1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
|
// IBM_PROLOG_BEGIN_TAG
// This is an automatically generated prolog.
//
// $Source: src/lib/sync.C $
//
// IBM CONFIDENTIAL
//
// COPYRIGHT International Business Machines Corp. 2011
//
// p1
//
// Object Code Only (OCO) source materials
// Licensed Internal Code Source Materials
// IBM HostBoot Licensed Internal Code
//
// The source code for this program is not published or other-
// wise divested of its trade secrets, irrespective of what has
// been deposited with the U.S. Copyright Office.
//
// Origin: 30
//
// IBM_PROLOG_END
#include <arch/ppc.H>
#include <sys/sync.h>
#include <sys/syscall.h>
#include <assert.h>
#include <errno.h>
#include <kernel/console.H>
using namespace Systemcalls;
//-----------------------------------------------------------------------------
uint64_t futex_wait(uint64_t * i_addr, uint64_t i_val)
{
return (uint64_t) _syscall5(SYS_FUTEX,
(void *)FUTEX_WAIT,
i_addr,
(void *)i_val,
NULL,
NULL);
}
//-----------------------------------------------------------------------------
uint64_t futex_wake(uint64_t * i_addr, uint64_t i_count)
{
return (uint64_t) _syscall5(SYS_FUTEX,
(void *)FUTEX_WAKE,
i_addr,
(void *)i_count,
NULL,
NULL);
}
//-----------------------------------------------------------------------------
uint64_t futex_requeue(uint64_t * i_addr,
uint64_t i_count1,
uint64_t i_count2,
uint64_t * i_futex2)
{
return (uint64_t) _syscall5(SYS_FUTEX,
(void *)FUTEX_REQUEUE,
i_addr,
(void *)i_count1,
(void *)i_count2,
i_futex2);
}
//-----------------------------------------------------------------------------
void barrier_init (barrier_t * o_barrier, uint64_t i_count)
{
mutex_init(&(o_barrier->iv_mutex));
o_barrier->iv_event = 0;
o_barrier->iv_count = i_count;
o_barrier->iv_missing = i_count;
return;
}
//-----------------------------------------------------------------------------
void barrier_destroy (barrier_t * i_barrier)
{
crit_assert(i_barrier->iv_missing == i_barrier->iv_count);
return;
}
//-----------------------------------------------------------------------------
void barrier_wait (barrier_t * i_barrier)
{
mutex_lock(&(i_barrier->iv_mutex));
--(i_barrier->iv_missing);
if(i_barrier->iv_missing > 0)
{
uint64_t l_event = i_barrier->iv_event;
mutex_unlock(&(i_barrier->iv_mutex));
do
{
futex_wait(&(i_barrier->iv_event), l_event);
} while (i_barrier->iv_event == l_event);
}
else
{
++(i_barrier->iv_event);
i_barrier->iv_missing = i_barrier->iv_count;
// Wake em all up
futex_wake(&(i_barrier->iv_event), UINT64_MAX);
mutex_unlock(&(i_barrier->iv_mutex));
}
return;
}
//-----------------------------------------------------------------------------
void mutex_init(mutex_t * o_mutex)
{
o_mutex->iv_val = 0;
return;
}
//-----------------------------------------------------------------------------
void mutex_destroy(mutex_t * i_mutex)
{
i_mutex->iv_val = ~0;
return;
}
//-----------------------------------------------------------------------------
void mutex_lock(mutex_t * i_mutex)
{
// Weak consistency notes:
// Since this is a lock, we do not need to ensure that all writes
// are globally visible prior to execution (lwsync) but we do need
// to ensure that all instructions finish completion prior to
// leaving (isync). Both __sync_val_compare_and_swap and
// __sync_lock_test_and_set have an implied isync.
uint64_t l_count = __sync_val_compare_and_swap(&(i_mutex->iv_val),0,1);
if(unlikely(l_count != 0))
{
if (likely(l_count != 2))
{
l_count = __sync_lock_test_and_set(&(i_mutex->iv_val), 2);
}
while( l_count != 0 )
{
futex_wait( &(i_mutex->iv_val), 2);
l_count = __sync_lock_test_and_set(&(i_mutex->iv_val),2);
// if more than one task gets out - one continues while
// the rest get blocked again.
}
}
return;
}
//-----------------------------------------------------------------------------
void mutex_unlock(mutex_t * i_mutex)
{
// Weak consistency notes:
// Since this is an unlock we need to ensure that all writes are
// globally visible prior to execution (lwsync). The
// __sync_fetch_and_sub has an implied lwsync. If we need to
// release a task, due to a contended mutex, the write to iv_val
// and futex_wake pair will appear globally ordered due to the
// context synchronizing nature of the 'sc' instruction.
uint64_t l_count = __sync_fetch_and_sub(&(i_mutex->iv_val),1);
if(unlikely(2 <= l_count))
{
i_mutex->iv_val = 0;
futex_wake(&(i_mutex->iv_val), 1); // wake one task
}
return;
}
void sync_cond_init(sync_cond_t * i_cond)
{
i_cond->mutex = NULL;
i_cond->sequence = 0;
}
void sync_cond_destroy(sync_cond_t * i_cond)
{
// don't need to do anything
}
int sync_cond_wait(sync_cond_t * i_cond, mutex_t * i_mutex)
{
uint64_t seq = i_cond->sequence;
if(i_cond->mutex != i_mutex)
{
if(i_cond->mutex) return EINVAL;
// Atomically set mutex
__sync_bool_compare_and_swap(&i_cond->mutex, NULL, i_mutex);
if(i_cond->mutex != i_mutex) return EINVAL;
}
mutex_unlock(i_mutex);
futex_wait( &(i_cond->sequence), seq);
// Can't continue until i_mutex lock is obtained.
//mutex_lock(i_mutex); <--- Does not work - Havn't figure out why
// but the followin code does work.
// this code locks the mutex and makes sure it's contended.
while(0 != __sync_lock_test_and_set(&(i_mutex->iv_val), 2))
{
futex_wait(&(i_mutex->iv_val),2);
}
return 0;
}
void sync_cond_signal(sync_cond_t * i_cond)
{
__sync_fetch_and_add(&(i_cond->sequence),1);
// Wake up one
futex_wake(&(i_cond->sequence), 1);
}
void sync_cond_broadcast(sync_cond_t * i_cond)
{
mutex_t * m = i_cond->mutex;
// no mutex means no waiters
if(!m) return;
// wake up all
__sync_fetch_and_add(&(i_cond->sequence),1);
// need to wake up one on the sequence and
// re-queue the rest onto the mutex m;
futex_requeue(&(i_cond->sequence),1,UINT64_MAX,&(m->iv_val));
}
|