1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
|
/* IBM_PROLOG_BEGIN_TAG */
/* This is an automatically generated prolog. */
/* */
/* $Source: src/kernel/heapmgr.C $ */
/* */
/* OpenPOWER HostBoot Project */
/* */
/* Contributors Listed Below - COPYRIGHT 2010,2018 */
/* [+] International Business Machines Corp. */
/* */
/* */
/* Licensed under the Apache License, Version 2.0 (the "License"); */
/* you may not use this file except in compliance with the License. */
/* You may obtain a copy of the License at */
/* */
/* http://www.apache.org/licenses/LICENSE-2.0 */
/* */
/* Unless required by applicable law or agreed to in writing, software */
/* distributed under the License is distributed on an "AS IS" BASIS, */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or */
/* implied. See the License for the specific language governing */
/* permissions and limitations under the License. */
/* */
/* IBM_PROLOG_END_TAG */
#include <limits.h>
#include <sys/task.h>
#include <kernel/heapmgr.H>
#include <util/singleton.H>
#include <kernel/console.H>
#include <kernel/pagemgr.H>
#include <util/align.H>
#include <arch/ppc.H>
#include <usr/debugpointers.H>
#include <config.h>
#ifdef HOSTBOOT_DEBUG
#define SMALL_HEAP_PAGES_TRACKED 64
// track pages allocated to smallheap
void * g_smallHeapPages[SMALL_HEAP_PAGES_TRACKED];
// If these stats are to be kept then they should be modified using
// atomic instructions
uint16_t g_bucket_counts[HeapManager::BUCKETS];
uint32_t g_smallheap_allocated = 0; // sum of currently allocated
uint32_t g_smallheap_alloc_hw = 0; // allocated high water
uint32_t g_smallheap_count = 0; // # of chunks allocated
#endif
const size_t HeapManager::cv_chunk_size[BUCKETS] =
{
HeapManager::BUCKET_SIZE0,
HeapManager::BUCKET_SIZE1,
HeapManager::BUCKET_SIZE2,
HeapManager::BUCKET_SIZE3,
HeapManager::BUCKET_SIZE4,
HeapManager::BUCKET_SIZE5,
HeapManager::BUCKET_SIZE6,
HeapManager::BUCKET_SIZE7,
HeapManager::BUCKET_SIZE8,
HeapManager::BUCKET_SIZE9,
HeapManager::BUCKET_SIZE10,
HeapManager::BUCKET_SIZE11
};
uint32_t HeapManager::cv_coalesce_count = 0;
uint32_t HeapManager::cv_free_bytes;
uint32_t HeapManager::cv_free_chunks;
uint32_t HeapManager::cv_smallheap_page_count = 0;
uint32_t HeapManager::cv_largeheap_page_count = 0;
uint32_t HeapManager::cv_largeheap_page_max = 0;
void HeapManager::init()
{
Singleton<HeapManager>::instance();
}
void HeapManager::addDebugPointers()
{
Singleton<HeapManager>::instance()._addDebugPointers();
}
#ifdef CONFIG_MALLOC_FENCING
/**
* @brief Types of check bytes used by small malloc fencing
*/
enum CHECK : uint32_t
{
BEGIN = 0xBBBBBBBB,
END = 0xEEEEEEEE,
};
/**
* @brief Small alloc fencing structure. For every small malloc, this
* structure is placed at the beginning of the allocation and written with
* check bytes and size information. Check bytes are also placed at the
* end. On a free, if the check bytes are invalid, Hostboot raises a
* critical assert.
*/
struct fence_t
{
CHECK begin; // Beginning check byte
uint32_t size; // Size of user's original allocation
uint64_t pad; // Unused pad bytes
char data[]; // Offset of start of actual user data
} PACKED;
/**
* @brief Applies fencing check bytes to an allocation
*
* @param[in] i_pAddr Address of the allocation returned by the heap manager
* @param[in] i_size Size of the allocation as requested by the user
*
* @retval void* Pointer giving the effective address for the user's allocation
* request (after the fencing)
*/
void* _applySmallFence(void* const i_pAddr,const size_t i_size)
{
fence_t* const pFence=reinterpret_cast<fence_t*>(i_pAddr);
pFence->begin=CHECK::BEGIN;
pFence->size=static_cast<decltype(pFence->size)>(i_size);
char* const end=(reinterpret_cast<char*>(&pFence->data[0])+i_size);
const auto endVal=CHECK::END;
memcpy(end,&endVal,sizeof(CHECK::END));
return &pFence->data[0];
}
/**
* @brief Add/subtract value from a void*
*
* @param[in] i_pAddr Original address
* @param[in] i_size Amount to increment the address by
*
* @return void* The original pointer, adjusted by the requested amount
*/
inline void* addToVoid(void* const i_pAddr,const ssize_t i_size)
{
return
reinterpret_cast<void*>(
reinterpret_cast<char*>(i_pAddr) + i_size);
}
/**
* @brief Enforces fencing on an allocation. On fence violation, the routine
* invokes a critical assert
*
* @param[in] i_pAddr Effective user address (not original allocation from heap
* manager)
* @param[out] o_userSize Size of caller's original requested allocation
*
* @return void* Indicating the start of the original heap manager allocation
*
*/
void* _enforceSmallFence(
void* const i_pAddr,
size_t& o_userSize)
{
void* pOrigAddr = addToVoid(i_pAddr,-offsetof(fence_t,data));
auto * const pFence=reinterpret_cast<fence_t*>(pOrigAddr);
crit_assert(pFence->begin == CHECK::BEGIN);
uint32_t endVal=0;
memcpy(&endVal,&pFence->data[0]+pFence->size,sizeof(endVal));
crit_assert(endVal==CHECK::END);
o_userSize=pFence->size;
return pOrigAddr;
}
/**
* @brief Returned whether the allocation at the given address is considered a
* small allocation or not. All non-small allocations are page aligned.
*
* @param[in] i_pAddr Requested address to check for allocation size
*
* @return bool indicating whether the allocation was small or not
*/
inline bool isSmallAlloc(const void* const i_pAddr)
{
return (ALIGN_PAGE(reinterpret_cast<uint64_t>(i_pAddr)) !=
reinterpret_cast<uint64_t>(i_pAddr));
}
// For every big malloc, which always results in an integral number of pages
// allocated, create a fence page before and after the effective memory range
// given back to the user.
const size_t BIG_MALLOC_EXTRA_PAGES=2;
// Sentinel value used to fill up the fence page preceding the effective memory
// range given back to the user.
const uint8_t BEGIN_CHECK_BYTE=0xBB;
// Sentinel value used to fill up the memory from the end of the effective
// memory range given back to the user, through the end of the final fence page.
const uint8_t END_CHECK_BYTE=0xEE;
/**
* @brief Applies fencing bytes before and after a big memory allocation
*
* @param[in] i_pAddr Starting address of the allocation, as given by
* _allocateBig
*
* @param[in] i_size Size of caller's actual requested allocation (smaller than
* what _allocateBig allocated)
*
* @return void* Pointer to effective memory address for caller to use
*/
void* _applyBigFence(void* const i_pAddr, const size_t i_size)
{
auto pCursor=reinterpret_cast<char*>(i_pAddr);
const auto beginCheckBytes=PAGESIZE-sizeof(i_size);
memset(pCursor,BEGIN_CHECK_BYTE,beginCheckBytes);
pCursor+=beginCheckBytes;
memcpy(pCursor,&i_size,sizeof(i_size));
pCursor+=sizeof(i_size);
void* pEffAddr=pCursor;
pCursor+=i_size;
const auto endCheckBytes=
ALIGN_PAGE(i_size)-i_size+PAGESIZE;
memset(pCursor,END_CHECK_BYTE,endCheckBytes);
return pEffAddr;
}
/**
* @brief Enforce that fence bytes from prior mallocs have not been disturbed
*
* @param[in] i_pAddr Effective address of the original user allocation (one
* page after the actual allocation from _allocateBig or _reallocBig)
*
* @return void* Pointer to actual memory address of the original allocation
* from _allocateBig or _reallocBig
*/
void* _enforceBigFence(void* const i_pAddr)
{
auto pCursor=reinterpret_cast<char*>(i_pAddr);
pCursor-=PAGESIZE;
void* const pActAddr = pCursor;
size_t origSize=0;
const auto beginCheckBytes=PAGESIZE-sizeof(origSize);
for(size_t i=0;i<beginCheckBytes;++i)
{
if(*(pCursor++) != BEGIN_CHECK_BYTE)
{
crit_assert(0);
}
}
memcpy(&origSize,pCursor,sizeof(origSize));
pCursor+=sizeof(origSize)+origSize;
const size_t endCheckBytes=ALIGN_PAGE(origSize)-origSize+PAGESIZE;
for(size_t i=0;i<endCheckBytes;++i)
{
if(*(pCursor++) != END_CHECK_BYTE)
{
crit_assert(0);
}
}
return pActAddr;
}
#endif // End CONFIG_MALLOC_FENCING
void * HeapManager::allocate(size_t i_sz)
{
HeapManager& hmgr = Singleton<HeapManager>::instance();
size_t overhead = 0;
#ifdef CONFIG_MALLOC_FENCING
overhead = offsetof(fence_t,data) + sizeof(CHECK::END);
#endif
if(i_sz + overhead > MAX_SMALL_ALLOC_SIZE)
{
return hmgr._allocateBig(i_sz);
}
void* result = hmgr._allocate(i_sz + overhead);
#ifdef CONFIG_MALLOC_FENCING
result = _applySmallFence(result,i_sz);
#endif
return result;
}
void HeapManager::free(void * i_ptr)
{
HeapManager& hmgr = Singleton<HeapManager>::instance();
return hmgr._free(i_ptr);
}
void* HeapManager::realloc(void* i_ptr, size_t i_sz)
{
return Singleton<HeapManager>::instance()._realloc(i_ptr,i_sz);
}
void HeapManager::coalesce( void )
{
Singleton<HeapManager>::instance()._coalesce();
}
void* HeapManager::_allocate(size_t i_sz)
{
// 8 bytes book keeping, 1 byte validation
size_t which_bucket = bucketIndex(i_sz + CHUNK_HEADER_PLUS_RESERVED);
chunk_t* chunk = reinterpret_cast<chunk_t*>(NULL);
chunk = pop_bucket(which_bucket);
if (NULL == chunk)
{
newPage();
return _allocate(i_sz);
}
else
{
#ifdef HOSTBOOT_DEBUG
size_t alloc = bucketByteSize(chunk->bucket);
__sync_add_and_fetch(&g_smallheap_count,1);
__sync_add_and_fetch(&g_smallheap_allocated,alloc);
if (g_smallheap_allocated > g_smallheap_alloc_hw)
g_smallheap_alloc_hw = g_smallheap_allocated;
// test_pages();
#endif
crit_assert(chunk->free == 'F');
// Use the size of this chunk get to the end.
size_t size = bucketByteSize(chunk->bucket);
// set the last byte of the chunk to 'V' => valid
*(reinterpret_cast<uint8_t*>(chunk) + size - 1 ) = 'V';
// mark chunk as allocated
chunk->free = 'A';
chunk->size = i_sz;
chunk->allocator = task_gettid();
return &chunk->next;
}
}
void* HeapManager::_realloc(void* i_ptr, size_t i_sz)
{
void* new_ptr = _reallocBig(i_ptr,i_sz);
if(new_ptr) return new_ptr;
size_t overhead = 0;
new_ptr = i_ptr;
#ifdef CONFIG_MALLOC_FENCING
overhead = offsetof(fence_t,data) + sizeof(CHECK::END);
size_t userSize=0;
new_ptr = _enforceSmallFence(i_ptr,userSize);
#endif
chunk_t* chunk = reinterpret_cast<chunk_t*>(((uint64_t*)new_ptr)-1);
// take into account the 8 byte header and valid byte
size_t asize = bucketByteSize(chunk->bucket) - CHUNK_HEADER_PLUS_RESERVED;
if(asize < i_sz + overhead)
{
// fyi.. MAX_SMALL_ALLOCATION_SIZE = BUCKET11 - 9 bytes
new_ptr = (i_sz + overhead > MAX_SMALL_ALLOC_SIZE) ?
_allocateBig(i_sz) : _allocate(i_sz + overhead);
#ifdef CONFIG_MALLOC_FENCING
if(!isSmallAlloc(new_ptr))
{
memcpy(new_ptr,i_ptr,userSize);
}
else
{
memcpy(addToVoid(new_ptr,offsetof(fence_t,data)),
i_ptr,userSize);
}
#else
memcpy(new_ptr, i_ptr, asize);
#endif
_free(i_ptr);
}
#ifdef CONFIG_MALLOC_FENCING
if(isSmallAlloc(new_ptr))
{
new_ptr = _applySmallFence(new_ptr,i_sz);
}
#endif
return new_ptr;
}
void* HeapManager::_reallocBig(void* i_ptr, size_t i_sz)
{
// Currently all large allocations fall on a page boundary,
// but small allocatoins never do
if(ALIGN_PAGE(reinterpret_cast<uint64_t>(i_ptr)) !=
reinterpret_cast<uint64_t>(i_ptr))
{
return NULL;
}
#ifdef CONFIG_MALLOC_FENCING
i_ptr=_enforceBigFence(i_ptr);
#endif
void* new_ptr = NULL;
big_chunk_t * bc = big_chunk_stack.first();
while(bc)
{
if(bc->addr == i_ptr)
{
size_t new_size = ALIGN_PAGE(i_sz)/PAGESIZE;
#ifdef CONFIG_MALLOC_FENCING
new_size+=BIG_MALLOC_EXTRA_PAGES;
#endif
if(new_size > bc->page_count)
{
__sync_add_and_fetch(&cv_largeheap_page_count,new_size-bc->page_count);
if(cv_largeheap_page_max < cv_largeheap_page_count)
cv_largeheap_page_max = cv_largeheap_page_count;
new_ptr = PageManager::allocatePage(new_size);
memcpy(new_ptr,i_ptr,bc->page_count*PAGESIZE);
size_t page_count = bc->page_count;
bc->addr = new_ptr;
bc->page_count = new_size;
lwsync();
PageManager::freePage(i_ptr,page_count);
}
new_ptr = bc->addr;
break;
}
bc = (big_chunk_t*) (((uint64_t)bc->next) & 0x00000000FFFFFFFF);
}
#ifdef CONFIG_MALLOC_FENCING
new_ptr=_applyBigFence(new_ptr,i_sz);
#endif
return new_ptr;
}
void HeapManager::_free(void * i_ptr)
{
if (NULL == i_ptr) return;
if(!_freeBig(i_ptr))
{
#ifdef CONFIG_MALLOC_FENCING
size_t userSize=0;
i_ptr = _enforceSmallFence(i_ptr,userSize);
#endif
chunk_t* chunk = reinterpret_cast<chunk_t*>(((uint64_t*)i_ptr)-1);
#ifdef HOSTBOOT_DEBUG
__sync_sub_and_fetch(&g_smallheap_count,1);
__sync_sub_and_fetch(&g_smallheap_allocated,bucketByteSize(chunk->bucket));
#endif
crit_assert(chunk->free != 'F');
// Use the size of this chunk to find next chunk.
size_t size = bucketByteSize(chunk->bucket);
// make sure the next block is still valid
if( *(reinterpret_cast<uint8_t*>(chunk) + size - 1 ) != 'V')
{
MAGIC_INSTRUCTION(MAGIC_BREAK_ON_ERROR);
// force a storage exception
task_crash();
}
push_bucket(chunk, chunk->bucket);
}
}
HeapManager::chunk_t* HeapManager::pop_bucket(size_t i_bucket)
{
if (i_bucket >= BUCKETS) return NULL;
chunk_t* c = first_chunk[i_bucket].pop();
if (NULL == c)
{
// Couldn't allocate from the correct size bucket, so split up an
// item from the next sized bucket.
c = pop_bucket(i_bucket+1);
if (NULL != c)
{
size_t c_size = bucketByteSize(i_bucket);
size_t c1_size = bucketByteSize(c->bucket) - c_size;
size_t c1_bucket = bucketIndex(c1_size);
chunk_t* c1 = reinterpret_cast<chunk_t*>(((uint8_t*)c) + c_size);
c1->bucket = c1_bucket;
c->bucket = i_bucket;
// c1_size should always be a valid size unless the FIB sequence is modified
// then we could end up with an 8 byte piece of junk.
if(c1_size >= MIN_BUCKET_SIZE)
{
push_bucket(c1, c1_bucket);
}
}
}
return c;
}
void HeapManager::push_bucket(chunk_t* i_chunk, size_t i_bucket)
{
if (i_bucket >= BUCKETS) return;
i_chunk->free = 'F';
i_chunk->size = 0;
i_chunk->allocator = 0;
first_chunk[i_bucket].push(i_chunk);
}
void HeapManager::newPage()
{
void* page = PageManager::allocatePage();
chunk_t * c = reinterpret_cast<chunk_t*>(page);
size_t remaining = PAGESIZE;
#ifdef HOSTBOOT_DEBUG
uint32_t idx =
#endif
__sync_fetch_and_add(&cv_smallheap_page_count,1);
#ifdef HOSTBOOT_DEBUG
if(idx < SMALL_HEAP_PAGES_TRACKED)
g_smallHeapPages[idx] = page;
#endif
while(remaining >= MIN_BUCKET_SIZE)
{
size_t bucket = bucketIndex(remaining);
// bucket might be one too big
if(bucket == BUCKETS || bucketByteSize(bucket) > remaining)
{
--bucket;
}
c->bucket = bucket;
push_bucket(c, bucket);
size_t bsize = bucketByteSize(bucket);
c = reinterpret_cast<chunk_t*>(((uint8_t*)c) + bsize);
remaining -= bsize;
}
// Note: if the fibonacci series originally used is modified, there could
// be a remainder. Thow it away.
}
// find smallest bucket i_sz will fit into
size_t HeapManager::bucketIndex(size_t i_sz)
{
// A simple linear search loop is unrolled by the compiler
// and generates large asm code.
//
// A manual unrole of a binary search using "if" statements is 160 bytes
// for this function and 160 bytes for the bucketByteSize() function
// but does not need the 96 byte cv_chunk_size array. Total 320 bytes
//
// This function is 120 bytes and it scales if more buckets are added
// bucketByteSize() using the static array uses 96 bytes. Total = 216 bytes
if(i_sz > cv_chunk_size[BUCKETS-1]) return BUCKETS;
// binary search
int64_t high_idx = BUCKETS - 1;
int64_t low_idx = 0;
size_t bucket = 0;
while(low_idx <= high_idx)
{
bucket = (low_idx + high_idx) / 2;
if( i_sz > bucketByteSize(bucket))
{
low_idx = bucket + 1;
}
else
{
high_idx = bucket - 1;
if(i_sz > bucketByteSize(high_idx)) // high_idx would be too small
break;
}
}
return bucket;
}
// all other processes must be quiesced
void HeapManager::_coalesce()
{
chunk_t* head = NULL;
chunk_t* chunk = NULL;
// make a chain out of all the free chunks
for(size_t bucket = 0; bucket < BUCKETS; ++bucket)
{
chunk = NULL;
while(NULL != (chunk = first_chunk[bucket].pop()))
{
kassert(chunk->free == 'F');
chunk->next = head;
chunk->coalesce = 'C';
head = chunk;
}
}
// Merge the chunks together until we fail to find a buddy.
bool mergedChunks = false;
do
{
mergedChunks = false;
chunk = head;
// Iterate through the chain.
while(NULL != chunk)
{
bool incrementChunk = true;
do
{
// This chunk might already be combined with a chunk earlier
// in the loop.
if((chunk->coalesce != 'C') || (chunk->free != 'F'))
{
break;
}
// Use the size of this chunk to find next chunk.
size_t size = bucketByteSize(chunk->bucket);
chunk_t* buddy = reinterpret_cast<chunk_t*>(
reinterpret_cast<uint64_t>(chunk) + size);
// The two chunks have to be on the same page in order to
// be considered for merge.
if (ALIGN_PAGE_DOWN(reinterpret_cast<uint64_t>(buddy)) !=
ALIGN_PAGE_DOWN(reinterpret_cast<uint64_t>(chunk)))
{
break;
}
// Cannot merge if buddy is not free.
if ((buddy->free != 'F') || (buddy->coalesce != 'C'))
{
break;
}
// Calculate the size of a combined chunk.
size_t newSize = size + bucketByteSize(buddy->bucket);
size_t newBucket = bucketIndex(newSize);
// If the combined chunk is not a bucket size, cannot merge.
if ((newBucket >= BUCKETS) ||
(bucketByteSize(newBucket) != newSize))
{
break;
}
// Do merge.
buddy->free = '\0'; buddy->coalesce = '\0';
chunk->bucket = newBucket;
incrementChunk = false;
mergedChunks = true;
cv_coalesce_count++;
} while(0);
if (incrementChunk)
{
chunk = chunk->next;
}
}
// Remove all the non-free (merged) chunks from the list.
chunk_t* newHead = NULL;
chunk = head;
while (NULL != chunk)
{
if ((chunk->free == 'F') && (chunk->coalesce == 'C'))
{
chunk_t* temp = chunk->next;
chunk->next = newHead;
newHead = chunk;
chunk=temp;
}
else
{
chunk = chunk->next;
}
}
head = newHead;
} while(mergedChunks);
// restore the free buckets
cv_free_chunks = 0;
cv_free_bytes = 0;
chunk = head;
while(chunk != NULL)
{
chunk_t * temp = chunk->next;
chunk->coalesce = '\0';
push_bucket(chunk,chunk->bucket);
++cv_free_chunks;
cv_free_bytes += bucketByteSize(chunk->bucket) - 8;
chunk = temp;
}
printkd("HeapMgr coalesced total %d\n",cv_coalesce_count);
test_pages();
}
void HeapManager::stats()
{
coalesce(); // collects some of the stats
printkd("Memory Heap Stats:\n");
printkd(" %d Large heap pages allocated.\n",cv_largeheap_page_count);
printkd(" %d Large heap max allocated.\n",cv_largeheap_page_max);
printkd(" %d Small heap pages.\n",cv_smallheap_page_count);
printkd(" %d Small heap bytes max allocated\n",g_smallheap_alloc_hw);
printkd(" %d Small heap bytes allocated in %d chunks\n",
g_smallheap_allocated,g_smallheap_count);
printkd(" %d Small heap free bytes in %d chunks\n",cv_free_bytes,cv_free_chunks);
printkd(" %d Small heap total chunks coalesced\n",cv_coalesce_count);
printkd("Small heap bucket profile:\n");
for(size_t i = 0; i < BUCKETS; ++i)
{
printkd(" %d chunks of bytesize %ld\n",
g_bucket_counts[i],
cv_chunk_size[i]-8);
}
PageManager::coalesce();
}
void HeapManager::test_pages()
{
#ifdef HOSTBOOT_DEBUG
for(size_t i = 0; i < BUCKETS; ++i)
g_bucket_counts[i] = 0;
size_t max_idx = cv_smallheap_page_count;
if(max_idx > SMALL_HEAP_PAGES_TRACKED) max_idx = SMALL_HEAP_PAGES_TRACKED;
for(size_t i = 0; i < max_idx; ++i)
{
chunk_t* c = reinterpret_cast<chunk_t*>(g_smallHeapPages[i]);
uint8_t* c_prev = reinterpret_cast<uint8_t*>(c);
size_t sum = 0;
while(sum <= (PAGESIZE-MIN_BUCKET_SIZE))
{
size_t b = c->bucket;
if(b < BUCKETS)
{
size_t s = bucketByteSize(b);
c_prev = reinterpret_cast<uint8_t*>(c);
c = reinterpret_cast<chunk_t*>(((uint8_t*)c) + s);
sum += s;
++g_bucket_counts[b];
}
else
{
printk("Heaptest: Corruption at %p on page %p."
" Owner of %p may have scribbled on it\n",
c,g_smallHeapPages[i],c_prev+8);
sum = PAGESIZE;
break;
}
}
if(sum > PAGESIZE)
{
printk("Heaptest: Page %p failed consistancy test\n",g_smallHeapPages[i]);
}
}
#endif
}
void* HeapManager::_allocateBig(size_t i_sz)
{
size_t pages = ALIGN_PAGE(i_sz)/PAGESIZE;
#ifdef CONFIG_MALLOC_FENCING
pages+=BIG_MALLOC_EXTRA_PAGES;
#endif
void* v = PageManager::allocatePage(pages);
__sync_add_and_fetch(&cv_largeheap_page_count,pages);
if(cv_largeheap_page_max < cv_largeheap_page_count)
cv_largeheap_page_max = cv_largeheap_page_count;
// If already have unused big_chunk_t object available then use it
// otherwise create a new one.
big_chunk_t * bc = big_chunk_stack.first();
while(bc)
{
if(bc->page_count == 0)
{
if(__sync_bool_compare_and_swap(&bc->addr,NULL,v))
{
bc->page_count = pages;
break;
}
}
bc = (big_chunk_t*) (((uint64_t)bc->next) & 0x00000000FFFFFFFF);
}
if(!bc)
{
bc = new big_chunk_t(v,pages);
big_chunk_stack.push(bc);
}
#ifdef CONFIG_MALLOC_FENCING
v=_applyBigFence(v,i_sz);
#endif
return v;
}
bool HeapManager::_freeBig(void* i_ptr)
{
// Currently all large allocations fall on a page boundary,
// but small allocations never do
if(ALIGN_PAGE(reinterpret_cast<uint64_t>(i_ptr)) !=
reinterpret_cast<uint64_t>(i_ptr))
return false;
#ifdef CONFIG_MALLOC_FENCING
i_ptr=_enforceBigFence(i_ptr);
#endif
bool result = false;
big_chunk_t * bc = big_chunk_stack.first();
while(bc)
{
if(bc->addr == i_ptr)
{
__sync_sub_and_fetch(&cv_largeheap_page_count,bc->page_count);
size_t page_count = bc->page_count;
bc->page_count = 0;
bc->addr = NULL;
lwsync();
PageManager::freePage(i_ptr,page_count);
// no way to safely remove object from chain so leave it
result = true;
break;
}
bc = (big_chunk_t*) (((uint64_t)bc->next) & 0x00000000FFFFFFFF);
}
// Small allocations are always aligned, hence we exited out at the
// beginning of the function. Large allocations are always aligned.
// If we did not find a large allocation in the list (result == false)
// then either we have a double-free or someone trying to free something
// that doesn't belong on the heap.
crit_assert(result);
return result;
}
void HeapManager::_addDebugPointers()
{
DEBUG::add_debug_pointer(DEBUG::HEAPMANAGER,
this,
sizeof(HeapManager));
DEBUG::add_debug_pointer(DEBUG::HEAPMANAGERLARGEPAGECOUNT,
&cv_largeheap_page_count,
sizeof(HeapManager::cv_largeheap_page_count));
DEBUG::add_debug_pointer(DEBUG::HEAPMANAGERLARGEPAGEMAX,
&cv_largeheap_page_max,
sizeof(HeapManager::cv_largeheap_page_max));
DEBUG::add_debug_pointer(DEBUG::HEAPMANAGERSMALLPAGECOUNT,
&cv_smallheap_page_count,
sizeof(HeapManager::cv_smallheap_page_count));
DEBUG::add_debug_pointer(DEBUG::HEAPMANAGERCOALESCECOUNT,
&cv_coalesce_count,
sizeof(HeapManager::cv_coalesce_count));
DEBUG::add_debug_pointer(DEBUG::HEAPMANAGERFREEBYTES,
&cv_free_bytes,
sizeof(HeapManager::cv_free_bytes));
DEBUG::add_debug_pointer(DEBUG::HEAPMANAGERFREECHUNKS,
&cv_free_chunks,
sizeof(HeapManager::cv_free_chunks));
}
|