summaryrefslogtreecommitdiffstats
path: root/src/usr/diag/prdf/common/plat/mem/prdfMemUtils.C
blob: 0cee436f5f4ff3fc7817c18c696ae024c4481d1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/usr/diag/prdf/common/plat/mem/prdfMemUtils.C $            */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2013,2019                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

/** @file  prdfMemUtils.C
 *  @brief Utility functions related to memory
 */

#include <prdfMemUtils.H>

// Framework includes
#include <iipServiceDataCollector.h>
#include <prdfExtensibleChip.H>
#include <UtilHash.H>

// Platform includes
#include <prdfCenMbaDataBundle.H>
#include <prdfCenMembufDataBundle.H>
#include <prdfCenMembufExtraSig.H>
#include <prdfMemSymbol.H>
#include <prdfParserUtils.H>
#include <prdfPlatServices.H>

#if __HOSTBOOT_RUNTIME
  #include <prdfMemDynDealloc.H>
#endif

using namespace TARGETING;

namespace PRDF
{

namespace MemUtils
{

using namespace PlatServices;
using namespace PARSERUTILS;
using namespace CEN_SYMBOL;

const uint8_t CE_REGS_PER_PORT = 9;
const uint8_t SYMBOLS_PER_CE_REG = 8;

static const char *mbsCeStatReg[][ CE_REGS_PER_PORT ] = {
                       { "MBA0_MBSSYMEC0", "MBA0_MBSSYMEC1","MBA0_MBSSYMEC2",
                         "MBA0_MBSSYMEC3", "MBA0_MBSSYMEC4", "MBA0_MBSSYMEC5",
                         "MBA0_MBSSYMEC6", "MBA0_MBSSYMEC7", "MBA0_MBSSYMEC8" },
                       { "MBA1_MBSSYMEC0", "MBA1_MBSSYMEC1","MBA1_MBSSYMEC2",
                         "MBA1_MBSSYMEC3", "MBA1_MBSSYMEC4", "MBA1_MBSSYMEC5",
                         "MBA1_MBSSYMEC6", "MBA1_MBSSYMEC7", "MBA1_MBSSYMEC8" }
                          };


static const char *mcbCeStatReg[CE_REGS_PER_PORT] =
                       {
                           "MCB_MBSSYMEC0", "MCB_MBSSYMEC1", "MCB_MBSSYMEC2",
                           "MCB_MBSSYMEC3", "MCB_MBSSYMEC4", "MCB_MBSSYMEC5",
                           "MCB_MBSSYMEC6", "MCB_MBSSYMEC7", "MCB_MBSSYMEC8"
                       };

static const char *ocmbCeStatReg[CE_REGS_PER_PORT] =
                       {
                           "OCMB_MBSSYMEC0", "OCMB_MBSSYMEC1", "OCMB_MBSSYMEC2",
                           "OCMB_MBSSYMEC3", "OCMB_MBSSYMEC4", "OCMB_MBSSYMEC5",
                           "OCMB_MBSSYMEC6", "OCMB_MBSSYMEC7", "OCMB_MBSSYMEC8"
                       };
//------------------------------------------------------------------------------

// Helper structs for collectCeStats()
struct DramCount_t
{
    uint8_t totalCount; uint8_t symbolCount;
    DramCount_t() : totalCount(0), symbolCount(0) {}
};
typedef std::map<uint32_t, DramCount_t> DramCountMap;

//------------------------------------------------------------------------------

template<>
int32_t collectCeStats<TYPE_MCA>( ExtensibleChip * i_chip,
                        const MemRank & i_rank, MaintSymbols & o_maintStats,
                        MemSymbol & o_chipMark, uint8_t i_thr )
{
    #define PRDF_FUNC "[MemUtils::collectCeStats<TYPE_MCA>] "

    int32_t o_rc = SUCCESS;
    o_chipMark = MemSymbol(); // Initially invalid.

    do
    {
        PRDF_ASSERT( 0 != i_thr );

        TargetHandle_t mcaTrgt = i_chip->getTrgt();
        ExtensibleChip * mcbChip = getConnectedParent( i_chip, TYPE_MCBIST );

        const bool isX4 = isDramWidthX4(mcaTrgt);

        // Use this map to keep track of the total counts per DRAM.
        DramCountMap dramCounts;

        const char * reg_str = NULL;
        SCAN_COMM_REGISTER_CLASS * reg = NULL;

        for ( uint8_t regIdx = 0; regIdx < CE_REGS_PER_PORT; regIdx++ )
        {
            reg_str = mcbCeStatReg[regIdx];
            reg     = mcbChip->getRegister( reg_str );

            o_rc = reg->Read();
            if ( SUCCESS != o_rc )
            {
                PRDF_ERR( PRDF_FUNC "Read() failed on %s", reg_str );
                break;
            }

            uint8_t baseSymbol = SYMBOLS_PER_CE_REG * regIdx;

            for ( uint8_t i = 0; i < SYMBOLS_PER_CE_REG; i++ )
            {
                uint8_t count = reg->GetBitFieldJustified( (i*8), 8 );

                if ( 0 == count ) continue; // nothing to do

                uint8_t sym  = baseSymbol + i;
                PRDF_ASSERT( sym < SYMBOLS_PER_RANK );

                uint8_t dram = isX4 ? symbol2Nibble<TYPE_MCA>( sym )
                                    : symbol2Byte  <TYPE_MCA>( sym );

                // Keep track of the total DRAM counts.
                dramCounts[dram].totalCount += count;

                // Add any symbols that have exceeded threshold to the list.
                if ( i_thr <= count )
                {
                    // Keep track of the total number of symbols per DRAM that
                    // have exceeded threshold.
                    dramCounts[dram].symbolCount++;

                    SymbolData symData;
                    symData.symbol = MemSymbol::fromSymbol( mcaTrgt, i_rank,
                                               sym, CEN_SYMBOL::ODD_SYMBOL_DQ );
                    if ( !symData.symbol.isValid() )
                    {
                        PRDF_ERR( PRDF_FUNC "MemSymbol() failed: symbol=%d",
                                  sym );
                        o_rc = FAIL;
                        break;
                    }
                    else
                    {
                        // Add the symbol to the list.
                        symData.count = count;
                        o_maintStats.push_back( symData );
                    }
                }
            }
            if ( SUCCESS != o_rc ) break;
        }
        if ( SUCCESS != o_rc ) break;

        if ( o_maintStats.empty() ) break; // no need to continue

        // Sort the list of symbols.
        std::sort( o_maintStats.begin(), o_maintStats.end(), sortSymDataCount );

        // Get the DRAM with the highest count.
        uint32_t highestDram  = 0;
        uint32_t highestCount = 0;
        const uint32_t symbolTH = isX4 ? 1 : 2;
        for ( DramCountMap::iterator it = dramCounts.begin();
              it != dramCounts.end(); ++it )
        {
            if ( (symbolTH     <= it->second.symbolCount) &&
                 (highestCount <  it->second.totalCount ) )
            {
                highestDram  = it->first;
                highestCount = it->second.totalCount;
            }
        }

        if ( 0 != highestCount )
        {
            uint8_t sym = isX4 ? nibble2Symbol<TYPE_MCA>( highestDram )
                               : byte2Symbol  <TYPE_MCA>( highestDram );
            PRDF_ASSERT( sym < SYMBOLS_PER_RANK );

            o_chipMark  = MemSymbol::fromSymbol( mcaTrgt, i_rank, sym );
        }

    } while(0);

    if ( SUCCESS != o_rc )
    {
        PRDF_ERR( PRDF_FUNC "Failed: i_chip=0x%08x i_rank=m%ds%d i_thr=%d",
                  i_chip->GetId(), i_rank.getMaster(), i_rank.getSlave(),
                  i_thr );
    }

    return o_rc;

    #undef PRDF_FUNC
}

//------------------------------------------------------------------------------
template<>
int32_t collectCeStats<TYPE_OCMB_CHIP>( ExtensibleChip * i_chip,
                                        const MemRank & i_rank,
                                        MaintSymbols & o_maintStats,
                                        MemSymbol & o_chipMark, uint8_t i_thr )
{
    #define PRDF_FUNC "[MemUtils::collectCeStats<TYPE_OCMB_CHIP>] "

    int32_t o_rc = SUCCESS;
    o_chipMark = MemSymbol(); // Initially invalid.

    do
    {
        PRDF_ASSERT( 0 != i_thr );

        TargetHandle_t ocmbTrgt = i_chip->getTrgt();

        const bool isX4 = isDramWidthX4(ocmbTrgt);

        // Use this map to keep track of the total counts per DRAM.
        DramCountMap dramCounts;

        const char * reg_str = NULL;
        SCAN_COMM_REGISTER_CLASS * reg = NULL;

        for ( uint8_t regIdx = 0; regIdx < CE_REGS_PER_PORT; regIdx++ )
        {
            reg_str = ocmbCeStatReg[regIdx];
            reg     = i_chip->getRegister( reg_str );

            o_rc = reg->Read();
            if ( SUCCESS != o_rc )
            {
                PRDF_ERR( PRDF_FUNC "Read() failed on %s", reg_str );
                break;
            }

            uint8_t baseSymbol = SYMBOLS_PER_CE_REG * regIdx;

            for ( uint8_t i = 0; i < SYMBOLS_PER_CE_REG; i++ )
            {
                uint8_t count = reg->GetBitFieldJustified( (i*8), 8 );

                if ( 0 == count ) continue; // nothing to do

                uint8_t sym  = baseSymbol + i;
                PRDF_ASSERT( sym < SYMBOLS_PER_RANK );

                uint8_t dram = isX4 ? symbol2Nibble<TYPE_OCMB_CHIP>( sym )
                                    : symbol2Byte  <TYPE_OCMB_CHIP>( sym );

                // Keep track of the total DRAM counts.
                dramCounts[dram].totalCount += count;

                // Add any symbols that have exceeded threshold to the list.
                if ( i_thr <= count )
                {
                    // Keep track of the total number of symbols per DRAM that
                    // have exceeded threshold.
                    dramCounts[dram].symbolCount++;

                    SymbolData symData;
                    symData.symbol = MemSymbol::fromSymbol( ocmbTrgt, i_rank,
                        sym, CEN_SYMBOL::ODD_SYMBOL_DQ );
                    if ( !symData.symbol.isValid() )
                    {
                        PRDF_ERR( PRDF_FUNC "MemSymbol() failed: symbol=%d",
                                  sym );
                        o_rc = FAIL;
                        break;
                    }
                    else
                    {
                        // Add the symbol to the list.
                        symData.count = count;
                        o_maintStats.push_back( symData );
                    }
                }
            }
            if ( SUCCESS != o_rc ) break;
        }
        if ( SUCCESS != o_rc ) break;

        if ( o_maintStats.empty() ) break; // no need to continue

        // Sort the list of symbols.
        std::sort( o_maintStats.begin(), o_maintStats.end(), sortSymDataCount );

        // Get the DRAM with the highest count.
        uint32_t highestDram  = 0;
        uint32_t highestCount = 0;
        const uint32_t symbolTH = isX4 ? 1 : 2;
        for ( DramCountMap::iterator it = dramCounts.begin();
              it != dramCounts.end(); ++it )
        {
            if ( (symbolTH     <= it->second.symbolCount) &&
                 (highestCount <  it->second.totalCount ) )
            {
                highestDram  = it->first;
                highestCount = it->second.totalCount;
            }
        }

        if ( 0 != highestCount )
        {
            uint8_t sym = isX4 ? nibble2Symbol<TYPE_OCMB_CHIP>( highestDram )
                               : byte2Symbol  <TYPE_OCMB_CHIP>( highestDram );
            PRDF_ASSERT( sym < SYMBOLS_PER_RANK );

            o_chipMark  = MemSymbol::fromSymbol( ocmbTrgt, i_rank, sym );
        }

    } while(0);

    if ( SUCCESS != o_rc )
    {
        PRDF_ERR( PRDF_FUNC "Failed: i_chip=0x%08x i_rank=m%ds%d i_thr=%d",
                  i_chip->GetId(), i_rank.getMaster(), i_rank.getSlave(),
                  i_thr );
    }

    return o_rc;

    #undef PRDF_FUNC
}

//------------------------------------------------------------------------------

template<>
int32_t collectCeStats<TYPE_MBA>( ExtensibleChip * i_chip,
                        const MemRank & i_rank, MaintSymbols & o_maintStats,
                        MemSymbol & o_chipMark, uint8_t i_thr )
{
    #define PRDF_FUNC "[MemUtils::collectCeStats<TYPE_MBA>] "

    int32_t o_rc = SUCCESS;

    o_chipMark = MemSymbol(); // Initially invalid.

    do
    {
        if ( 0 == i_thr ) // Must be non-zero
        {
            PRDF_ERR( PRDF_FUNC "i_thr %d is invalid", i_thr );
            o_rc = FAIL; break;
        }

        TargetHandle_t mbaTrgt = i_chip->getTrgt();
        ExtensibleChip * membufChip = getConnectedParent(i_chip, TYPE_MEMBUF);
        if ( nullptr == membufChip )
        {
            PRDF_ERR( PRDF_FUNC "getMembChip() failed" );
            o_rc = FAIL; break;
        }

        uint8_t mbaPos = getTargetPosition( mbaTrgt );
        if ( MAX_MBA_PER_MEMBUF <= mbaPos )
        {
            PRDF_ERR( PRDF_FUNC "mbaPos %d is invalid", mbaPos );
            o_rc = FAIL; break;
        }

        const bool isX4 = isDramWidthX4(mbaTrgt);

        // Get the current spares on this rank.
        MemSymbol sp0, sp1, ecc;
        o_rc = mssGetSteerMux<TYPE_MBA>( mbaTrgt, i_rank, sp0, sp1, ecc );
        if ( SUCCESS != o_rc )
        {
            PRDF_ERR( PRDF_FUNC "mssGetSteerMux() failed." );
            break;
        }


        // Use this map to keep track of the total counts per DRAM.
        DramCountMap dramCounts;

        const char * reg_str = NULL;
        SCAN_COMM_REGISTER_CLASS * reg = NULL;

        for ( uint8_t regIdx = 0; regIdx < CE_REGS_PER_PORT; regIdx++ )
        {
            reg_str = mbsCeStatReg[mbaPos][regIdx];
            reg     = membufChip->getRegister( reg_str );

            o_rc = reg->Read();
            if ( SUCCESS != o_rc )
            {
                PRDF_ERR( PRDF_FUNC "Read() failed on %s", reg_str );
                break;
            }

            uint8_t baseSymbol = SYMBOLS_PER_CE_REG * regIdx;

            for ( uint8_t i = 0; i < SYMBOLS_PER_CE_REG; i++ )
            {
                uint8_t count = reg->GetBitFieldJustified( (i*8), 8 );

                if ( 0 == count ) continue; // nothing to do

                uint8_t sym  = baseSymbol + i;

                uint8_t dram = isX4 ? symbol2Nibble<TYPE_MBA>( sym )
                                    : symbol2Byte  <TYPE_MBA>( sym );


                // Keep track of the total DRAM counts.
                dramCounts[dram].totalCount += count;

                // Add any symbols that have exceeded threshold to the list.
                if ( i_thr <= count )
                {
                    // Keep track of the total number of symbols per DRAM that
                    // have exceeded threshold.
                    dramCounts[dram].symbolCount++;

                    SymbolData symData;
                    symData.symbol = MemSymbol::fromSymbol( mbaTrgt, i_rank,
                                            sym, CEN_SYMBOL::BOTH_SYMBOL_DQS );
                    if ( !symData.symbol.isValid() )
                    {
                        PRDF_ERR( PRDF_FUNC "MemSymbol() failed: symbol=%d",
                                  sym );
                        o_rc = FAIL;
                        break;
                    }
                    else
                    {
                        // Check if this symbol is on any of the spares.
                        symData.symbol.updateSpared(sp0, sp1, ecc);

                        // Add the symbol to the list.
                        symData.count = count;
                        o_maintStats.push_back( symData );
                    }
                }
            }
            if ( SUCCESS != o_rc ) break;
        }
        if ( SUCCESS != o_rc ) break;

        if ( o_maintStats.empty() ) break; // no need to continue

        // Sort the list of symbols.
        std::sort( o_maintStats.begin(), o_maintStats.end(), sortSymDataCount );

        // Get the DRAM with the highest count.
        uint32_t highestDram  = 0;
        uint32_t highestCount = 0;
        const uint32_t symbolTH = isX4 ? 1 : 2;
        for ( DramCountMap::iterator it = dramCounts.begin();
              it != dramCounts.end(); ++it )
        {
            if ( (symbolTH     <= it->second.symbolCount) &&
                 (highestCount <  it->second.totalCount ) )
            {
                highestDram  = it->first;
                highestCount = it->second.totalCount;
            }
        }

        if ( 0 != highestCount )
        {
            uint8_t sym = isX4 ? nibble2Symbol<TYPE_MBA>( highestDram )
                               : byte2Symbol  <TYPE_MBA>( highestDram );
            PRDF_ASSERT( sym < SYMBOLS_PER_RANK );

            o_chipMark  = MemSymbol::fromSymbol( mbaTrgt, i_rank, sym );

            // Check if this symbol is on any of the spares.
            o_chipMark.updateSpared(sp0, sp1, ecc);
        }

    } while(0);

    if ( SUCCESS != o_rc )
    {
        PRDF_ERR( PRDF_FUNC "Failed: i_mbaChip=0x%08x i_rank=m%ds%d i_thr=%d",
                  i_chip->GetId(), i_rank.getMaster(), i_rank.getSlave(),
                  i_thr );
    }

    return o_rc;

    #undef PRDF_FUNC
}

//------------------------------------------------------------------------------

template<>
uint8_t getDramSize<TYPE_MCA>(ExtensibleChip *i_chip, uint8_t i_dimmSlct)
{
    #define PRDF_FUNC "[MemUtils::getDramSize] "

    PRDF_ASSERT( TYPE_MCA == i_chip->getType() );
    PRDF_ASSERT( i_dimmSlct < DIMM_SLCT_PER_PORT );

    TargetHandle_t mcaTrgt = i_chip->getTrgt();
    TargetHandle_t mcsTrgt = getConnectedParent( mcaTrgt, TYPE_MCS );

    PRDF_ASSERT( nullptr != mcsTrgt );

    uint8_t mcaRelPos = i_chip->getPos() % MAX_MCA_PER_MCS;

    uint8_t tmp[MAX_MCA_PER_MCS][DIMM_SLCT_PER_PORT];

    if ( !mcsTrgt->tryGetAttr<TARGETING::ATTR_EFF_DRAM_DENSITY>(tmp) )
    {
        PRDF_ERR( PRDF_FUNC "Failed to get ATTR_EFF_DRAM_DENSITY" );
        PRDF_ASSERT( false );
    }

    return tmp[mcaRelPos][i_dimmSlct];

    #undef PRDF_FUNC
}

template<>
uint8_t getDramSize<TYPE_MBA>(ExtensibleChip *i_chip, uint8_t i_dimmSlct)
{
    #define PRDF_FUNC "[MemUtils::getDramSize] "

    PRDF_ASSERT( TYPE_MBA == i_chip->getType() );

    uint8_t o_size = 0;

    do
    {
        ExtensibleChip * membufChip = getConnectedParent(i_chip, TYPE_MEMBUF);

        uint32_t pos = i_chip->getPos();
        const char * reg_str = (0 == pos) ? "MBA0_MBAXCR" : "MBA1_MBAXCR";

        SCAN_COMM_REGISTER_CLASS * reg = membufChip->getRegister( reg_str );
        uint32_t rc = reg->Read();
        if ( SUCCESS != rc )
        {
            PRDF_ERR( PRDF_FUNC "Read() failed on %s. Target=0x%08x",
                      reg_str, i_chip->getHuid() );
            break;
        }

        // The value of MBAXCR[6:7] is 0 = 2Gb, 1 = 4Gb, 2 = 8Gb, and 3 = 16 Gb.
        // Therefore, to get the DRAM size do the following:
        //      DRAM size = 2 ^ (MBAXCR[6:7] + 1)
        o_size = 1 << (reg->GetBitFieldJustified(6,2) + 1);

    } while(0);

    return o_size;

    #undef PRDF_FUNC
}

template<>
uint8_t getDramSize<TYPE_MEM_PORT>(ExtensibleChip *i_chip, uint8_t i_dimmSlct)
{
    #define PRDF_FUNC "[MemUtils::getDramSize] "

    PRDF_ASSERT( TYPE_MEM_PORT == i_chip->getType() );
    PRDF_ASSERT( i_dimmSlct < DIMM_SLCT_PER_PORT );

    TargetHandle_t memPortTrgt = i_chip->getTrgt();

    uint8_t tmp[DIMM_SLCT_PER_PORT];

    if ( !memPortTrgt->tryGetAttr<TARGETING::ATTR_MEM_EFF_DRAM_DENSITY>(tmp) )
    {
        PRDF_ERR( PRDF_FUNC "Failed to get ATTR_MEM_EFF_DRAM_DENSITY" );
        PRDF_ASSERT( false );
    }

    return tmp[i_dimmSlct];

    #undef PRDF_FUNC
}

template<>
uint8_t getDramSize<TYPE_OCMB_CHIP>(ExtensibleChip * i_chip, uint8_t i_dimmSlct)
{
    #define PRDF_FUNC "[MemUtils::getDramSize] "

    PRDF_ASSERT( TYPE_OCMB_CHIP == i_chip->getType() );
    PRDF_ASSERT( i_dimmSlct < DIMM_SLCT_PER_PORT );

    // TODO RTC 210072 - Explorer only has one port, however, multiple ports
    // will be supported in the future. Updates will need to be made here so we
    // can get the relevant port.

    ExtensibleChip * memPort = getConnectedChild( i_chip, TYPE_MEM_PORT, 0 );

    return getDramSize<TYPE_MEM_PORT>( memPort, i_dimmSlct );

    #undef PRDF_FUNC
}

//------------------------------------------------------------------------------

template<>
void cleanupChnlAttns<TYPE_MEMBUF>( ExtensibleChip * i_chip,
                                    STEP_CODE_DATA_STRUCT & io_sc )
{
    #define PRDF_FUNC "[MemUtils::cleanupChnlAttns] "

    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_MEMBUF == i_chip->getType() );

    // No cleanup if this is a checkstop attention.
    if ( CHECK_STOP == io_sc.service_data->getPrimaryAttnType() ) return;

    #ifdef __HOSTBOOT_MODULE // only do cleanup in Hostboot, no-op in FSP

    ExtensibleChip * dmiChip = getConnectedParent( i_chip, TYPE_DMI );

    // Clear the associated FIR bits for all attention types.
    // NOTE: If there are any active attentions left in the Centaur the
    //       associated FIR bits in the CHIFIR will be redriven with the
    //       next packet on the bus.

    SCAN_COMM_REGISTER_CLASS * reg = dmiChip->getRegister("CHIFIR_AND");

    reg->setAllBits();
    reg->ClearBit(16); // CS
    reg->ClearBit(19); // RE
    reg->ClearBit(20); // SPA
    reg->ClearBit(21); // maintenance command complete

    reg->Write();

    #endif // Hostboot only

    #undef PRDF_FUNC
}

//------------------------------------------------------------------------------

template<TARGETING::TYPE T>
uint32_t __fwAssistChnlFailWorkaround( ExtensibleChip * i_chip );

template<>
uint32_t __fwAssistChnlFailWorkaround<TYPE_DMI>( ExtensibleChip * i_chip )
{
    #define PRDF_FUNC "[MemUtils::__fwAssistChnlFailWorkaround] "

    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_DMI == i_chip->getType() );

    uint32_t o_rc = SUCCESS;

    #ifdef __HOSTBOOT_MODULE

    // On the Cumulus chip, channel failure attentions from the IOMCFIR are
    // forwarded down to CHIFIR[4] for each of the channels. Unfortunately,
    // there is a mapping bug in the hardware where the channel failures are
    // forwarded to the wrong CHIFIR, which causes the wrong channel to fail.

    // We considered making all of the channel fail attentions in the IOMCFIR
    // recoverable, but the "too many bus errors" attentions are a DI risk. We
    // also considered setting them to checkstop, but customers with mirroring
    // would be really mad at us, because mirroring should have protected their
    // system. So the compromise is to have firmware force the channel failure.

    // The goal here is to make the workaround behave like the hardware as much
    // as possible. CHIFIR[4] is no longer configured to trigger a channel
    // failure because of the bug. So what we will do is query if this channel
    // should have failed via the IOMCFIR. If so, configure CHIFIR[4] to trigger
    // a channel failure and set CHIFIR[4]. This will not actually trigger the
    // channel failure, but is necessary for the analysis to work. To actually
    // trigger the channel failure, we must set MCICFG0[25].

    // It is likely that the channel failure could cause a system checkstop or
    // PHYP/Hostboot TI. Especially, if it occurred in memory that is not
    // mirrored. This will end up killing the host and this analysis code, which
    // is ok. We would experience the same behavior if the hardware actually
    // worked the way it should. The analysis code on the FSP will pick up where
    // we left off and callout/gard the bad channel.

    SCAN_COMM_REGISTER_CLASS * chifir    = i_chip->getRegister( "CHIFIR" );
    SCAN_COMM_REGISTER_CLASS * chifir_or = i_chip->getRegister( "CHIFIR_OR" );
    SCAN_COMM_REGISTER_CLASS * mcicfg0   = i_chip->getRegister( "MCICFG0" );
    SCAN_COMM_REGISTER_CLASS * mcicfg1   = i_chip->getRegister( "MCICFG1" );

    ExtensibleChip * mcChip = getConnectedParent( i_chip, TYPE_MC );
    uint32_t dmiPos = i_chip->getPos() % MAX_DMI_PER_MC;
    uint32_t bitPos = 8 + dmiPos * 8;

    SCAN_COMM_REGISTER_CLASS * iomcfir  = mcChip->getRegister( "IOMCFIR" );
    SCAN_COMM_REGISTER_CLASS * iomc_cfg = mcChip->getRegister( "SCOM_MODE_PB" );

    do
    {
        // First, check if there are any bits for this channel that are set in
        // the IOMCFIR and configured to channel fail.
        o_rc = iomcfir->Read() | iomc_cfg->Read();
        if ( SUCCESS != o_rc ) break;

        // For reference, SCOM_MODE_PB[15:22]: 0=enabled, 1=disabled.
        if ( 0 == (  iomcfir->GetBitFieldJustified( bitPos,8) &
                    ~iomc_cfg->GetBitFieldJustified(15,    8) ) )
        {
            break; // nothing more to do.
        }

        // The channel should fail.
        o_rc = chifir->Read() | mcicfg0->Read() | mcicfg1->Read();
        if ( SUCCESS != o_rc ) break;

        // Configure CHIFIR[4] to channel fail via MCICFG1[47].
        if ( mcicfg1->IsBitSet(47) ) // 0=enabled, 1=disabled
        {
            mcicfg1->ClearBit(47);
            o_rc = mcicfg1->Write();
            if ( SUCCESS != o_rc ) break;
        }

        // Set CHIFIR[4].
        if ( !chifir->IsBitSet(4) )
        {
            chifir_or->SetBit(4);
            o_rc = chifir_or->Write();
            if ( SUCCESS != o_rc ) break;
        }

        // Force the channel failure via MCICFG0[25].
        if ( !mcicfg0->IsBitSet(25) )
        {
            mcicfg0->SetBit(25);
            o_rc = mcicfg0->Write();
            if ( SUCCESS != o_rc ) break;
        }

    } while (0);

    #endif // __HOSTBOOT_MODULE

    return o_rc;

    #undef PRDF_FUNC
}

//------------------------------------------------------------------------------

template<TARGETING::TYPE T>
bool __queryUcsCentaur( ExtensibleChip * i_chip );

template<>
bool __queryUcsCentaur<TYPE_MEMBUF>( ExtensibleChip * i_chip )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_MEMBUF == i_chip->getType() );

    uint32_t o_activeAttn = false;

    // We can't use the GLOBAL_CS_FIR. It will not clear automatically when a
    // channel has failed because the hardware clocks have stopped. Also, since
    // it is a virtual register there really is no way to clear it. Fortunately
    // we have the INTER_STATUS_REG that will tell us if there is an active
    // attention. Note that we clear this register as part of the channel
    // failure cleanup. So we can rely on this register to determine if there is
    // a new channel failure.

    SCAN_COMM_REGISTER_CLASS * fir = i_chip->getRegister("INTER_STATUS_REG");

    if ( SUCCESS == fir->Read() )
    {
        o_activeAttn = fir->IsBitSet(2); // Centaur checkstop bit.
    }

    return o_activeAttn;
}

//------------------------------------------------------------------------------

// This excludes CHIFIR[16,19:21] to avoid a loop in isolation. Also excludes
// CHIFIR[61] due to a hardware workaround, see __queryUcsChifir_61().
template<TARGETING::TYPE T>
bool __queryUcsChifir( ExtensibleChip * i_chip );

template<>
bool __queryUcsChifir<TYPE_DMI>( ExtensibleChip * i_chip )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_DMI == i_chip->getType() );

    uint32_t o_activeAttn = false;

    SCAN_COMM_REGISTER_CLASS * fir  = i_chip->getRegister( "CHIFIR"      );
    SCAN_COMM_REGISTER_CLASS * mask = i_chip->getRegister( "CHIFIR_MASK" );
    SCAN_COMM_REGISTER_CLASS * act0 = i_chip->getRegister( "CHIFIR_ACT0" );
    SCAN_COMM_REGISTER_CLASS * act1 = i_chip->getRegister( "CHIFIR_ACT1" );

    if ( SUCCESS == (fir->Read() | mask->Read() | act0->Read() | act1->Read()) )
    {
        // Make sure to ignore CHIFIR[16,19:21], which simply say there is an
        // attention on the Centaur. Otherwise, we will get stuck in a loop.
        // CHIFIR[61] is also ignored as it needs to be looked for later
        // for a special MBS timeout case.
        if ( 0 != (  fir->GetBitFieldJustified( 0,64) &
                    ~mask->GetBitFieldJustified(0,64) &
                     act0->GetBitFieldJustified(0,64) &
                     act1->GetBitFieldJustified(0,64) &
                     0xffff63fffffffffbull ) )
        {
            o_activeAttn = true;
        }
    }

    return o_activeAttn;
}

//------------------------------------------------------------------------------

// WORKAROUND:
// This function only queries for CHIFIR[61]. There is a hardware workaround
// that changes some behavior. CHIFIR[16] will no longer report channel failure
// attentions from the Centaur. Also, any time there is a channel failure
// attention from the Centaur, CHIFIR[61] will get set. In addition, CHIFIR[61]
// can report an attention on its own, no need for Centaur attention. Therefore,
// we must workaround the workaround and isolate to CHIFIR[61] only after
// analyzing the Centaur.
template<TARGETING::TYPE T>
bool __queryUcsChifir_61( ExtensibleChip * i_chip );

template<>
bool __queryUcsChifir_61<TYPE_DMI>( ExtensibleChip * i_chip )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_DMI == i_chip->getType() );

    uint32_t o_activeAttn= false;

    // Check if there is an active UCS attention on CHIFIR[61]
    SCAN_COMM_REGISTER_CLASS * fir  = i_chip->getRegister( "CHIFIR"      );
    SCAN_COMM_REGISTER_CLASS * mask = i_chip->getRegister( "CHIFIR_MASK" );
    SCAN_COMM_REGISTER_CLASS * act0 = i_chip->getRegister( "CHIFIR_ACT0" );
    SCAN_COMM_REGISTER_CLASS * act1 = i_chip->getRegister( "CHIFIR_ACT1" );

    if ( SUCCESS == (fir->Read() | mask->Read() | act0->Read() | act1->Read()) )
    {
        if ( fir->IsBitSet(61) & !mask->IsBitSet(61) & act0->IsBitSet(61) &
             act1->IsBitSet(61) )
        {
            o_activeAttn = true;
        }
    }


    return o_activeAttn;
}

//------------------------------------------------------------------------------

template<TARGETING::TYPE T>
bool __queryUcsIomcfir( ExtensibleChip * i_chip );

template<>
bool __queryUcsIomcfir<TYPE_DMI>( ExtensibleChip * i_chip )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_DMI == i_chip->getType() );

    uint32_t o_activeAttn = false;

    ExtensibleChip * mcChip = getConnectedParent( i_chip, TYPE_MC );

    SCAN_COMM_REGISTER_CLASS * fir  = mcChip->getRegister( "IOMCFIR"      );
    SCAN_COMM_REGISTER_CLASS * mask = mcChip->getRegister( "IOMCFIR_MASK" );
    SCAN_COMM_REGISTER_CLASS * act0 = mcChip->getRegister( "IOMCFIR_ACT0" );
    SCAN_COMM_REGISTER_CLASS * act1 = mcChip->getRegister( "IOMCFIR_ACT1" );

    if ( SUCCESS == (fir->Read() | mask->Read() | act0->Read() | act1->Read()) )
    {
        uint32_t dmiPos = i_chip->getPos() % MAX_DMI_PER_MC;
        uint32_t bitPos = 8 + dmiPos * 8;

        if ( 0 != (  fir->GetBitFieldJustified( bitPos,8) &
                    ~mask->GetBitFieldJustified(bitPos,8) &
                     act0->GetBitFieldJustified(bitPos,8) &
                     act1->GetBitFieldJustified(bitPos,8) ) )
        {
            o_activeAttn = true;
        }
    }

    return o_activeAttn;
}

//------------------------------------------------------------------------------

// Ideally it would be nice to look at only the target reporting attentions for
// a channel fail. Unfortunately, RCD parity errors can trigger a channel fail
// anywhere on the bus. Therefore, we have to query the entire bus for at least
// one active attention returning a channel failure.

template<TARGETING::TYPE T1, TARGETING::TYPE T2>
bool __queryChnlFail( ExtensibleChip * i_chip1, ExtensibleChip * i_chip2,
                      STEP_CODE_DATA_STRUCT & io_sc );

template<>
bool __queryChnlFail<TYPE_DMI,TYPE_MEMBUF>( ExtensibleChip * i_dmiChip,
                                            ExtensibleChip * i_membChip,
                                            STEP_CODE_DATA_STRUCT & io_sc )
{
    #define PRDF_FUNC "[MemUtils::__queryChnlFail] "

    PRDF_ASSERT( nullptr != i_dmiChip );
    PRDF_ASSERT( TYPE_DMI == i_dmiChip->getType() );

    PRDF_ASSERT( nullptr != i_membChip );
    PRDF_ASSERT( TYPE_MEMBUF == i_membChip->getType() );

    bool o_chnlFail = false;

    do
    {
        // Skip if currently analyzing a host attention. This is a required for
        // a rare scenario when a channel failure occurs after PRD is called to
        // handle the host attention.
        if ( HOST_ATTN == io_sc.service_data->getPrimaryAttnType() ) break;

        // There is a hardware bug where channel failures from the IOMCFIRs
        // don't report correctly. This workaround fixes the reporting and
        // forces a channel failure if needed. It must be called before calling
        // the query HWP in order for the hardware to be in the correct state.
        if ( SUCCESS != __fwAssistChnlFailWorkaround<TYPE_DMI>(i_dmiChip) )
        {
            PRDF_ERR( PRDF_FUNC "__fwAssistChnlFailWorkaround(0x%08x) failed",
                      i_dmiChip->getHuid() );
            // Continue on just in case there is a channel failure attention
            // somewhere else.
        }

        // Check for an active attention on the Centaur (simplest query).
        if ( __queryUcsCentaur<TYPE_MEMBUF>(i_membChip) )
        {
            o_chnlFail = true;
            break; // nothing more to do.
        }

        // There is a HWP on the processor side that will query if this channel
        // has failed. Unfortunately, it does not check for an active channel
        // fail attention (i.e. not masked). That will need to be done
        // afterwards.
        bool tmpChnlFail = false;
        if ( SUCCESS != PlatServices::queryChnlFail<TYPE_DMI>(i_dmiChip,
                                                              tmpChnlFail) )
        {
            PRDF_ERR( PRDF_FUNC "PlatServices::queryChnlFail(0x%08x) failed",
                      i_dmiChip->getHuid() );
            break;
        }
        if ( !tmpChnlFail ) break; // nothing more to do.

        // Check for an active attention on the CHIFIR or IOMCFIR.
        if ( __queryUcsChifir   <TYPE_DMI>(i_dmiChip) ||
             __queryUcsChifir_61<TYPE_DMI>(i_dmiChip) ||
             __queryUcsIomcfir  <TYPE_DMI>(i_dmiChip) )
        {
            o_chnlFail = true;
            break; // nothing more to do.
        }

        // This is possible if we are looking at a channel that has already
        // failed and had been analyzed. Will likely happen when iterating DMIs
        // in the MC analyze function.
        PRDF_INF( PRDF_FUNC "Failed channel detected on 0x%08x, but no active "
                  "attentions found", i_dmiChip->getHuid() );

    } while (0);

    if ( o_chnlFail )
    {
        // Note that we are not setting the secondary attention type at this
        // time because the channel failure could have been triggered by an RCD
        // parity error, which is a recoverable attention.

        // Set the MEM_CHNL_FAIL flag in the SDC to indicate a channel failure
        // has been detected and there is no need to check again.
        io_sc.service_data->setMemChnlFail();

        // Make the error log predictive and set threshold.
        io_sc.service_data->setFlag( ServiceDataCollector::SERVICE_CALL );
        io_sc.service_data->setFlag( ServiceDataCollector::AT_THRESHOLD );

        // Channel failures will always send SUEs.
        io_sc.service_data->setFlag( ServiceDataCollector::UERE );

        // Indicate cleanup is required on this channel.
        getMembufDataBundle(i_membChip)->iv_doChnlFailCleanup = true;
    }

    return o_chnlFail;

    #undef PRDF_FUNC
}

//------------------------------------------------------------------------------

// Channel failure analysis is designed to only look for UNIT_CS attentions and
// not associate any recoverables as the root cause. Of course, now we have a
// special case. RCD parity errors are recoverable attentions that could cause
// unit CS attentions as a side effect. Therefore, we must analyze them first
// before looking for any UNIT_CS attentions.

template<TARGETING::TYPE T>
bool __analyzeRcdParityError( ExtensibleChip * i_chip,
                              STEP_CODE_DATA_STRUCT & io_sc );

template<>
bool __analyzeRcdParityError<TYPE_MEMBUF>( ExtensibleChip * i_chip,
                                           STEP_CODE_DATA_STRUCT & io_sc )
{
    #define PRDF_FUNC "[MemUtils::__analyzeRcdParityError] "

    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_MEMBUF == i_chip->getType() );

    uint32_t o_analyzed = false;

    SCAN_COMM_REGISTER_CLASS * fir  = nullptr;
    SCAN_COMM_REGISTER_CLASS * mask = nullptr;
    SCAN_COMM_REGISTER_CLASS * act0 = nullptr;
    SCAN_COMM_REGISTER_CLASS * act1 = nullptr;

    for ( auto & mbaChip : getConnected(i_chip, TYPE_MBA) )
    {
        fir  = mbaChip->getRegister( "MBACALFIR"      );
        mask = mbaChip->getRegister( "MBACALFIR_MASK" );
        act0 = mbaChip->getRegister( "MBACALFIR_ACT0" );
        act1 = mbaChip->getRegister( "MBACALFIR_ACT1" );

        if ( SUCCESS != (fir->Read()  | mask->Read() |
                         act0->Read() | act1->Read()) )
        {
            PRDF_ERR( PRDF_FUNC "Failed to read MBACALFIRs on 0x%08x",
                      mbaChip->getHuid() );
            continue; // try the other MBA
        }

        uint32_t bits[] = { 4, 7 }; // bit 4: port 0, bit 7: port 1
        for ( auto & b : bits )
        {
            if ( !fir->IsBitSet(b) || mask->IsBitSet(b) ) continue;

            PRDF_INF( PRDF_FUNC "RCD parity error found on 0x%08x",
                      mbaChip->getHuid() );

            // Check the action registers just in case someone decides to change
            // the attention type to unit checkstop.
            ATTENTION_TYPE secAttnType = RECOVERABLE;
            if ( !act0->IsBitSet(b) && !act1->IsBitSet(b) )
                secAttnType = UNIT_CS;

            // Analyze this MBA. Note that the rule code is set up on the MBA
            // such that the RCD parity errors will always be the first
            // attentions handled.
            if ( SUCCESS == mbaChip->Analyze(io_sc, secAttnType) )
            {
                o_analyzed = true; break; // analysis complete
            }
        }
        if ( o_analyzed ) break; // nothing more to do
    }

    return o_analyzed;

    #undef PRDF_FUNC
}

//------------------------------------------------------------------------------

// Channel failure analysis is designed to only look for UNIT_CS attentions and
// not associate any recoverables as the root cause. Of course, now we have yet
// another special case. An internal timeout is a recoverable attention that
// could cause unit CS attentions as a side effect. Therefore, we must analyze
// it first before looking for any UNIT_CS attentions.

template<TARGETING::TYPE T>
bool __analyzeInternalTimeout( ExtensibleChip * i_chip,
                               STEP_CODE_DATA_STRUCT & io_sc );

template<>
bool __analyzeInternalTimeout<TYPE_MEMBUF>( ExtensibleChip * i_chip,
                                            STEP_CODE_DATA_STRUCT & io_sc )
{
    #define PRDF_FUNC "[MemUtils::__analyzeInternalTimeout] "

    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_MEMBUF == i_chip->getType() );

    uint32_t o_analyzed = false;

    SCAN_COMM_REGISTER_CLASS * fir  = i_chip->getRegister( "MBSFIR"      );
    SCAN_COMM_REGISTER_CLASS * mask = i_chip->getRegister( "MBSFIR_MASK" );

    do
    {
        if ( SUCCESS != (fir->Read() | mask->Read()) )
        {
            PRDF_ERR( PRDF_FUNC "Failed to read MBSFIRs on 0x%08x",
                      i_chip->getHuid() );
            break;
        }

        // If there is an internal timeout that is not masked and there is not
        // an external timeout (note external timeout is always masked), then
        // there is a legit internal timeout attention.
        if ( fir->IsBitSet(4) && !mask->IsBitSet(4) && !fir->IsBitSet(3) )
        {
            // We are not going to analyze the MEMBUF chip like we do with some
            // of the other helper functions in this file because the rule code
            // priority will put the MBSFIR after the MBIFIR and DMIFIR.
            // Therefore, there is no way to guarantee this attention will be
            // analyzed. Since we do know there is a channel failure we can
            // simply make a predictive callout because the channel failure code
            // will eventually mask the entire Centaur.

            io_sc.service_data->SetCallout( i_chip->getTrgt() );

            io_sc.service_data->setSignature( i_chip->getHuid(),
                                              PRDFSIG_InternalTimeout );

            o_analyzed = true; break; // analysis complete
        }

    } while (0);

    return o_analyzed;

    #undef PRDF_FUNC
}

//------------------------------------------------------------------------------

// Handling channel failures from more than one channel at a time:
// Say we were called to handle a recoverable attention on a Centaur, but the
// channel containing that Centaur has a unit checkstop attention in the
// IOMCFIR. There is nothing in the PRD plugin code that will allow us to
// analyze the IOMCFIR directly. So the best we have is to analyze the MC target
// containing the IOMCFIR. Now, say we have a second channel reporting a unit
// checkstop from its CHIFIR (two channel failures at the same time). In order
// to ensure that we can take care of the first channel failure, we must
// prioritize the IOMCFIR over all of the CHIFIRs in the MC_CHIPLET_UCS_FIR.
//
// To complicate things further, we don't have any mechanism to target a
// specific bus in the IOMCFIR. So we have to analyze the buses in order (0-3).
// Therefore, it is still possible that the first bus we find with a unit
// checkstop attention in the IOMCFIR is not the bus we originally started to
// analyze. There isn't much we can do about this. We will have to start over
// and switch analysis to the second channel. After completing analysis and
// masking the second bus, we will then retry analysis on the first bus.
//
// So basically any time we need to look for a channel failure, we must iterate
// all four channels in the order they exist in the IOMCFIR.

template<TARGETING::TYPE T>
bool __analyzeChnlFail( ExtensibleChip * i_chip,
                        STEP_CODE_DATA_STRUCT & io_sc );

template<>
bool __analyzeChnlFail<TYPE_MC>( ExtensibleChip * i_chip,
                                 STEP_CODE_DATA_STRUCT & io_sc )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_MC == i_chip->getType() );

    uint32_t o_analyzed = false;

    // getConnected() will return the chips sorted by the unit position. This
    // will be the same order as the buses in the IOMCFIR.
    for ( auto & dmiChip : getConnected(i_chip, TYPE_DMI) )
    {
        ExtensibleChip * membChip = getConnectedChild(dmiChip, TYPE_MEMBUF, 0);
        PRDF_ASSERT( nullptr != membChip ); // shouldn't be possible

        // Check for active channel failure attention.
        if ( !__queryChnlFail<TYPE_DMI,TYPE_MEMBUF>(dmiChip, membChip, io_sc) )
        {
            continue; // nothing more to do for this channel
        }

        // First, check for RCD parity errors. They are recoverable attentions
        // that could have a channel failure attention as a side effect.
        if ( __analyzeRcdParityError<TYPE_MEMBUF>(membChip, io_sc) )
        {
            o_analyzed = true; break; // analysis complete
        }

        // Now, check for an internal timeout error. This is a recoverable
        // attention that could have a channel failure attention as a side
        // effect.
        if ( __analyzeInternalTimeout<TYPE_MEMBUF>(membChip, io_sc) )
        {
            o_analyzed = true; break; // analysis complete
        }

        // Now, look for unit checkstops in the CHIFIR, excluding
        // CHIFIR[16,19:21,61].
        if ( __queryUcsChifir<TYPE_DMI>(dmiChip) )
        {
            // Analyze UNIT_CS on the DMI chip.
            if ( SUCCESS == dmiChip->Analyze(io_sc, UNIT_CS) )
            {
                o_analyzed = true; break; // analysis complete
            }
        }

        // Now, look for unit checkstops on the Centaur.
        if ( __queryUcsCentaur<TYPE_MEMBUF>(membChip) )
        {
            // Analyze UNIT_CS on the MEMBUF chip.
            if ( SUCCESS == membChip->Analyze(io_sc, UNIT_CS) )
            {
                o_analyzed = true; break; // analysis complete
            }
        }

        // Now, look for unit checkstop from CHIFIR[61].
        if ( __queryUcsChifir_61<TYPE_DMI>(dmiChip) )
        {
            // Analyze UNIT_CS on the DMI chip.
            if ( SUCCESS == dmiChip->Analyze(io_sc, UNIT_CS) )
            {
                o_analyzed = true; break; // analysis complete
            }
        }

        // Now, look for unit checkstops in the IOMCFIR.
        if ( __queryUcsIomcfir<TYPE_DMI>(dmiChip) )
        {
            // Analyze UNIT_CS on the MC chip.
            if ( SUCCESS == i_chip->Analyze(io_sc, UNIT_CS) )
            {
                o_analyzed = true; break; // analysis complete
            }
        }
    }

    return o_analyzed;
}

//------------------------------------------------------------------------------

template<>
bool analyzeChnlFail<TYPE_MEMBUF>( ExtensibleChip * i_chip,
                                   STEP_CODE_DATA_STRUCT & io_sc )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_MEMBUF == i_chip->getType() );

    uint32_t o_analyzed = false;

    if ( !io_sc.service_data->isMemChnlFail() )
    {
        ExtensibleChip * dmiChip = getConnectedParent( i_chip,  TYPE_DMI );
        ExtensibleChip * mcChip  = getConnectedParent( dmiChip, TYPE_MC  );
        o_analyzed = __analyzeChnlFail<TYPE_MC>( mcChip, io_sc );
    }

    return o_analyzed;
}

//------------------------------------------------------------------------------

template<>
bool analyzeChnlFail<TYPE_MC>( ExtensibleChip * i_chip,
                               STEP_CODE_DATA_STRUCT & io_sc )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_MC == i_chip->getType() );

    uint32_t o_analyzed = false;

    if ( !io_sc.service_data->isMemChnlFail() )
    {
        o_analyzed = __analyzeChnlFail<TYPE_MC>( i_chip, io_sc );
    }

    return o_analyzed;
}

//------------------------------------------------------------------------------

template<TARGETING::TYPE T1, TARGETING::TYPE T2, TARGETING::TYPE T3>
void __cleanupChnlFail( ExtensibleChip * i_chip1, ExtensibleChip * i_chip2,
                        ExtensibleChip * i_chip3,
                        STEP_CODE_DATA_STRUCT & io_sc );

template<>
void __cleanupChnlFail<TYPE_MC,TYPE_DMI,TYPE_MEMBUF>(
                                              ExtensibleChip * i_mcChip,
                                              ExtensibleChip * i_dmiChip,
                                              ExtensibleChip * i_membChip,
                                              STEP_CODE_DATA_STRUCT & io_sc )
{
    #define PRDF_FUNC "[MemUtils::__cleanupChnlFail] "

    PRDF_ASSERT( nullptr != i_mcChip );
    PRDF_ASSERT( TYPE_MC == i_mcChip->getType() );

    PRDF_ASSERT( nullptr != i_dmiChip );
    PRDF_ASSERT( TYPE_DMI == i_dmiChip->getType() );

    PRDF_ASSERT( nullptr != i_membChip );
    PRDF_ASSERT( TYPE_MEMBUF == i_membChip->getType() );

    // No cleanup if this is a checkstop attention.
    if ( CHECK_STOP == io_sc.service_data->getPrimaryAttnType() ) return;

    // Check if cleanup is still required or has already been done.
    if ( ! getMembufDataBundle(i_membChip)->iv_doChnlFailCleanup ) return;

    // Cleanup is complete and no longer required on this channel.
    getMembufDataBundle(i_membChip)->iv_doChnlFailCleanup = false;

    #ifdef __HOSTBOOT_MODULE // only do cleanup in Hostboot, no-op in FSP

    // Note that this is a clean up function. If there are any SCOM errors
    // we will just move on and try the rest.

    SCAN_COMM_REGISTER_CLASS * reg = nullptr;
    uint32_t dmiPos = i_dmiChip->getPos() % MAX_DMI_PER_MC;

    // Mask off all attentions from the DMI target in the CHIFIR.
    reg = i_dmiChip->getRegister( "CHIFIR_MASK_OR" );
    reg->setAllBits();
    reg->Write();

    // Mask off all attentions from the DMI target in the IOMCFIR.
    reg = i_mcChip->getRegister( "IOMCFIR_MASK_OR" );
    reg->SetBitFieldJustified( 8 + (dmiPos * 8), 8, 0xff ); // 8, 16, 24, 32
    reg->Write();

    // Mask off all attentions from the MEMBUF target in the chiplet FIRs.
    const char * reg_strs[] { "TP_CHIPLET_FIR_MASK",
                              "NEST_CHIPLET_FIR_MASK",
                              "MEM_CHIPLET_FIR_MASK",
                              "MEM_CHIPLET_SPA_FIR_MASK" };
    for ( auto & reg_str : reg_strs )
    {
        reg = i_membChip->getRegister( reg_str );
        reg->setAllBits(); // Blindly mask everything
        reg->Write();
    }

    // To ensure FSP ATTN doesn't think there is an active attention on this
    // Centaur, manually clear the interrupt status register.
    reg = i_membChip->getRegister( "INTER_STATUS_REG" );
    reg->clearAllBits(); // Blindly clear everything
    reg->Write();

    // For all attached MBAs:
    //   During runtime, send a dynamic memory deallocation message.
    //   During Memory Diagnostics, tell MDIA to stop pattern tests.
    for ( auto & mbaChip : getConnected(i_membChip, TYPE_MBA) )
    {
        #ifdef __HOSTBOOT_RUNTIME
        MemDealloc::port<TYPE_MBA>( mbaChip );
        #else
        if ( isInMdiaMode() )
            mdiaSendEventMsg( mbaChip->getTrgt(), MDIA::STOP_TESTING );
        #endif
    }

    #endif // Hostboot only

    #undef PRDF_FUNC
}

template<>
void cleanupChnlFail<TYPE_MC>( ExtensibleChip * i_chip,
                               STEP_CODE_DATA_STRUCT & io_sc )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_MC == i_chip->getType() );

    for ( auto & dmiChip : getConnected(i_chip, TYPE_DMI) )
    {
        ExtensibleChip * membChip = getConnectedChild( dmiChip, TYPE_MEMBUF, 0);
        PRDF_ASSERT( nullptr != membChip ); // shouldn't be possible

        __cleanupChnlFail<TYPE_MC,TYPE_DMI,TYPE_MEMBUF>( i_chip, dmiChip,
                                                         membChip, io_sc );
    }
}

template<>
void cleanupChnlFail<TYPE_DMI>( ExtensibleChip * i_chip,
                                STEP_CODE_DATA_STRUCT & io_sc )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_DMI == i_chip->getType() );

    ExtensibleChip * mcChip = getConnectedParent( i_chip, TYPE_MC );

    cleanupChnlFail<TYPE_MC>( mcChip, io_sc );
}

template<>
void cleanupChnlFail<TYPE_MEMBUF>( ExtensibleChip * i_chip,
                                   STEP_CODE_DATA_STRUCT & io_sc )
{
    PRDF_ASSERT( nullptr != i_chip );
    PRDF_ASSERT( TYPE_MEMBUF == i_chip->getType() );

    ExtensibleChip * dmiChip = getConnectedParent( i_chip, TYPE_DMI );

    cleanupChnlFail<TYPE_DMI>( dmiChip, io_sc );
}

//------------------------------------------------------------------------------

uint64_t reverseBits( uint64_t i_val, uint64_t i_numBits )
{
    uint64_t o_val = 0;

    for ( uint64_t i = 0; i < i_numBits; i++ )
    {
        o_val <<= 1;
        o_val |= i_val & 0x1;
        i_val >>= 1;
    }

    return o_val;
}

//------------------------------------------------------------------------------

} // end namespace MemUtils

} // end namespace PRDF
OpenPOWER on IntegriCloud