimm_power_adder_termination);
	}	

	FAPI_IMP("*** %s COMPLETE ***", procedure_name);
	return rc;
    }

//------------------------------------------------------------------------------
// @brief mss_eff_config_thermal_get_wc_term(): This function finds the worst
// case termination settings possible for a given set of termination settings
//
// @param[in]	const fapi::Target &i_target_mba:  MBA Target
// @param[in]   uint8_t i_port:  MBA port being worked on
// @param[out]  uint8_t &o_cen_dq_dqs_rcv_imp_wc:  Worst Case Centaur DQ/DQS
//              receiver impedance (output)
// @param[out]  uint8_t &o_cen_dq_dqs_drv_imp_wc:  Worst Case Centaur DQ/DQS 
//              driver impedance (output)
//
// @return fapi::ReturnCode
//------------------------------------------------------------------------------

    fapi::ReturnCode mss_eff_config_thermal_get_wc_term
      (
       const fapi::Target &i_target_mba,
       uint8_t i_port,
       uint8_t &o_cen_dq_dqs_rcv_imp_wc,
       uint8_t &o_cen_dq_dqs_drv_imp_wc
       )
    {
	fapi::ReturnCode rc = fapi::FAPI_RC_SUCCESS;

	char procedure_name[32];
	sprintf(procedure_name, "mss_eff_config_thermal_get_wc_term");
	FAPI_IMP("*** Running %s ***", procedure_name);

	uint8_t l_cen_dq_dqs_rcv_imp[NUM_PORTS];
	uint8_t l_cen_dq_dqs_drv_imp[NUM_PORTS];
	uint32_t l_cen_dq_dqs_rcv_imp_schmoo[NUM_PORTS];
	uint32_t l_cen_dq_dqs_drv_imp_schmoo[NUM_PORTS];
	uint32_t l_loop;
	uint32_t l_schmoo_mask;

// This lists out the number and enum values for the centaur dq/dqs receiver and
// driver impedance.  Have the list go from strongest to weakest termination.
// If the size changes at all, then updates are needed below to get the correct
// mask

	const uint8_t MAX_CEN_RCV_IMP = 10;
	uint8_t cen_rcv_imp_array[] = {
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM15,
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM20,
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM30,
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM40,
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM48,
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM60,
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM80,
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM120,
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM160,
	    fapi::ENUM_ATTR_EFF_CEN_RCV_IMP_DQ_DQS_OHM240
	}; 

	const uint8_t MAX_CEN_DRV_IMP = 16;
	uint8_t cen_drv_imp_array[] = {
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM24_FFE0,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE0,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE480,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE240,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE160,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE120,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE0,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE480,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE240,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE160,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE120,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE0,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE480,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE240,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE160,
	    fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE120
	};


// Get attributes for nominal settings and possible settings to choose from
	rc = FAPI_ATTR_GET(ATTR_EFF_CEN_RCV_IMP_DQ_DQS,
			   &i_target_mba, l_cen_dq_dqs_rcv_imp);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_CEN_RCV_IMP_DQ_DQS");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_CEN_DRV_IMP_DQ_DQS,
			   &i_target_mba, l_cen_dq_dqs_drv_imp);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_CEN_DRV_IMP_DQ_DQS");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_CEN_RCV_IMP_DQ_DQS_SCHMOO,
			   &i_target_mba, l_cen_dq_dqs_rcv_imp_schmoo);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_CEN_RCV_IMP_DQ_DQS_SCHMOO");
	    return rc;
	}
	rc = FAPI_ATTR_GET(ATTR_EFF_CEN_DRV_IMP_DQ_DQS_SCHMOO,
			   &i_target_mba, l_cen_dq_dqs_drv_imp_schmoo);
	if (rc) {
	    FAPI_ERR("Error getting attribute ATTR_EFF_CEN_DRV_IMP_DQ_DQS_SCHMOO");
	    return rc;
	}

// initialize to default values in case below does not find a match
	o_cen_dq_dqs_rcv_imp_wc = l_cen_dq_dqs_rcv_imp[i_port];
	o_cen_dq_dqs_drv_imp_wc = l_cen_dq_dqs_drv_imp[i_port];

// find strongest termination setting that could be used, if none found, then
// use nominal
	l_schmoo_mask = 0x00000000;
	for (l_loop=0; l_loop < MAX_CEN_RCV_IMP; l_loop++)
	{
	    switch (l_loop)
	    {
		case 0:
		    l_schmoo_mask = 0x80000000;
		    break;
		case 1:
		    l_schmoo_mask = 0x40000000;
		    break;
		case 2:
		    l_schmoo_mask = 0x20000000;
		    break;
		case 3:
		    l_schmoo_mask = 0x10000000;
		    break;
		case 4:
		    l_schmoo_mask = 0x08000000;
		    break;
		case 5:
		    l_schmoo_mask = 0x04000000;
		    break;
		case 6:
		    l_schmoo_mask = 0x02000000;
		    break;
		case 7:
		    l_schmoo_mask = 0x01000000;
		    break;
		case 8:
		    l_schmoo_mask = 0x00800000;
		    break;
		case 9:
		    l_schmoo_mask = 0x00400000;
		    break;
		default:
		    o_cen_dq_dqs_rcv_imp_wc = l_cen_dq_dqs_rcv_imp[i_port];
	    }
	    if ((l_cen_dq_dqs_rcv_imp_schmoo[i_port] & l_schmoo_mask) != 0)
	    {
		o_cen_dq_dqs_rcv_imp_wc = cen_rcv_imp_array[l_loop];
		break;
	    }
	}

	l_schmoo_mask = 0x00000000;
	for (l_loop=0; l_loop < MAX_CEN_DRV_IMP; l_loop++)
	{
	    switch (l_loop)
	    {
		case 0:
		    l_schmoo_mask = 0x80000000;
		    break;
		case 1:
		    l_schmoo_mask = 0x40000000;
		    break;
		case 2:
		    l_schmoo_mask = 0x20000000;
		    break;
		case 3:
		    l_schmoo_mask = 0x10000000;
		    break;
		case 4:
		    l_schmoo_mask = 0x08000000;
		    break;
		case 5:
		    l_schmoo_mask = 0x04000000;
		    break;
		case 6:
		    l_schmoo_mask = 0x02000000;
		    break;
		case 7:
		    l_schmoo_mask = 0x01000000;
		    break;
		case 8:
		    l_schmoo_mask = 0x00800000;
		    break;
		case 9:
		    l_schmoo_mask = 0x00400000;
		    break;
		case 10:
		    l_schmoo_mask = 0x00200000;
		    break;
		case 11:
		    l_schmoo_mask = 0x00100000;
		    break;
		case 12:
		    l_schmoo_mask = 0x00080000;
		    break;
		case 13:
		    l_schmoo_mask = 0x00040000;
		    break;
		case 14:
		    l_schmoo_mask = 0x00020000;
		    break;
		case 15:
		    l_schmoo_mask = 0x00010000;
		    break;
		default:
		    o_cen_dq_dqs_drv_imp_wc = l_cen_dq_dqs_drv_imp[i_port];
	    }
	    if ((l_cen_dq_dqs_drv_imp_schmoo[i_port] & l_schmoo_mask) != 0)
	    {
		o_cen_dq_dqs_drv_imp_wc = cen_drv_imp_array[l_loop];
		break;
	    }
	}

	FAPI_IMP("*** %s COMPLETE ***", procedure_name);
	return rc;
    }


//------------------------------------------------------------------------------
// @brief mss_eff_config_thermal_get_cen_drv_value(): This function will
// translate the centaur driver impedance enum value to a termination resistance
//
// @param[in]	uint8_t &i_cen_dq_dqs_drv_imp:  Centaur DQ/DQS driver impedance
//           enum setting (input)
// @param[out]  uint8_t &o_cen_dq_dqs_drv_imp:  Centaur DQ/DQS driver impedance
//           value (output)
//
// @return fapi::ReturnCode
//------------------------------------------------------------------------------

    fapi::ReturnCode mss_eff_config_thermal_get_cen_drv_value
      (
       uint8_t i_cen_dq_dqs_drv_imp,
       uint8_t &o_cen_dq_dqs_drv_imp
       )
    {
	fapi::ReturnCode rc = fapi::FAPI_RC_SUCCESS;

	char procedure_name[32];
	sprintf(procedure_name, "mss_eff_config_thermal_get_cen_drv_value");
	FAPI_IMP("*** Running %s ***", procedure_name);

	switch (i_cen_dq_dqs_drv_imp)
	{
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM24_FFE0:
		o_cen_dq_dqs_drv_imp = 24;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE0:
		o_cen_dq_dqs_drv_imp = 30;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE480:
		o_cen_dq_dqs_drv_imp = 30;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE240:
		o_cen_dq_dqs_drv_imp = 30;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE160:
		o_cen_dq_dqs_drv_imp = 30;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM30_FFE120:
		o_cen_dq_dqs_drv_imp = 30;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE0:
		o_cen_dq_dqs_drv_imp = 34;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE480:
		o_cen_dq_dqs_drv_imp = 34;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE240:
		o_cen_dq_dqs_drv_imp = 34;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE160:
		o_cen_dq_dqs_drv_imp = 34;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM34_FFE120:
		o_cen_dq_dqs_drv_imp = 34;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE0:
		o_cen_dq_dqs_drv_imp = 40;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE480:
		o_cen_dq_dqs_drv_imp = 40;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE240:
		o_cen_dq_dqs_drv_imp = 40;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE160:
		o_cen_dq_dqs_drv_imp = 40;
		break;
	    case fapi::ENUM_ATTR_EFF_CEN_DRV_IMP_DQ_DQS_OHM40_FFE120:
		o_cen_dq_dqs_drv_imp = 40;
		break;
	    default:
		o_cen_dq_dqs_drv_imp = 24;
	}

	FAPI_IMP("*** %s COMPLETE ***", procedure_name);
	return rc;
    }


} //end extern C
OpenPOWER on IntegriCloud