1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
|
// IBM_PROLOG_BEGIN_TAG
// This is an automatically generated prolog.
//
// $Source: src/include/map $
//
// IBM CONFIDENTIAL
//
// COPYRIGHT International Business Machines Corp. 2011
//
// p1
//
// Object Code Only (OCO) source materials
// Licensed Internal Code Source Materials
// IBM HostBoot Licensed Internal Code
//
// The source code for this program is not published or other-
// wise divested of its trade secrets, irrespective of what has
// been deposited with the U.S. Copyright Office.
//
// Origin: 30
//
// IBM_PROLOG_END
#ifndef __STL_MAP_H
#define __STL_MAP_H
#include <stddef.h>
// Need this to compile outside hostboot env.
#if !defined( __STDC_LIMIT_MACROS)
#define __STDC_LIMIT_MACROS
#endif
#include <stdint.h>
#include <utility>
#include <functional>
#include <util/impl/stlmap.H>
#ifndef __UTIL_STLMAP_NS
#define __UTIL_STLMAP_NS ::Util::__Util_StlMap_Impl
#endif
namespace std
{
/**
* STL map template class.
*
* @note value_comp not supported.
*
* This class inherits from Util::__Util_StlMap_Impl::Map, which hides all
* of the implementation details of the map. Most of the functions here
* are simply a redirection to the Util::...::Map version.
*/
template <typename Key, typename T, typename Compare = std::less<Key> >
class map : public __UTIL_STLMAP_NS::Map<Key, T, Compare>
{
private:
typedef typename __UTIL_STLMAP_NS::Map<Key, T, Compare> submap;
public:
// Inherit all of the standard typedefs from the Map class.
#define __STLMAP_INHERIT_TYPEDEF(type) \
typedef typename submap::type type
__STLMAP_INHERIT_TYPEDEF(key_type);
__STLMAP_INHERIT_TYPEDEF(data_type);
__STLMAP_INHERIT_TYPEDEF(value_type);
__STLMAP_INHERIT_TYPEDEF(key_compare);
__STLMAP_INHERIT_TYPEDEF(pointer);
__STLMAP_INHERIT_TYPEDEF(reference);
__STLMAP_INHERIT_TYPEDEF(const_reference);
__STLMAP_INHERIT_TYPEDEF(size_type);
__STLMAP_INHERIT_TYPEDEF(difference_type);
__STLMAP_INHERIT_TYPEDEF(iterator);
__STLMAP_INHERIT_TYPEDEF(const_iterator);
__STLMAP_INHERIT_TYPEDEF(reverse_iterator);
__STLMAP_INHERIT_TYPEDEF(const_reverse_iterator);
#undef __STLMAP_INHERIT_TYPEDEF
/**
* Default constructor
*/
explicit map(const key_compare& c = Compare()) : submap(c) {}
/**
* Range-Insert Constructor
* @param[in] first InputIterator
* @param[in] last InputIterator
*
* Copies all of the elements from [first, last) into the map.
*/
template <typename InputIterator> __attribute__ ((always_inline))
map( InputIterator first, InputIterator last,
const key_compare& c = Compare())
: submap(c)
{
this->insert(first, last);
}
/**
* Copy Constructor
* @param i_x Source map
*/
__attribute__ ((always_inline))
map (const map<Key,T,Compare>& i_x) : submap(i_x) {}
/**
* Destructor
*/
__attribute__ ((always_inline))
~map () { }
/**
* operator=
* @param[in] x Source map
*/
__attribute__ ((always_inline))
map<Key,T, Compare>& operator= (const map<Key, T, Compare>& x)
{
submap::iv_comp = x.iv_comp;
submap::iv_tree = x.iv_tree;
return *this;
}
/**
* Get iterator to the beginning element
* @return iterator
*/
__attribute__ ((always_inline))
iterator begin()
{ return submap::begin(); }
/**
* Get iterator to the beginning element
* @return const_iterator
*/
__attribute__ ((always_inline))
const_iterator begin() const
{ return submap::begin(); }
/**
* Get iterator to the last element + 1
* @return iterator
*/
__attribute__ ((always_inline))
iterator end()
{ return submap::end(); }
/**
* Get iterator to the last element + 1
* @return const_iterator
*/
__attribute__ ((always_inline))
const_iterator end() const
{ return submap::end(); }
/**
* Get reverse iterator to the last element
* @return reverse_iterator
*/
__attribute__ ((always_inline))
reverse_iterator rbegin()
{ return submap::rbegin(); }
/**
* Get reverse iterator to the last element
* @return reverse_const_iterator
*/
__attribute__ ((always_inline))
const_reverse_iterator rbegin() const
{ return submap::rbegin(); }
/**
* Get reverse iterator to the first element - 1
* @return reverse_iterator
*/
__attribute__ ((always_inline))
reverse_iterator rend()
{ return submap::rend(); }
/**
* Get reverse iterator to the first element - 1
* @return reverse_const_iterator
*/
__attribute__ ((always_inline))
const_reverse_iterator rend() const
{ return submap::rend(); }
/**
* Query empty container
* @return true if container is empty otherwise false
*/
__attribute__ ((always_inline))
bool empty() const
{ return submap::empty(); }
/**
* Query number of elements in the container
* @return number of elements in the container
*/
__attribute__ ((always_inline))
size_type size() const
{ return submap::size(); }
/**
* Max size of container
* @return theoretical maximum size based on cpu word size
*/
__attribute__ ((always_inline))
size_type max_size() const
{ return UINT64_MAX/sizeof(T); }
/**
* operator[]
* @param[in] x key, if it does not exist the it will be added
* @return a reference to the element whos key is x
*/
__attribute__ ((always_inline))
T& operator[] (const key_type& k)
{ return submap::operator[](k); }
/**
* Insert element
* @param[in] x map key/value pair
* @return std::pair.first is iterator pointing to new or existing
* element, std::pair.second is true if new element
* inserted, false if already existing.
*
* @note won't add element if it's key already exists in the map
*/
pair<iterator,bool> insert (const value_type& x )
{ return submap::insert(x); }
/**
* Insert element
* @param[in] hint bidi iterator that is a hint to where to insert
* the element
* @param[in] x map key/value to insert (copy in)
*
* @return an iterator pointing to either the new or existing
* element
* @note A good hint makes this very efficient. A bad hint slows
* it down. An element will never be inserted out of order.
* Will never insert if key already exists.
*/
iterator insert ( iterator hint, const value_type& x)
{ return submap::insert(hint, x); }
/**
* Insert a range of new elements
*
* (optimized function for iterator)
*
* @param[in] first Beginning of the range
* @param[in] last End of the range.
* @post Elements inserted
*/
void insert( iterator first, iterator last)
{ return submap::insert(first, last); }
/**
* Insert a range of new elements
*
* (optimized function for const_iterator)
*
* @param[in] first Beginning of the range
* @param[in] last End of the range.
* @post Elements inserted
*/
void insert( const_iterator first, const_iterator last)
{ return submap::insert(first, last); }
/**
* Insert a range of new elements
*
* (generic version for any iterator)
*
* @param[in] first InputIterator
* @param[in] last InputIterator
* @post Elements inserted
*/
template <typename InputIterator>
void insert( InputIterator first, InputIterator last )
{ return submap::insert(first, last); }
/**
* Remove an element from the container
* @param position iterator
* @post element pointed to by iterator is removed from the
* container
*/
__attribute__ ((always_inline))
void erase (iterator position )
{ submap::erase(position); }
/**
* Remove an element from the container by key
* @param x key of element to remove
* @return Number of elements removed. For map, 0 or 1.
*/
size_type erase (const key_type& k)
{ return submap:: erase(k); }
/**
* Remove a range of elements from the container
* @param first iterator of elment to remove
* @param last iterator of element to remove + 1
*/
__attribute__ ((always_inline))
void erase (iterator first, iterator last)
{ submap::erase(first,last); }
/**
* Swap this container with another
* @param[in] mp the other container
*/
__attribute__ ((always_inline))
void swap(map<Key,T, Compare>& mp)
{ submap::swap(mp); }
/**
* clear the map
*/
__attribute__ ((always_inline))
void clear()
{ submap::clear();; }
//Observers
/**
* Returns the key comparison object from which the map was
* constructed
* @return Compare
*/
key_compare key_comp() const
{ return submap::key_comp(); }
/**
* returns a value comparison object, built from the key comparison
* @return value_compare
* @note not supported!
*/
// value_compare value_comp () const;
/**
* Find an element
* @param[in] k element key
* @return iterator to element or end() if not found
*/
iterator find (const key_type& k)
{ return submap::find(k); }
/**
* Find an element
* @param[in] k element key
* @return const_iterator to element or end() if not found
*/
__attribute__ ((always_inline))
const_iterator find( const key_type& k) const
{ return submap::find(k); }
/**
* Number of elements in the container with the given key
* @param[in] k key
* @return number of elements that match key. For map this is 0 or 1
*/
__attribute__ ((always_inline))
size_type count (const key_type& k) const
{ return submap::count(k); }
/**
* Return an iterator pointing to the first element in the
* container whose key does not compare less than k.
* @param[in] k key
* @return iterator
*/
iterator lower_bound (const key_type& k)
{ return submap::lower_bound(k); }
/**
* Return a const_iterator pointing to the first element in the
* container whose key does not compare less than k.
* @param[in] k key
* @return const_iterator
*/
__attribute__ ((always_inline))
const_iterator lower_bound (const key_type& k) const
{ return submap::lower_bound(k); }
/**
* Returns an iterator pointing to the first element in the
* container whose key compares > k
* @param[in] k key
* @return iterator
*/
iterator upper_bound (const key_type& k)
{ return submap::upper_bound(k); }
/**
* Returns a const_iterator pointing to the first element in the
* container whose key compares > k
* @param[in] k key
* @return const_iterator
*/
__attribute__ ((always_inline))
const_iterator upper_bound (const key_type& k) const
{ return submap::upper_bound(k); }
/**
* Return the bounds of a range that includes all the elements in
* the continer with a key that compares equal to k.
* @param k key
* @return pair of iterators
* @note map does not allow duplicate keys, so
* the range returned will contain at most one element
*/
pair<iterator,iterator> equal_range( const key_type& k)
{ return submap::equal_range(k); }
/**
* Const verstion of equal_range - see equal_range above
*/
pair<const_iterator, const_iterator>
equal_range( const key_type& k) const
{ return submap::equal_range(k); }
};
};
#endif
/* vim: set filetype=cpp : */
|