summaryrefslogtreecommitdiffstats
path: root/src/lib/tls.C
blob: 4fcafb23bc322895461e88c997ba467e5119dc08 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/lib/tls.C $                                               */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2015                             */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
#define assert crit_assert

#include <kernel/task.H>
#include <stdint.h>
#include <sys/sync.h>
#include <vector>
#include <algorithm>
#include <stdlib.h>
#include <string.h>
#include <util/lockfree/stack.H>
#include <sys/vfs.h>

/** Thread Local Storage - How it works.
 *
 *  For background:
 *      - http://www.akkadia.org/drepper/tls.pdf
 *      - http://www.uclibc.org/docs/tls-ppc64.txt
 *
 *  Normal global variables go into a per-module ELF section of .data or .bss
 *  depending on if the variable is non-zero or zero initialized respectively.
 *  To support TLS, the compiler emits a new .tdata and .tbss data.  It is
 *  expected that the runtime support (this code) will create a new copy of
 *  the .tdata / .tbss section per-thread.
 *
 *  The implementation of TLS needs to be both fast and use minimum memory.
 *  The TLS design (in tls.pdf and the compiler implementation) allows lazy
 *  creation of the TLS data on a per-thread and per-module basis and it is
 *  also organized in a way to allow TLS variable lookups to typically be done
 *  with only a few pointer dereferences.
 *
 *  When you create a thread local variable, such as through the thread_local
 *  C++11 syntax, the compiler will create a tuple for each variable.  Each
 *  module is assigned a module-id by the linker and the tuple has the
 *  module-id and the offset in the .tdata / .tbss section for each variable.
 *  In the case where a TLS variable from a module has already been accessed,
 *  TLS access is as simple as:  task_t->tls_context->blobs[module][offset].
 *  When a variable has not yet been accessed by a thread, the blob for the
 *  module must be allocated and initialized from the module's original
 *  .tdata / .tbss section.
 *
 *  One oddity in the design is the disconnect between the tuples and the
 *  .tdata section.  The module_init code can find if a .tdata exists, by
 *  checking the size of __tls_start_addr and __tls_end_addr, but it does not
 *  know the module-id that was assigned by the linker.  Therefore, we have
 *  module_init 'register' the tls_start/tls_end when the module loads, but
 *  have to defer determining the module-id until the first TLS access of
 *  a variable (in any thread).  At this point, we find the .tdata address
 *  closest to the variable to match up the module-id and .tdata address.  This
 *  is the purpose of the __tls_pending_modules and __tls_modules structures.
 *  Once a module has been matched up once we can use the __tls_modules for
 *  quicker lookups of a TLS access in any other thread.
 */


/** Tuple created by the linker for each TLS variable. */
struct __tls_linker_tuple
{
    size_t module;
    size_t offset;
};

/** Info about the .tdata section for each module. */
struct __tls_module
{
    void* sect_addr;
    size_t size;
};

/** TLS destructor data. */
struct __tls_dtor
{
    void (*dtor)(void*);
    void* arg;

    __tls_dtor* next;
};

/** TLS data for each task to go into task_t. */
struct __tls_thread_info
{
    size_t count;
    Util::Lockfree::Stack<__tls_dtor> dtors;
    void* blobs[0];
};

mutex_t __tls_mutex = MUTEX_INITIALIZER;
std::vector<__tls_module> __tls_modules;
std::vector<__tls_module> __tls_pending_modules;

/** Get the previously registered __tls_module data for a TLS variable */
const __tls_module* __tls_get_module(const __tls_linker_tuple* tuple)
{
    // Look the module up in the __tls_modules first, in case we've seen
    // this module before in another thread.
    if ((__tls_modules.size() > tuple->module) &&
        (__tls_modules[tuple->module].sect_addr != nullptr))
    {
        return &__tls_modules[tuple->module];
    }

    // We plan to insert a new module, so make sure we can contain it.
    if (__tls_modules.size() <= tuple->module)
    {
        __tls_modules.resize(tuple->module+1);
    }

    // This is the first time we've seen this module.  Need to look up in
    // pending.

    // The TLS sections are at the beginning of the .rodata section and the
    // linker tuples are somewhere in .data.  Therefore sect_addr < tuple.
    // Search __tls_pending_modules for the highest address section that is
    // less than the tuple address.
    auto best = __tls_pending_modules.begin();
    auto curr = best;
    while(curr != __tls_pending_modules.end())
    {
        if ((curr->sect_addr > best->sect_addr) &&
           (curr->sect_addr < tuple))
        {
            best = curr;
        }
        ++curr;
    }
    assert(best != __tls_pending_modules.end());

    // Copy it into the __tls_modules and remove it from the pending list.
    __tls_modules[tuple->module] = *best;
    __tls_pending_modules.erase(best);

    return &__tls_modules[tuple->module];
}

/* Since Hostboot runtime only has a single thread, we'll just create a
 * single global TLS area. */
#ifdef __HOSTBOOT_RUNTIME
task_t __tls_task_struct;
#endif

/** Get a TLS variable address
 *
 *  Calls to this automatically inserted by the compiler.
 */
extern "C"
void* __tls_get_addr(const __tls_linker_tuple* tuple)
{
    task_t* task = nullptr;
#ifdef __HOSTBOOT_RUNTIME
    task = &tls_task_struct;
#else
    // Get the task_t pointer from register 13.
    asm volatile("mr %0, 13" : "=r"(task));
#endif

    auto tls_info = reinterpret_cast<__tls_thread_info*>(task->tls_context);

    // If:
    //      - tls_info is nullptr.
    //      - tls count is not at least as large as this module id.
    //      - tls[module] is nullptr
    // Then: module blob needs to be allocated.
    if ((tls_info == nullptr) ||
        (tls_info->count <= tuple->module) ||
        (tls_info->blobs[tuple->module] == nullptr))
    {

        // If there isn't room for the module's blob, we need to allocate it.
        if ((tls_info == nullptr) || (tls_info->count <= tuple->module))
        {
            decltype(__tls_thread_info::count) old_size = 0;
            auto new_size = sizeof(__tls_thread_info) +
                            sizeof(void*)*(tuple->module+1);

            // Allocate or reallocate the tls info.
            if (tls_info == nullptr)
            {
                old_size = 0;
                tls_info = reinterpret_cast<decltype(tls_info)>(
                    malloc(new_size));
                memset(&tls_info->dtors, '\0', sizeof(tls_info->dtors));
            }
            else
            {
                old_size = tls_info->count;
                tls_info = reinterpret_cast<decltype(tls_info)>(
                    realloc(tls_info, new_size));
            }

            // Clear the newly allocated area and update the count.
            memset(&tls_info->blobs[old_size], '\0', new_size -
                   (sizeof(__tls_thread_info) + sizeof(void*)*old_size));
            tls_info->count = tuple->module+1;

            // save into task struct.
            task->tls_context = tls_info;

        }

        // Allocate and copy TLS blob.
        mutex_lock(&__tls_mutex);
        {
            auto module = __tls_get_module(tuple);
            auto blob = tls_info->blobs[tuple->module] = malloc(module->size);
            memcpy(blob, module->sect_addr, module->size);
        }
        mutex_unlock(&__tls_mutex);

    }

    // Return the offset of the TLS variable from this module's blob.
    return &reinterpret_cast<uint8_t*>(tls_info->blobs[tuple->module])
        [tuple->offset+VFS_PPC64_DTPREL_OFFSET];
}

/** Register a module's __tls_start_address / __tls_end_address.
 *
 *  Called by init() in module_init.
 */
void __tls_register(void* s, void* e)
{
    if (s == e)
        return;

    __tls_module m = { s, ((size_t)e) - ((size_t)s) };

    mutex_lock(&__tls_mutex);
    {
        __tls_pending_modules.push_back(m);
    }
    mutex_unlock(&__tls_mutex);
}

/** Clean up registration on unload.
 *
 *  Called by fini() in module_init.
 */
void __tls_unregister(void* s, void* e)
{
    if (s == e)
        return;

    using std::remove_if;

    mutex_lock(&__tls_mutex);
    {
        auto& v = __tls_pending_modules;
        v.erase(remove_if(v.begin(), v.end(),
                    [s](const auto& i){ return i.sect_addr == s; }),
                v.end());
    }
    mutex_unlock(&__tls_mutex);
}

/** Clean up TLS data for a task.
 *
 *  Called by task_end_stub.
 */
extern "C"
void __tls_cleanup(__tls_thread_info* info)
{
    // Call TLS destructors.
    while(auto d = info->dtors.pop())
    {
        d->dtor(d->arg);
        free(d);
    }

    // Free TLS blobs.
    decltype(__tls_thread_info::count) i = 0;
    while(i < info->count)
    {
        free(info->blobs[i]);
        ++i;
    }
    free(info);
}

/** Register a C++ dtor for TLS data.
 *
 *  Automatically called by compiler when a TLS variable has a constructor /
 *  destructor.
 */
extern "C"
int __cxa_thread_atexit(void (*dtor)(void*), void* arg, void* dso)
{
    task_t* task = nullptr;
#ifdef __HOSTBOOT_RUNTIME
    task = &tls_task_struct;
#else
    // Get the task_t pointer from register 13.
    asm volatile("mr %0, 13" : "=r"(task));
#endif

    // Get tls_info from task_t or allocate a new one.
    auto tls_info = reinterpret_cast<__tls_thread_info*>(task->tls_context);
    if (nullptr == tls_info)
    {
        task->tls_context = tls_info =
            reinterpret_cast<decltype(tls_info)>(
                calloc(1, sizeof(decltype(*tls_info))));
    }

    // Insert a new dtor registration.
    auto dtor_info = reinterpret_cast<__tls_dtor*>(malloc(sizeof(__tls_dtor)));
    dtor_info->dtor = dtor;
    dtor_info->arg = arg;
    tls_info->dtors.push(dtor_info);

    return 0;
}
OpenPOWER on IntegriCloud