1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/usr/hwas/common/pgLogic.C $ */
/* */
/* OpenPOWER HostBoot Project */
/* */
/* Contributors Listed Below - COPYRIGHT 2018 */
/* [+] International Business Machines Corp. */
/* */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
/* implied. See the License for the specific language governing */
/* permissions and limitations under the License. */
/* */
/* IBM_PROLOG_END_TAG */
#include <hwas/common/pgLogic.H>
#include <hwas/hwasPlatTrace.H>
#include <hwas/hwasPlatAssert.H>
#include <targeting/common/utilFilter.H>
namespace PARTIAL_GOOD
{
// These constants are used for the applicableChipTypes in a PartialGoodRule
// A combination of them can be pushed onto applicableChipTypes' expr stack.
const TARGETING::PredicateCTM PREDICATE_NIMBUS(TARGETING::CLASS_NA,
TARGETING::TYPE_NA,
TARGETING::MODEL_NIMBUS);
const TARGETING::PredicateCTM PREDICATE_CUMULUS(TARGETING::CLASS_NA,
TARGETING::TYPE_NA,
TARGETING::MODEL_CUMULUS);
const TARGETING::PredicateCTM PREDICATE_AXONE(TARGETING::CLASS_NA,
TARGETING::TYPE_NA,
TARGETING::MODEL_AXONE);
const TARGETING::PredicateCTM PREDICATE_NA(TARGETING::CLASS_NA,
TARGETING::TYPE_NA,
TARGETING::MODEL_NA);
const predicates_t PREDICATE_P9 = {&PREDICATE_CUMULUS, &PREDICATE_NIMBUS,
&PREDICATE_AXONE};
// Partial Good Rule constants for Target Types
// Naming convention for masks is as follows:
// TargetType_RuleNumber_MaskType_MASK
//
// Mask Types: PG = Partial Good
// AG = All Good
// CU = Applicable Chip Units
// Special Masks that are applicable to many rules
// This mask is common to many rules because in most cases we are checking
// specific bits and don't care about the rest. To detect a problem with
// only those bits we provide an AG mask of all zeroes.
const uint16_t ALL_OFF_AG_MASK = 0x0000;
// This mask is common to many rules because there are target types that
// cover a set of bits where all must checked at one time instead of just a
// subset of bits to determine functionality.
const uint16_t ALL_ON_PG_MASK = 0xFFFF;
// Used in place of a chip unit mask to indicate that the rule is applicable
// for all values a chip unit can take.
const size_t APPLICABLE_TO_ALL = UINT64_MAX;
// The following three masks are common among a few PG Rules and have been
// defined as special masks. Each mask applies to the chip unit that the
// name suggests. Zero bit for chip unit 0, etc.
const size_t ZERO_BIT_CU_MASK = 0x0001;
const size_t ONE_BIT_CU_MASK = 0x0002;
const size_t TWO_BIT_CU_MASK = 0x0004;
// Used in place of a PG index to indicate that the target's associated
// chiplet id is the correct way to index the PG vector.
const uint8_t USE_CHIPLET_ID = 0xFF;
// Used when a target type has no applicable partial good checking logic.
// Instead of omitting that target type from the map of rules, it will have:
// pgMask == MASK_NA
// agMask == MASK_NA
// pgIndex == INDEX_NA
// This will ensure that the algorithm in isDescFunctional() will execute
// successfully and serve to enforce that all targets be defined in the
// rules map.
const uint16_t MASK_NA = 0x0000;
const uint8_t INDEX_NA = 0x00;
// Target Type Masks
// PG Masks are created such that:
// pgData[ pgIndex ] & pgMask
// produces the AG Mask defined for that rule. They are defined to cover the
// set of bits that a target type covers. The AG masks were defined either
// by directly using the provided AG mask listed in the MVPD PG Mapping
// Table or were chosen to check the specific bits a target type covers.
// EQ
// PG/AG Masks
const uint16_t EQ_R1_PG_MASK = 0xFC33;
const uint16_t EQ_R1_AG_MASK = 0xE001;
// EX
// PG/AG Masks
const uint16_t EX_R1_PG_MASK = 0x0288;
const uint16_t EX_R2_PG_MASK = 0x0144;
// Applicable Chip Units
// Rule 1 only applies to even chip unit values
const size_t EX_R1_CU_MASK = 0x5555555555555555u;
// Rule 2 only applies to odd chip unit values
const size_t EX_R2_CU_MASK = 0xAAAAAAAAAAAAAAAAu;
// EC
// PG/AG Masks
const uint16_t EC_R1_AG_MASK = 0xE1FF;
// MC
// PG/AG Masks
const uint16_t MC_R1_AG_MASK = 0xE0FD;
const uint16_t MC_R2_PG_MASK = 0x0040;
const uint16_t MC_R3_PG_MASK = 0x0020;
// MCA
// PG/AG Masks
const uint16_t MCA_R1_PG_MASK = 0x0200;
const uint16_t MCA_R2_PG_MASK = 0x0100;
// Applicable Chip Units
const size_t MCA_R2_CU_MASK = 0x00CC;
// MCBIST
// PG/AG Masks
// There is a special rule for MCBIST targets where the first MCA (MCA0 and
// MCA4) on each MC is required to be functional for it to be functional. To
// condense that rule into a single rule the bit that needs to be checked
// has been included in the PG mask. The PG mask excluding that bit would
// have been FCFF.
const uint16_t MCBIST_R1_PG_MASK = 0xFEFF;
const uint16_t MCBIST_R1_AG_MASK = 0xE0FD;
// MCS
// PG/AG Masks
const uint16_t MCS_R1_PG_MASK = 0x0020;
const uint16_t MCS_R2_PG_MASK = 0x0040;
const uint16_t MCS_R3_PG_MASK = 0xFEFF;
const uint16_t MCS_R4_PG_MASK = 0xFDFF;
const uint16_t MCS_ALL_GOOD_MASK = 0xE0FD;
// Applicable Chip Units
// Rule 1 only applies to chip units 0 & 1
const size_t MCS_R1_CU_MASK = 0x0003;
// Rule 2 only applies to chip units 2 & 3
const size_t MCS_R2_CU_MASK = 0x000C;
// NPU
// PG/AG Masks
const uint16_t NPU_R1_PG_MASK = 0x0100;
// OBUS
// PG/AG Masks
const uint16_t OBUS_R1_AG_MASK = 0xE1FD;
const uint16_t OBUS_R2_PG_MASK = 0x0100;
const uint16_t OBUS_R3_PG_MASK = 0x0080;
// Applicable Chip Units
// Rule 3 only applies to Cumulus OBUS's 1 and 2
const size_t OBUS_R3_CU_MASK = 0x0006;
// PEC
// PG/AG Masks
const uint16_t PEC_R1_AG_MASK = 0xE1FD;
const uint16_t PEC_R2_AG_MASK = 0xE0FD;
const uint16_t PEC_R3_AG_MASK = 0xE07D;
// PERV
// PG/AG Masks
const uint16_t PERV_R1_PG_MASK = 0x1000;
// XBUS
// PG/AG Masks
const uint16_t XBUS_R1_PG_MASK = 0x0040;
const uint16_t XBUS_R2_PG_MASK = 0x0020;
const uint16_t XBUS_R3_PG_MASK = 0x0010;
// Partial Good Vector Indexes
const uint16_t N1_PG_INDEX = 0x03;
const uint16_t N3_PG_INDEX = 0x05;
const specialRuleFuncPtr_t NO_SPECIAL_RULE = nullptr;
const PartialGoodRulesTable pgTable;
PartialGoodRulesTable::~PartialGoodRulesTable()
{
for (auto const& type : pgRules_map)
{
for (pgRules_t::const_iterator it = type.second.begin();
it != type.second.end(); ++it)
{
delete (*it);
}
}
}
pgLogic_t PartialGoodRulesTable::findRulesForTarget(
const TARGETING::TargetHandle_t &i_target) const
{
pgLogic_t l_targetPgLogic;
// Lookup the Target in the PG Rules Table
auto rulesIterator =
pgRules_map.find(i_target->getAttr<TARGETING::ATTR_TYPE>());
do {
if (rulesIterator == pgRules_map.end())
{
// Target is missing from the table. Return an empty vector.
break;
}
pgRules_t l_allRules = rulesIterator->second;
// Since many targets don't have ATTR_MODEL filled in, lookup
// the master proc and use that to verify if this chip type is
// applicable for the target.
TARGETING::TargetService& ts = TARGETING::targetService();
TARGETING::TargetHandle_t masterProc;
ts.masterProcChipTargetHandle(masterProc);
// Iterate through all of the pg rules and compose a list of
// applicable rules based on chip unit and chip type.
for (pgRules_t::const_iterator pgRule = l_allRules.begin();
pgRule != l_allRules.end(); ++pgRule)
{
TARGETING::ATTR_CHIP_UNIT_type targetCU =
i_target->getAttr<TARGETING::ATTR_CHIP_UNIT>();
// Compare the pgRule's chip type to the target. Encode the
// target's chip unit and see if it is a match for this rule.
if ((*pgRule)->iv_applicableChipTypes(masterProc)
&& (*pgRule)->isApplicableToChipUnit(targetCU))
{
// Current PG Rule is applicable to this target so create
// logic for it and add it to the list of logic for this
// target.
PartialGoodLogic pgLogic;
pgLogic.iv_pgMask = (*pgRule)->iv_pgMask;
pgLogic.iv_agMask = (*pgRule)->iv_agMask;
pgLogic.iv_pgIndex = (*pgRule)->iv_pgIndex;
pgLogic.iv_specialRule = (*pgRule)->iv_specialRule;
// Check if the chiplet id of the target is a valid index
// for this rule.
if ((*pgRule)->useChipletIdAsIndex())
{
pgLogic.iv_pgIndex =
i_target->getAttr<TARGETING::ATTR_CHIPLET_ID>();
}
// Add it to list of pg logic for this target.
l_targetPgLogic.push_back(pgLogic);
}
}
} while(0);
return l_targetPgLogic;
}
PartialGoodRule::PartialGoodRule() : iv_pgMask(MASK_NA),
iv_agMask(MASK_NA),
iv_pgIndex(INDEX_NA),
iv_applicableChipUnits(APPLICABLE_TO_ALL),
iv_specialRule(NO_SPECIAL_RULE)
{
iv_applicableChipTypes.push(&PREDICATE_NA);
};
PartialGoodRule::PartialGoodRule
(
predicates_t i_preds,
uint16_t i_pgMask, uint16_t i_agMask,
uint8_t i_pgIndex, size_t i_appChipUnits,
specialRuleFuncPtr_t rule
)
: iv_pgMask(i_pgMask), iv_agMask(i_agMask), iv_pgIndex(i_pgIndex),
iv_applicableChipUnits(i_appChipUnits), iv_specialRule(rule)
{
// First push all predicates onto the expr stack.
for (predicates_t::const_iterator it = i_preds.begin();
it != i_preds.end(); ++it)
{
iv_applicableChipTypes.push(*it);
}
// If there were more than one predicate pushed on the expr stack then
// add n - 1 Or() predicates to the expr stack
if (i_preds.size() > 1)
{
for (size_t i = 0; i < (i_preds.size() - 1); ++i)
{
iv_applicableChipTypes.Or();
}
}
}
bool PartialGoodRule::isApplicableToChipUnit(uint8_t i_chipUnit) const
{
// The encoded chip unit has the value of zero represented as the
// farthest right bit.
size_t l_encodedChipUnit = 0x0001;
// Left shift the encoded value a number of times equal to the value
// of i_chipUnit. This puts the ON bit under the correct position to
// be compared against the chip unit mask.
l_encodedChipUnit <<= i_chipUnit;
bool result = false;
// A PartialGoodRule is applicable for a chip unit if the result of
// the bit-wise & results in the encoded chip unit value. This
// allows the special chip unit mask APPLICABLE_TO_ALL to function
// correctly.
if ((iv_applicableChipUnits & l_encodedChipUnit) ==
l_encodedChipUnit)
{
result = true;
}
return result;
}
bool PartialGoodRule::useChipletIdAsIndex() const
{
return iv_pgIndex == USE_CHIPLET_ID;
}
////////////////////////////////////////////////////////////////////////////
// Special Rules
////////////////////////////////////////////////////////////////////////////
bool PervSpecialRule(const TARGETING::TargetHandle_t &i_desc,
const uint16_t i_pgData[])
{
HWAS_ASSERT((i_desc->getAttr<TARGETING::ATTR_TYPE>()
== TARGETING::TYPE_PERV),
"PervSpecialRule: i_desc type != TYPE_PERV");
// The chip unit number of the perv target is the index into the PG data
auto indexPERV = i_desc->getAttr<TARGETING::ATTR_CHIP_UNIT>();
// Set the local attribute copy of this data
TARGETING::ATTR_PG_type l_pg = i_pgData[indexPERV];
i_desc->setAttr<TARGETING::ATTR_PG>(l_pg);
return true;
}
bool ObusBrickSpecialRule(const TARGETING::TargetHandle_t &i_desc,
const uint16_t i_pgData[])
{
HWAS_ASSERT((i_desc->getAttr<TARGETING::ATTR_TYPE>()
== TARGETING::TYPE_OBUS_BRICK),
"ObusBrickSpecialRule: i_desc type != TYPE_OBUS_BRICK");
bool l_descFunctional = true;
auto obusType = TARGETING::TYPE_OBUS;
TARGETING::Target* l_obus_ptr = getParent(i_desc, obusType);
//If NPU is bad and OBUS is non-SMP, then mark them bad
// Bit does not matter unless not in SMP mode
if ((l_obus_ptr->getAttr<TARGETING::ATTR_OPTICS_CONFIG_MODE>()
!= TARGETING::OPTICS_CONFIG_MODE_SMP)
&& ((i_pgData[N3_PG_INDEX] & NPU_R1_PG_MASK) != ALL_OFF_AG_MASK))
{
TRACFCOMP(HWAS::g_trac_imp_hwas,
"pDesc 0x%.8X - OBUS_BRICK pgData[%d]: "
"actual 0x%04X, expected 0x%04X - bad",
i_desc->getAttr<TARGETING::ATTR_HUID>(),
N3_PG_INDEX,
i_pgData[N3_PG_INDEX],
ALL_OFF_AG_MASK);
l_descFunctional = false;
}
return l_descFunctional;
}
bool EQSpecialRule(const TARGETING::TargetHandle_t &i_desc,
const uint16_t i_pgData[])
{
HWAS_ASSERT((i_desc->getAttr<TARGETING::ATTR_TYPE>()
== TARGETING::TYPE_EQ),
"EQSpecialRule: i_desc target type != TYPE_EQ");
bool l_valid = false;
// This rule only looks at specific bits in the partial good vector.
// These bits can be found by using EQ chiplet id's value as an index
// into the vector.
auto EQChipletId = i_desc->getAttr<TARGETING::ATTR_CHIPLET_ID>();
uint16_t l_pgData = i_pgData[EQChipletId];
// For this rule, we check the triplets associated with EX targets.
// Those are the L3, L2, and REFR units. In order for this rule to
// be validated, only values of all 0 or all 1 are permitted in those
// three bit positions.
if ((((l_pgData & EX_R1_PG_MASK) == 0)
|| ((l_pgData & EX_R1_PG_MASK) == EX_R1_PG_MASK))
&& (((l_pgData & EX_R2_PG_MASK) == 0)
|| ((l_pgData & EX_R2_PG_MASK) == EX_R2_PG_MASK)))
{
l_valid = true;
}
return l_valid;
}
}
|