1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/kernel/intmsghandler.C $ */
/* */
/* OpenPOWER HostBoot Project */
/* */
/* Contributors Listed Below - COPYRIGHT 2011,2018 */
/* [+] International Business Machines Corp. */
/* */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
/* implied. See the License for the specific language governing */
/* permissions and limitations under the License. */
/* */
/* IBM_PROLOG_END_TAG */
#include <kernel/intmsghandler.H>
#include <sys/msg.h>
#include <util/singleton.H>
#include <kernel/console.H>
#include <util/lockfree/atomic_construct.H>
#include <kernel/task.H>
#include <kernel/taskmgr.H>
#include <kernel/cpu.H>
#include <kernel/scheduler.H>
#include <arch/ppc.H>
const char* VFS_ROOT_MSG_INTR = "/msg/interrupt";
InterruptMsgHdlr * InterruptMsgHdlr::cv_instance = NULL;
uint64_t InterruptMsgHdlr::cv_ipc_base_address = 0;
uint64_t InterruptMsgHdlr::cv_ipc_salt = 0;
void InterruptMsgHdlr::create(MessageQueue * i_msgQ, uint64_t i_ipc_addr)
{
cv_ipc_base_address = i_ipc_addr;
if(cv_instance)
{
// TODO should this be considered an unrecoverable error?
// i_msgQ has already been changed by the syscall, so we either have to
// make a new InterrupMsgHdlr object to match the new queue or we halt
// the system.
printk("WARNING replacing existing Interrupt handler!\n");
InterruptMsgHdlr* instance = cv_instance;
while(instance != NULL)
{
if(__sync_bool_compare_and_swap(&cv_instance, instance, NULL))
{
delete instance;
}
instance = cv_instance;
}
}
// Atomically construct.
if (__sync_bool_compare_and_swap(&cv_instance, NULL, NULL))
{
InterruptMsgHdlr* instance = new InterruptMsgHdlr(i_msgQ);
if (!__sync_bool_compare_and_swap(&cv_instance, NULL, instance))
{
delete instance;
}
}
}
void InterruptMsgHdlr::handleInterrupt()
{
uint64_t pir = getPIR();
if( cv_ipc_base_address != 0 )
{
uint64_t ackHypeInt2RegAddress = cv_ipc_base_address;
ackHypeInt2RegAddress += ACK_HYPERVISOR_INT_REG_OFFSET;
// Ignore HRMOR setting
ackHypeInt2RegAddress |= 0x8000000000000000ul;
uint16_t ackHypeInt2Reg = 0;
// Reading this register acknowledges the interrupt and deactivates the
// external interrupt signal to the processor. The XIRR is now locked
// and can't be pre-empted by a "more favored" interrupt.
// This is a cache-inhibited load from hypervisor state.
// lhzcix BOP1,Ref_G0,BOP2
asm volatile("lhzcix %0, 0, %1"
: "=r" (ackHypeInt2Reg) // output, %0
: "r" (ackHypeInt2RegAddress) // input, %1
: ); // no impacts
if(cv_instance)
{
cv_instance->iv_lock.lock();
//sendMessage needs a unique key, otherwise it
//drops messages. PIR is not unique enough, make
//it (ackHypInt2Reg<<32) | PIR
uint64_t l_data0 =
pir | (static_cast<uint64_t>(ackHypeInt2Reg) <<32);
cv_instance->sendMessage(MSG_INTR_EXTERN,
reinterpret_cast<void*>(l_data0),
NULL,
NULL);
cv_instance->iv_lock.unlock();
}
}
else
{
printk("InterruptMsgHdlr got called before IPC was setup\n");
// The INTR mmio base address is not yet available via the attributes.
// If we get here during an MPIPL then the BAR value could be read
// from the ICP BAR SCOM register, however, since this value will
// never change unless PHYP changes its memory map, it is deemed
// sufficient to hard code the value. If this is not an MPIPL then
// there is a serious problem elsewhere.
cv_ipc_base_address = (uint64_t)(INTP_BAR_VALUE) << 32; // val in BAR
cv_ipc_base_address >>= 14; // convert to base address
uint64_t xirrAddress =
cv_ipc_base_address + mmio_offset(pir) + XIRR_ADDR_OFFSET;
// Ignore HRMOR setting
xirrAddress |= 0x8000000000000000ul;
uint32_t xirr = 0;
asm volatile("lwzcix %0, 0, %1"
: "=r" (xirr)
: "r" (xirrAddress)
: );
// There should not be any more interrupts until an eoi is sent
// by writing the xirr back with the value read.
//If this is an IPI -- clean it up
//TODO RTC 137564
if((xirr & 0x00FFFFFF) == INTERPROC_XISR)
{
uint64_t mfrrAddress =
cv_ipc_base_address + mmio_offset(pir) + MFRR_ADDR_OFFSET;
// Ignore HRMOR setting
mfrrAddress |= 0x8000000000000000ul;
uint8_t mfrr = 0xFF;
asm volatile("stbcix %0,0,%1" :: "r" (mfrr) , "r" (mfrrAddress));
asm volatile("stwcix %0,0,%1" :: "r" (xirr) , "r" (xirrAddress));
}
}
}
void InterruptMsgHdlr::addCpuCore(uint64_t i_pir)
{
task_t* t = TaskManager::getCurrentTask();
if(cv_instance)
{
// To avoid conflict with interrupts on thread i_pir, change the key
// for the message to be an invalid PIR.
uint64_t pir_key = i_pir | MSG_KEY_ADD_CPU_CORE;
cv_instance->iv_lock.lock();
cv_instance->sendMessage(MSG_INTR_ADD_CPU,
(void*)pir_key,(void *)i_pir,t);
cv_instance->iv_lock.unlock();
}
}
void InterruptMsgHdlr::sendThreadWakeupMsg(uint64_t i_pir)
{
if(cv_instance)
{
// To avoid conflict with interrupts on thread i_pir, change the key
// for the message to be an invalid PIR.
uint64_t pir_key = i_pir | MSG_KEY_THREAD_WKUP;
cv_instance->iv_lock.lock();
cv_instance->sendMessage(MSG_INTR_CPU_WAKEUP,
(void*)pir_key,(void *)i_pir,NULL);
cv_instance->iv_lock.unlock();
}
}
void InterruptMsgHdlr::sendIpcMsg(uint64_t i_pir)
{
if(cv_instance)
{
//Note that due to how IPC works between independent HB
//Instances, their is a race between when the data area
//"lock" is released and when the doorbell handled response
//is sent back to the kernel. Basically the other instances
//pounce on the data area as soon as it is unlocked, and
//a duplicate doorbell happens before kernel clears first
//message.
//Since the kernel will drop any message with the same PIR
//key on the floor, need to make it unique with an incrementing
//counter
cv_ipc_salt += MSG_IPC_SALT;
uint64_t pir_key = i_pir | MSG_KEY_IPC_MSG | cv_ipc_salt;
cv_instance->iv_lock.lock();
cv_instance->sendMessage(MSG_INTR_IPC,
(void*)pir_key,(void *)i_pir,NULL);
cv_instance->iv_lock.unlock();
}
}
MessageHandler::HandleResult InterruptMsgHdlr::handleResponse
(
msg_sys_types_t i_type,
void* i_key,
task_t* i_task,
int i_rc
)
{
if (MSG_INTR_ADD_CPU == i_type)
{
TASK_SETRTN(i_task, i_rc);
return SUCCESS;
}
return UNHANDLED_RC;
}
void InterruptMsgHdlr::issueSbeMboxWA()
{
if(cv_instance)
{
cv_instance->iv_lock.lock();
cv_instance->sendMessage(MSG_INTR_ISSUE_SBE_MBOX_WA,
reinterpret_cast<void*>(MSG_INTR_ISSUE_SBE_MBOX_WA),
NULL,NULL);
cv_instance->iv_lock.unlock();
}
}
|