summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/memory/lib/spd/spd_factory.C
blob: 92a3402cfa07a0412802ce70b45f373c79fb234f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/p9/procedures/hwp/memory/lib/spd/spd_factory.C $ */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2016,2017                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
///
/// @file spd_factory.C
/// @brief SPD factory and functions
///
// *HWP HWP Owner: Andre Marin <aamarin@us.ibm.com>
// *HWP HWP Backup: Jacob Harvey <jlharvey@us.ibm.com>
// *HWP Team: Memory
// *HWP Level: 3
// *HWP Consumed by: HB:FSP

// std lib
#include <map>
#include <vector>

// fapi2
#include <fapi2.H>
#include <fapi2_spd_access.H>

// mss lib
#include <lib/spd/spd_factory.H>
#include <generic/memory/lib/spd/common/ddr4/spd_decoder_ddr4.H>
#include <generic/memory/lib/spd/rdimm/ddr4/rdimm_decoder_ddr4.H>
#include <generic/memory/lib/spd/lrdimm/ddr4/lrdimm_decoder_ddr4.H>
#include <generic/memory/lib/spd/common/rcw_settings.H>
#include <generic/memory/lib/spd/rdimm/ddr4/rdimm_raw_cards.H>
#include <generic/memory/lib/spd/lrdimm/ddr4/lrdimm_raw_cards.H>
#include <generic/memory/lib/spd/spd_checker.H>
#include <generic/memory/lib/utils/c_str.H>
#include <lib/utils/conversions.H>
#include <generic/memory/lib/utils/find.H>

using fapi2::TARGET_TYPE_MCA;
using fapi2::TARGET_TYPE_MCS;
using fapi2::TARGET_TYPE_DIMM;
using fapi2::FAPI2_RC_SUCCESS;

namespace mss
{
namespace spd
{

enum factory_byte_extract
{
    // Byte 1
    ENCODING_LEVEL_START = 0,  ///< SPD encoding level start bit
    ENCODING_LEVEL_LEN = 4,    ///< SPD encoding level bit length

    ADDITIONS_LEVEL_START = 4, ///< SPD additions level start bit
    ADDITIONS_LEVEL_LEN = 4,   ///< SPD additions level bit length

    // Byte 3
    HYBRID_START = 0,          ///< SPD hybrid start bit
    HYBRID_LEN = 1,            ///< SPD hybrid bit length
    HYBRID_TYPE_START = 1,     ///< SPD hybrid type start bit
    HYBRID_TYPE_LEN = 3,       ///< SPD hybrid type bit length
    BASE_MODULE_START = 4,     ///< SPD base module start bit
    BASE_MODULE_LEN = 4,       ///< SPD base module bit length
};

///
/// @brief       Decodes SPD Revision encoding level
/// @param[in]   i_target dimm target
/// @param[in]   i_spd_data SPD data
/// @param[out]  o_value encoding revision num
/// @return      FAPI2_RC_SUCCESS if okay
/// @note        Decodes SPD Byte 1 (3~0).
/// @note        Item JC-45-2220.01x
/// @note        Page 14-15
/// @note        DDR4 SPD Document Release 3
///
fapi2::ReturnCode rev_encoding_level(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
                                     const std::vector<uint8_t>& i_spd_data,
                                     uint8_t& o_value)
{
    constexpr size_t BYTE_INDEX = 1;
    constexpr field_t ENCODING_LEVEL{BYTE_INDEX, ENCODING_LEVEL_START, ENCODING_LEVEL_LEN};

    // Extracting desired bits
    const uint8_t l_field_bits = extract_spd_field(i_target, ENCODING_LEVEL, i_spd_data);
    FAPI_DBG("%s. Field Bits value: %d", mss::c_str(i_target), l_field_bits);

    // Check that value is valid
    constexpr size_t UNDEFINED = 0xF; // per JEDEC spec this value is undefined
    FAPI_TRY( mss::check::spd::fail_for_invalid_value(i_target,
              (l_field_bits != UNDEFINED),
              ENCODING_LEVEL.iv_byte,
              l_field_bits,
              "Failed check on SPD rev encoding level") );

    // Update output only after check passes
    o_value = l_field_bits;

    // Print decoded info
    FAPI_INF("%s. Rev - Encoding Level : %d",
             mss::c_str(i_target),
             o_value);

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief       Decodes SPD Revision additions level
/// @param[in]   i_target dimm target
/// @param[in]   i_spd_data SPD data
/// @param[out]  o_value additions revision num
/// @return      FAPI2_RC_SUCCESS if okay
/// @note        Decodes SPD Byte 1 (bits 7~4).
/// @note        Item JC-45-2220.01x
/// @note        Page 14-15
/// @note        DDR4 SPD Document Release 3
///
fapi2::ReturnCode rev_additions_level(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
                                      const std::vector<uint8_t>& i_spd_data,
                                      uint8_t& o_value)
{
    constexpr size_t BYTE_INDEX = 1;
    constexpr field_t ADDITIONS_LEVEL{BYTE_INDEX, ADDITIONS_LEVEL_START, ADDITIONS_LEVEL_LEN};

    // Extracting desired bits
    const uint8_t l_field_bits = extract_spd_field(i_target, ADDITIONS_LEVEL, i_spd_data);
    FAPI_DBG("%s. Field Bits value: %d", mss::c_str(i_target), l_field_bits);

    // Check that value is valid
    constexpr size_t UNDEFINED = 0xF; // per JEDEC spec this value is undefined

    FAPI_TRY( mss::check::spd::fail_for_invalid_value(i_target,
              (l_field_bits != UNDEFINED),
              ADDITIONS_LEVEL.iv_byte,
              l_field_bits,
              "Failed check on SPD rev encoding level") );

    // Update output only after check passes
    o_value = l_field_bits;

    // Print decoded info
    FAPI_INF("%s. Rev - Additions Level : %d",
             mss::c_str(i_target),
             o_value);

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief      Decodes hybrid type (whether or not the DIMM is a hybrid) from SPD
/// @param[in]  i_target dimm target
/// @param[in]  i_spd_data SPD data
/// @param[out] o_value hybrid
/// @return     FAPI2_RC_SUCCESS if okay
/// @note       Decodes SPD Byte 3 (bit 7)
/// @note       Item JC-45-2220.01x
/// @note       Page 17
/// @note       DDR4 SPD Document Release 3
///
fapi2::ReturnCode hybrid(const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target,
                         const std::vector<uint8_t>& i_spd_data,
                         uint8_t& o_value)
{
    // =========================================================
    // Byte 3 maps
    // Item JC-45-2220.01x
    // Page 17
    // DDR4 SPD Document Release 3
    // Byte 3 (0x003): Key Byte / Module Type - Hybrid
    // =========================================================
    static const std::vector<std::pair<uint8_t, uint8_t> > HYBRID_MAP =
    {
        //{key byte, dimm type}
        {0, fapi2::ENUM_ATTR_EFF_HYBRID_NOT_HYBRID},
        {1, fapi2::ENUM_ATTR_EFF_HYBRID_IS_HYBRID},
        // All others reserved or not supported
    };

    constexpr size_t BYTE_INDEX = 3;
    constexpr field_t HYBRID{BYTE_INDEX, HYBRID_START, HYBRID_LEN};

    // Extracting desired bits
    const uint8_t l_field_bits = extract_spd_field(i_target, HYBRID, i_spd_data);
    FAPI_DBG("%s. Field Bits value: %d", mss::c_str(i_target), l_field_bits);

    // Check that value is valid
    const bool l_is_val_found = find_value_from_key(HYBRID_MAP, l_field_bits, o_value);

    FAPI_TRY( mss::check::spd::fail_for_invalid_value(i_target,
              l_is_val_found,
              HYBRID.iv_byte,
              l_field_bits,
              "Failed check on Hybrid") );

    FAPI_INF("%s. Hybrid Media: %d",
             mss::c_str(i_target),
             o_value);

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief      Decodes hybrid type (hybrid DIMM type) from SPD
/// @param[in]  i_target dimm target
/// @param[in]  i_spd_data SPD data
/// @param[out] o_value hybrid module type
/// @return     FAPI2_RC_SUCCESS if okay
/// @note       Decodes SPD Byte 3 (bits 6~4)
/// @note       Item JC-45-2220.01x
/// @note       Page 17
/// @note       DDR4 SPD Document Release 3
///
fapi2::ReturnCode hybrid_type(const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target,
                              const std::vector<uint8_t>& i_spd_data,
                              uint8_t& o_value)
{
    // =========================================================
    // Byte 3 maps
    // Item JC-45-2220.01x
    // Page 17
    // DDR4 SPD Document Release 3
    // Byte 3 (0x003): Key Byte / Module Type - Hybrid
    // =========================================================
    static const std::vector<std::pair<uint8_t, uint8_t> > HYBRID_TYPE_MAP =
    {
        //{key byte, dimm type}
        {0, fapi2::ENUM_ATTR_EFF_HYBRID_MEMORY_TYPE_NONE},
        {1, fapi2::ENUM_ATTR_EFF_HYBRID_MEMORY_TYPE_NVDIMM},
        // All others reserved or not supported
    };

    constexpr size_t BYTE_INDEX = 3;
    constexpr field_t HYBRID_TYPE{BYTE_INDEX, HYBRID_TYPE_START, HYBRID_TYPE_LEN};

    // Extracting desired bits
    const uint8_t l_field_bits = extract_spd_field(i_target, HYBRID_TYPE, i_spd_data);
    FAPI_DBG("%s. Field Bits value: %d", mss::c_str(i_target), l_field_bits);

    // Check that value is valid
    const bool l_is_val_found = find_value_from_key(HYBRID_TYPE_MAP, l_field_bits, o_value);

    FAPI_TRY( mss::check::spd::fail_for_invalid_value(i_target,
              l_is_val_found,
              HYBRID_TYPE.iv_byte,
              l_field_bits,
              "Failed check on Hybrid Memory Type") );

    FAPI_INF("%s. Hybrid Memory Type: %d",
             mss::c_str(i_target),
             o_value);

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief      Decodes base module type (DIMM type) from SPD
/// @param[in]  i_target dimm target
/// @param[in]  i_spd_data SPD data
/// @param[out] o_value base module type
/// @return     FAPI2_RC_SUCCESS if okay
/// @note       Decodes SPD Byte 3 (bits 3~0)
/// @note       Item JC-45-2220.01x
/// @note       Page 17
/// @note       DDR4 SPD Document Release 3
///
fapi2::ReturnCode base_module_type(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
                                   const std::vector<uint8_t>& i_spd_data,
                                   uint8_t& o_value)
{
    // =========================================================
    // Byte 3 maps
    // Item JC-45-2220.01x
    // Page 17
    // DDR4 SPD Document Release 3
    // Byte 3 (0x003): Key Byte / Module Type
    // =========================================================
    static const std::vector<std::pair<uint8_t, uint8_t> > BASE_MODULE_TYPE_MAP =
    {
        //{key byte, dimm type}
        {1, fapi2::ENUM_ATTR_EFF_DIMM_TYPE_RDIMM},
        {2, fapi2::ENUM_ATTR_EFF_DIMM_TYPE_UDIMM},
        {4, fapi2::ENUM_ATTR_EFF_DIMM_TYPE_LRDIMM},
        // All others reserved or not supported
    };

    constexpr size_t BYTE_INDEX = 3;
    constexpr field_t BASE_MODULE{BYTE_INDEX, BASE_MODULE_START, BASE_MODULE_LEN};

    // Extracting desired bits
    const uint8_t l_field_bits = extract_spd_field(i_target, BASE_MODULE, i_spd_data);
    FAPI_DBG("%s. Field Bits value: %d", mss::c_str(i_target), l_field_bits);

    // Check that value is valid
    const bool l_is_val_found = find_value_from_key(BASE_MODULE_TYPE_MAP, l_field_bits, o_value);

    FAPI_TRY( mss::check::spd::fail_for_invalid_value(i_target,
              l_is_val_found,
              BASE_MODULE.iv_byte,
              l_field_bits,
              "Failed check on Base Module Type") );

    FAPI_INF("%s. Base Module Type: %d",
             mss::c_str(i_target),
             o_value);

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief       Decodes DRAM Device Type
/// @param[in]   i_target dimm target
/// @param[in]   i_spd_data SPD data
/// @param[out]  o_value dram device type enumeration
/// @return      FAPI2_RC_SUCCESS if okay
/// @note        Decodes SPD Byte 2
/// @note        Item JC-45-2220.01x
/// @note        Page 16
/// @note        DDR4 SPD Document Release 3
///
fapi2::ReturnCode dram_device_type(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
                                   const std::vector<uint8_t>& i_spd_data,
                                   uint8_t& o_value)
{
    // =========================================================
    // Byte 2 maps
    // Item JC-45-2220.01x
    // Page 16
    // DDR4 SPD Document Release 3
    // Byte 2 (0x002): Key Byte / DRAM Device Type
    // =========================================================
    static const std::vector<std::pair<uint8_t, uint8_t> > DRAM_GEN_MAP =
    {
        //{key value, dram gen}
        {0x0B, fapi2::ENUM_ATTR_EFF_DRAM_GEN_DDR3},
        {0x0C, fapi2::ENUM_ATTR_EFF_DRAM_GEN_DDR4}
        // Other key bytes reserved or not supported
    };

    constexpr size_t BYTE_INDEX = 2;
    const uint8_t l_raw_byte = i_spd_data[BYTE_INDEX];

    // Trace in the front assists w/ debug
    FAPI_INF("%s SPD data at Byte %d: 0x%llX.",
             mss::c_str(i_target),
             BYTE_INDEX,
             l_raw_byte);

    // Find map value
    const bool l_is_val_found = mss::find_value_from_key(DRAM_GEN_MAP, l_raw_byte, o_value);

    FAPI_TRY( mss::check::spd:: fail_for_invalid_value(i_target,
              l_is_val_found,
              BYTE_INDEX,
              l_raw_byte,
              "Failed check on SPD dram device type") );

    // Print decoded info
    FAPI_INF("%s Device type : %d",
             mss::c_str(i_target),
             o_value);

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Decodes reference raw card
/// @param[in] i_target dimm target
/// @param[in] i_spd_data SPD data
/// @param[out] o_output encoding from SPD
/// @return FAPI2_RC_SUCCESS if okay
/// @note SPD Byte 130 (Bits 7~0)
/// @note Item JEDEC Standard No. 21-C
/// @note DDR4 SPD Document Release 2
/// @Note Page 4.1.2.12 - 49
///
fapi2::ReturnCode reference_raw_card(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
                                     const std::vector<uint8_t>& i_spd_data,
                                     uint8_t& o_output)
{
    // Extracting desired bits
    constexpr size_t BYTE_INDEX = 130;

    // Trace in the front assists w/ debug
    FAPI_INF("%s SPD data at Byte %d: 0x%llX.",
             mss::c_str(i_target),
             BYTE_INDEX,
             i_spd_data[BYTE_INDEX]);

    // Byte taken directly, all bits are an encoding value so no fail check
    o_output = i_spd_data[BYTE_INDEX];

    FAPI_INF("%s. Reference raw card: %d",
             mss::c_str(i_target),
             o_output);

    return fapi2::FAPI2_RC_SUCCESS;
}

///
/// @brief Helper function to set dimm type attribute
/// @param[in] i_target dimm target
/// @param[in] i_spd_data SPD data
/// @param[out] o_dimm_type dimm type encoding needed by factory
/// @return FAPI2_RC_SUCCESS if okay
///
static fapi2::ReturnCode dimm_type_setter(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
        const std::vector<uint8_t>& i_spd_data,
        uint8_t& o_dimm_type)
{
    const auto l_port_num = index( find_target<TARGET_TYPE_MCA>(i_target) );
    const auto l_dimm_num = index(i_target);
    const auto l_mcs = mss::find_target<TARGET_TYPE_MCS>(i_target);

    // Get dimm type & set attribute (needed by c_str)
    uint8_t l_dimm_types_mcs[PORTS_PER_MCS][MAX_DIMM_PER_PORT] = {};

    FAPI_TRY( base_module_type(i_target, i_spd_data, o_dimm_type),
              "%s. Failed to find base module type", mss::c_str(i_target) );
    FAPI_TRY( eff_dimm_type(l_mcs, &l_dimm_types_mcs[0][0]),
              "%s. Failed to invoke DIMM type accessor", mss::c_str(i_target));

    l_dimm_types_mcs[l_port_num][l_dimm_num] = o_dimm_type;
    FAPI_TRY( FAPI_ATTR_SET(fapi2::ATTR_EFF_DIMM_TYPE, l_mcs, l_dimm_types_mcs),
              "%s. Failed to set ATTR_EFF_DIMM_TYPE", mss::c_str(i_target));

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Helper function to set hybrid attribute
/// @param[in] i_target dimm target
/// @param[in] i_spd_data SPD data
/// @param[out] o_hybrid dimm type encoding needed by factory
/// @return FAPI2_RC_SUCCESS if okay
///
static fapi2::ReturnCode hybrid_setter(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
                                       const std::vector<uint8_t>& i_spd_data,
                                       uint8_t& o_hybrid)
{
    const auto l_port_num = index( find_target<TARGET_TYPE_MCA>(i_target) );
    const auto l_dimm_num = index(i_target);
    const auto l_mcs = mss::find_target<TARGET_TYPE_MCS>(i_target);

    // Get dimm type & set attribute (needed by c_str)
    uint8_t l_dimm_types_mcs[PORTS_PER_MCS][MAX_DIMM_PER_PORT] = {};

    FAPI_TRY( hybrid(i_target, i_spd_data, o_hybrid),
              "%s. Failed to find hybrid", mss::c_str(i_target) );
    FAPI_TRY( eff_hybrid(l_mcs, &l_dimm_types_mcs[0][0]),
              "%s. Failed to invoke hybrid accessor", mss::c_str(i_target));

    l_dimm_types_mcs[l_port_num][l_dimm_num] = o_hybrid;
    FAPI_TRY( FAPI_ATTR_SET(fapi2::ATTR_EFF_HYBRID, l_mcs, l_dimm_types_mcs),
              "%s. Failed to set ATTR_EFF_HYBRID", mss::c_str(i_target));

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Helper function to set hybrid_type attribute
/// @param[in] i_target dimm target
/// @param[in] i_spd_data SPD data
/// @param[out] o_hybrid_type dimm type encoding needed by factory
/// @return FAPI2_RC_SUCCESS if okay
///
static fapi2::ReturnCode hybrid_type_setter(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
        const std::vector<uint8_t>& i_spd_data,
        uint8_t& o_hybrid_type)
{
    const auto l_port_num = index( find_target<TARGET_TYPE_MCA>(i_target) );
    const auto l_dimm_num = index(i_target);
    const auto l_mcs = mss::find_target<TARGET_TYPE_MCS>(i_target);

    // Get dimm type & set attribute (needed by c_str)
    uint8_t l_dimm_types_mcs[PORTS_PER_MCS][MAX_DIMM_PER_PORT] = {};

    FAPI_TRY( hybrid_type(i_target, i_spd_data, o_hybrid_type),
              "%s. Failed to find hybrid_memory_type", mss::c_str(i_target) );
    FAPI_TRY( eff_hybrid_memory_type(l_mcs, &l_dimm_types_mcs[0][0]),
              "%s. Failed to invoke hybrid_memory_type accessor", mss::c_str(i_target));

    l_dimm_types_mcs[l_port_num][l_dimm_num] = o_hybrid_type;
    FAPI_TRY( FAPI_ATTR_SET(fapi2::ATTR_EFF_HYBRID_MEMORY_TYPE, l_mcs, l_dimm_types_mcs),
              "%s. Failed to set ATTR_EFF_HYBRID_MEMORY", mss::c_str(i_target));

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Helper function to set dram gen attribute
/// @param[in] i_target dimm target
/// @param[in] i_spd_data SPD data
/// @return FAPI2_RC_SUCCESS if okay
///
static fapi2::ReturnCode dram_gen_setter(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
        const std::vector<uint8_t>& i_spd_data)
{
    const auto l_port_num = index( find_target<TARGET_TYPE_MCA>(i_target) );
    const auto l_dimm_num = index(i_target);
    const auto l_mcs = mss::find_target<TARGET_TYPE_MCS>(i_target);

    // Get dram generation & set attribute (needed by c_str)
    uint8_t l_dram_gen = 0;
    uint8_t l_dram_gen_mcs[PORTS_PER_MCS][MAX_DIMM_PER_PORT] = {};

    FAPI_TRY( eff_dram_gen(l_mcs, &l_dram_gen_mcs[0][0]),
              "%s. Failed to inboke DRAM gen accesssor", mss::c_str(i_target) );
    FAPI_TRY( dram_device_type(i_target, i_spd_data, l_dram_gen),
              "%s. Failed to find base module type", mss::c_str(i_target) );

    l_dram_gen_mcs[l_port_num][l_dimm_num] = l_dram_gen;

    FAPI_TRY( FAPI_ATTR_SET(fapi2::ATTR_EFF_DRAM_GEN, l_mcs, l_dram_gen_mcs),
              "%s. Failed to set ATTR_EFF_DRAM_GEN", mss::c_str(i_target) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Determines & sets effective config for number of master ranks per dimm
/// @param[in] i_target FAPI2 target
/// @param[in] the SPD cache
/// @return fapi2::FAPI2_RC_SUCCESS if okay
/// @note This is done after the SPD cache is configured so that it can reflect the results of the
/// factory and we don't need to worry about SPD versions. This is expressly different than the dram and dimm setters
///
fapi2::ReturnCode master_ranks_per_dimm_setter(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
        const std::shared_ptr<decoder>& i_pDecoder)
{
    const auto l_mcs = find_target<TARGET_TYPE_MCS>(i_target);
    const auto l_mca = find_target<TARGET_TYPE_MCA>(i_target);

    uint8_t l_decoder_val = 0;
    fapi2::buffer<uint8_t> l_ranks_configed;
    uint8_t l_attrs_master_ranks_per_dimm[PORTS_PER_MCS][MAX_DIMM_PER_PORT] = {};
    uint8_t l_attrs_dimm_ranks_configed[PORTS_PER_MCS][MAX_DIMM_PER_PORT] = {};

    // Get & update MCS attribute
    FAPI_TRY( i_pDecoder->num_package_ranks_per_dimm(l_decoder_val),
              "%s. Failed num_package_ranks_per_dimm()", mss::c_str(i_target) );
    FAPI_TRY(eff_num_master_ranks_per_dimm(l_mcs, &l_attrs_master_ranks_per_dimm[0][0]),
             "%s. Failed eff_num_master_ranks_per_dimm()", mss::c_str(i_target) );
    FAPI_TRY(eff_dimm_ranks_configed(l_mcs, &l_attrs_dimm_ranks_configed[0][0]),
             "%s. Failed eff_dimm_ranks_configed()", mss::c_str(i_target) );

    l_attrs_master_ranks_per_dimm[index(l_mca)][index(i_target)] = l_decoder_val;

    // Set configed ranks. Set the bit representing the master rank configured (0 being left most.) So,
    // a 4R DIMM would be 0b11110000 (0xF0). This is used by PRD.
    FAPI_TRY( l_ranks_configed.setBit(0, l_decoder_val),
              "%s. Failed to setBit", mss::c_str(i_target) );

    l_attrs_dimm_ranks_configed[index(l_mca)][index(i_target)] = l_ranks_configed;

    FAPI_INF( "%s Num Master Ranks %d, DIMM Ranks Configed 0x%x",
              mss::c_str(i_target),
              l_attrs_master_ranks_per_dimm[index(l_mca)][index(i_target)],
              l_attrs_dimm_ranks_configed[index(l_mca)][index(i_target)] );

    FAPI_TRY( FAPI_ATTR_SET(fapi2::ATTR_EFF_NUM_MASTER_RANKS_PER_DIMM, l_mcs, l_attrs_master_ranks_per_dimm),
              "%s. Failed to set ATTR_EFF_NUM_MASTER_RANKS_PER_DIMM", mss::c_str(i_target) );

    FAPI_TRY( FAPI_ATTR_SET(fapi2::ATTR_EFF_DIMM_RANKS_CONFIGED, l_mcs, l_attrs_dimm_ranks_configed),
              "%s. Failed to set ATTR_EFF_DIMM_RANKS_CONFIGED", mss::c_str(i_target) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief       Helper function to return RDIMM decoder
/// @param[in]   i_target dimm target
/// @param[in]   i_encoding_rev encoding revision
/// @param[in]   i_additions_rev additions revision
/// @param[in]   i_raw_card raw card reference revision
/// @param[in]   i_spd_data SPD data
/// @param[out]  o_fact_obj shared pointer to the factory object
/// @return      FAPI2_RC_SUCCESS if okay
/// @note        Factory dependent on SPD revision & dimm type
///
static fapi2::ReturnCode rdimm_rev_helper(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
        const uint8_t i_encoding_rev,
        const uint8_t i_additions_rev,
        const rcw_settings i_raw_card,
        const std::vector<uint8_t>& i_spd_data,
        std::shared_ptr<decoder>& o_fact_obj)
{
    // This needs to be updated for added revisions
    constexpr uint64_t HIGHEST_ENCODING_LEVEL = 1;
    constexpr uint64_t HIGHEST_ADDITIONS_LEVEL = 1;

    fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
    std::shared_ptr<dimm_module_decoder> l_module_decoder;

    // SPD Revision format #.#
    // 1st # = encoding level
    // 2nd # = additions level
    switch(i_encoding_rev)
    {
        // Skipping case 0 since we shouldn't be using pre-production revisions
        case 1:
            switch(i_additions_rev)
            {
                // Rev 1.0
                case 0:
                    // Life starts out at base revision level
                    FAPI_INF( "%s. Creating decoder for RDIMM SPD revision 1.0", mss::c_str(i_target) );
                    l_module_decoder = std::make_shared<ddr4::rdimm::decoder_v1_0>(i_target, i_spd_data);
                    o_fact_obj = std::make_shared<ddr4::decoder_v1_0>( i_target, i_spd_data, l_module_decoder, i_raw_card );
                    break;

                case 1:
                    // Rev 1.1
                    // Changes to both the general section & rdimm section occured
                    FAPI_INF( "%s. Creating decoder for RDIMM SPD revision 1.1", mss::c_str(i_target) );
                    l_module_decoder = std::make_shared<ddr4::rdimm::decoder_v1_1>(i_target, i_spd_data);
                    o_fact_obj = std::make_shared<ddr4::decoder_v1_1>( i_target, i_spd_data, l_module_decoder, i_raw_card );
                    break;

                default:
                    // For additions level retrieved from SPD higher than highest decoded revision level,
                    // we default to be highest decoded additions level because they are backward compatable.
                    // This will need to be updated for every new additions level that is decoded.
                    FAPI_INF( "%s. Unable to create decoder for retrieved SPD RDIMM revision %d.%d",
                              mss::c_str(i_target), i_encoding_rev, i_additions_rev );

                    FAPI_INF("%s. Falling back to highest supported, backward-comptable decoder, "
                             "for SPD RDIMM revision %d.%d",
                             mss::c_str(i_target), HIGHEST_ENCODING_LEVEL, HIGHEST_ADDITIONS_LEVEL );

                    l_module_decoder = std::make_shared<ddr4::rdimm::decoder_v1_1>(i_target, i_spd_data);
                    o_fact_obj = std::make_shared<ddr4::decoder_v1_1>( i_target, i_spd_data, l_module_decoder, i_raw_card );
                    break;

            }//end additions

            break;

        default:
            // For encodings level retrieved from SPD higher than highest decoded revision level,
            // we error out because encoding level changes are NOT backward comptable.
            // Current this means Rev 2.0+ is no supported
            FAPI_TRY( mss::check::spd::invalid_factory_sel(i_target,
                      fapi2::ENUM_ATTR_EFF_DIMM_TYPE_RDIMM,
                      i_encoding_rev,
                      i_additions_rev,
                      "Encoding Level unsupported!"),
                      "%s. Invalid encoding level received: %d",
                      mss::c_str(i_target), i_encoding_rev);

            break;
    }// end encodings

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief       Helper function to return LRDIMM decoder
/// @param[in]   i_target dimm target
/// @param[in]   i_encoding_rev encoding revision
/// @param[in]   i_additions_rev additions revision
/// @param[in]   i_raw_card raw card reference revision
/// @param[in]   i_spd_data SPD data
/// @param[out]  o_fact_obj shared pointer to the factory object
/// @return      FAPI2_RC_SUCCESS if okay
/// @note        Factory dependent on SPD revision & dimm type
///
static fapi2::ReturnCode lrdimm_rev_helper(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
        const uint8_t i_encoding_rev,
        const uint8_t i_additions_rev,
        const rcw_settings i_raw_card,
        const std::vector<uint8_t>& i_spd_data,
        std::shared_ptr<decoder>& o_fact_obj)
{
    fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
    std::shared_ptr<dimm_module_decoder> l_module_decoder;

    // This needs to be updated for added revisions
    constexpr uint64_t HIGHEST_ENCODING_LEVEL = 2;
    constexpr uint64_t HIGHEST_ADDITIONS_LEVEL = 1;

    // SPD Revision format #.#
    // 1st # = encoding level
    // 2nd # = additions level
    switch(i_encoding_rev)
    {
        // Skipping case 0 since we shouldn't be using pre-production revisions
        case 1:
            switch(i_additions_rev)
            {
                // Rev 1.0
                case 0:
                    // Life starts out at base revision level
                    FAPI_INF( "%s. Creating decoder for LRDIMM SPD revision 1.0", mss::c_str(i_target) );
                    l_module_decoder = std::make_shared<ddr4::lrdimm::decoder_v1_0>(i_target, i_spd_data);
                    o_fact_obj = std::make_shared<decoder>( i_target, i_spd_data, l_module_decoder, i_raw_card );
                    break;

                case 1:
                    // Rev 1.1
                    // Changes to both the general section & lrdimm section occured
                    FAPI_INF( "%s. Creating decoder for LRDIMM SPD revision 1.1", mss::c_str(i_target) );
                    l_module_decoder = std::make_shared<ddr4::lrdimm::decoder_v1_1>(i_target, i_spd_data);
                    o_fact_obj = std::make_shared<ddr4::decoder_v1_1>( i_target, i_spd_data, l_module_decoder, i_raw_card );
                    break;

                case 2:
                    // Rev 1.2
                    // Changes lrdimm section occured
                    // General section remained the same
                    FAPI_INF( "%s. Creating decoder for LRDIMM SPD revision 1.2", mss::c_str(i_target) );
                    l_module_decoder = std::make_shared<ddr4::lrdimm::decoder_v1_2>(i_target, i_spd_data);
                    o_fact_obj = std::make_shared<ddr4::decoder_v1_1>( i_target, i_spd_data, l_module_decoder, i_raw_card );
                    break;

                default:
                    // For additions level retrieved from SPD higher than highest decoded revision level,
                    // we default to be highest decoded additions level because they are backward compatable.
                    // This will need to be updated for every new additions level that is decoded.
                    FAPI_INF( "%s. Unable to create decoder for retrieved SPD LRDIMM revision %d.%d",
                              mss::c_str(i_target), i_encoding_rev, i_additions_rev );

                    FAPI_INF("%s. Falling back to highest supported, backward-comptable decoder, "
                             "for SPD LRDIMM revision %d.%d",
                             mss::c_str(i_target), HIGHEST_ENCODING_LEVEL, HIGHEST_ADDITIONS_LEVEL );

                    l_module_decoder = std::make_shared<ddr4::lrdimm::decoder_v1_2>(i_target, i_spd_data);
                    o_fact_obj = std::make_shared<ddr4::decoder_v1_1>( i_target, i_spd_data, l_module_decoder, i_raw_card );
                    break;

            }//end additions

            break;

        default:
            // For encodings level retrieved from SPD higher than highest decoded revision level,
            // we error out because encoding level changes are NOT backward comptable.
            // Currently this means Rev 2.0+ is not supported
            FAPI_TRY( mss::check::spd::invalid_factory_sel(i_target,
                      fapi2::ENUM_ATTR_EFF_DIMM_TYPE_LRDIMM,
                      i_encoding_rev,
                      i_additions_rev,
                      "Encoding Level unsupported!"),
                      "%s. Invalid encoding level received: %d",
                      mss::c_str(i_target), i_encoding_rev);
            break;
    }// end encodings

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Retrieve current raw card settings
/// based on dimm type and raw card reference rev
/// @param[in] i_target dimm target
/// @param[in] i_spd_data SPD data
/// @param[out] o_raw_card raw card settings
/// @return FAPI2_RC_SUCCESS if okay
///
fapi2::ReturnCode raw_card_factory(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
                                   const std::vector<uint8_t>& i_spd_data,
                                   rcw_settings& o_raw_card)
{
    uint8_t l_dimm_type = 0;
    uint8_t l_hybrid = 0;
    uint8_t l_hybrid_type = 0;
    uint8_t l_ref_raw_card_rev = 0;

    // Lets find out what raw card we are and grab the right
    // raw card settings
    FAPI_TRY( mss::eff_dimm_type(i_target, l_dimm_type) );
    FAPI_TRY( mss::eff_hybrid(i_target, l_hybrid) );
    FAPI_TRY( mss::eff_hybrid_memory_type(i_target, l_hybrid_type) );
    FAPI_TRY( reference_raw_card(i_target, i_spd_data, l_ref_raw_card_rev) );

    FAPI_INF( "Retrieved dimm_type: %d, raw card reference: 0x%lx from SPD",
              l_dimm_type, l_ref_raw_card_rev);

    switch(l_dimm_type)
    {
        case fapi2::ENUM_ATTR_EFF_DIMM_TYPE_RDIMM:

            // TODO:RTC178807 - Update how NVDIMMs are handled once more are up and running in the lab
            // NVDIMM is currently considered differently than all other rdimm raw cards, due to settings differences
            if((l_hybrid == fapi2::ENUM_ATTR_EFF_HYBRID_IS_HYBRID) &&
               (l_hybrid_type == fapi2::ENUM_ATTR_EFF_HYBRID_MEMORY_TYPE_NVDIMM))
            {
                l_ref_raw_card_rev = mss::rdimm::raw_card_rev::NVDIMM;
                FAPI_INF("%s is an NVDIMM, overwrote l_ref_raw_card_rev to be 0x%02x",
                         mss::c_str(i_target),
                         l_ref_raw_card_rev);
            }

            o_raw_card = find_raw_card( i_target,
                                        fapi2::ENUM_ATTR_EFF_DIMM_TYPE_RDIMM,
                                        l_ref_raw_card_rev,
                                        mss::rdimm::RAW_CARDS);
            break;

        case fapi2::ENUM_ATTR_EFF_DIMM_TYPE_LRDIMM:
            o_raw_card = find_raw_card( i_target,
                                        fapi2::ENUM_ATTR_EFF_DIMM_TYPE_LRDIMM,
                                        l_ref_raw_card_rev,
                                        mss::lrdimm::RAW_CARDS);
            break;

        default:
            FAPI_ASSERT( false,
                         fapi2::MSS_INVALID_DIMM_TYPE()
                         .set_DIMM_TYPE(l_dimm_type)
                         .set_DIMM_TARGET(i_target),
                         "Recieved invalid dimm type: %d for %s",
                         l_dimm_type, mss::c_str(i_target) );
            break;
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief       Object factory to select correct decoder
/// @param[in]   i_target dimm target
/// @param[in]   i_spd_data SPD data
/// @param[out]  o_fact_obj shared pointer to the factory object
/// @return      FAPI2_RC_SUCCESS if okay
/// @note        Factory dependent on SPD revision & dimm type
///
fapi2::ReturnCode factory(const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
                          const std::vector<uint8_t>& i_spd_data,
                          std::shared_ptr<decoder>& o_fact_obj)
{
    if( i_spd_data.empty() )
    {
        // This won't work with no data
        FAPI_ERR( "%s. SPD vector of data is empty! Factory requires valid SPD data.", mss::c_str(i_target) );
        return fapi2::FAPI2_RC_INVALID_PARAMETER;
    }

    uint8_t l_dimm_type = 0;
    uint8_t l_hybrid = 0;
    uint8_t l_hybrid_type = 0;
    uint8_t l_encoding_rev = 0;
    uint8_t l_additions_rev = 0;
    rcw_settings l_raw_card;

    // Attribute setting needed by mss::c_str() which is used in
    // the SPD decoder for debugging help
    FAPI_TRY( dimm_type_setter(i_target, i_spd_data, l_dimm_type),
              "%s. Failed to set DIMM type", mss::c_str(i_target) );
    FAPI_TRY( hybrid_setter(i_target, i_spd_data, l_hybrid),
              "%s. Failed to set hybrid", mss::c_str(i_target) );
    FAPI_TRY( hybrid_type_setter(i_target, i_spd_data, l_hybrid_type),
              "%s. Failed to set hybrid_type", mss::c_str(i_target) );
    FAPI_TRY( dram_gen_setter(i_target, i_spd_data),
              "%s. Failed to set DRAM generation", mss::c_str(i_target) );
    FAPI_TRY( raw_card_factory(i_target, i_spd_data, l_raw_card),
              "%s. Failed raw_card_factory()", mss::c_str(i_target) );

    // Get revision levels to figure out what SPD version we are
    FAPI_TRY( rev_encoding_level(i_target, i_spd_data, l_encoding_rev),
              "%s. Failed to decode encoding level", mss::c_str(i_target) );
    FAPI_TRY( rev_additions_level(i_target, i_spd_data,  l_additions_rev),
              "%s. Failed to decode additons level", mss::c_str(i_target) );

    // Get decoder object needed for current dimm type and spd rev
    switch(l_dimm_type)
    {
        // Each dimm type rev is independent
        case fapi2::ENUM_ATTR_EFF_DIMM_TYPE_RDIMM:
            FAPI_TRY( rdimm_rev_helper(i_target,
                                       l_encoding_rev,
                                       l_additions_rev,
                                       l_raw_card,
                                       i_spd_data,
                                       o_fact_obj),
                      "%s. Failed to decode SPD revision for RDIMM, "
                      "encoding rev: %d, additions rev: %d",
                      mss::c_str(i_target), l_encoding_rev, l_additions_rev );
            break;

        // Each dimm type rev is independent
        case fapi2::ENUM_ATTR_EFF_DIMM_TYPE_LRDIMM:
            FAPI_TRY( lrdimm_rev_helper(i_target,
                                        l_encoding_rev,
                                        l_additions_rev,
                                        l_raw_card,
                                        i_spd_data,
                                        o_fact_obj),
                      "%s. Failed to decode SPD revision for LRDIMM, "
                      "encoding rev: %d, additions rev: %d",
                      mss::c_str(i_target), l_encoding_rev, l_additions_rev);
            break;

        default:
            FAPI_TRY( mss::check::spd::invalid_factory_sel(i_target,
                      l_dimm_type,
                      l_encoding_rev,
                      l_additions_rev,
                      "DIMM Type unsupported!") );
            break;

    } // end dimm type

    FAPI_INF( "%s: Decoder created for DIMM type: %d, SPD revision %d.%d",
              mss::c_str(i_target),
              l_dimm_type,
              l_encoding_rev,
              l_additions_rev );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief       Wrapper function for finding the raw card
/// @param[in]   i_target the dimm target
/// @param[in]   i_dimm_type
/// @param[in]   i_ref_raw_card_rev for FFDC
/// @param[in]   i_map raw card map
/// @return      rcw_settings vector of rcw settings
/// @note        This specialization is suited for creating a cache with custom
///              SPD data (e.g. testing custom SPD).
///
rcw_settings find_raw_card( const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
                            const uint64_t i_dimm_type,
                            const uint8_t i_ref_raw_card_rev,
                            const std::vector<std::pair<uint8_t, rcw_settings> > i_map)
{
    rcw_settings l_raw_card;

    FAPI_ASSERT( find_value_from_key( i_map, i_ref_raw_card_rev, l_raw_card),
                 fapi2::MSS_INVALID_RAW_CARD()
                 .set_DIMM_TYPE(i_dimm_type)
                 .set_RAW_CARD_REV(i_ref_raw_card_rev)
                 .set_DIMM_TARGET(i_target),
                 "Invalid reference raw card received for %s: %d for %s",
                 (i_dimm_type == fapi2::ENUM_ATTR_EFF_DIMM_TYPE_RDIMM) ? "RDIMM" : "LRDIMM",
                 i_ref_raw_card_rev,
                 mss::c_str(i_target) );

    return l_raw_card;

// If we got here there was a raw card we don't have values for, so putting the default
fapi_try_exit:
    fapi2::logError(fapi2::current_err, fapi2::FAPI2_ERRL_SEV_RECOVERED);
    fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
    return (i_dimm_type == fapi2::ENUM_ATTR_EFF_DIMM_TYPE_RDIMM) ?
           rdimm_rc_default : lrdimm_rc_default;
}

///
/// @brief       Creates factory object & SPD data caches
/// @param[in]   i_target the dimm target
/// @param[out]  o_factory_caches vector of factory objects
/// @param[in]   i_pDecoder custom decoder to populate cache (nullptr default)
/// @return      FAPI2_RC_SUCCESS if okay
/// @note        This specialization is suited for creating a cache with custom
///              SPD data (e.g. testing custom SPD).
///
template<>
fapi2::ReturnCode populate_decoder_caches( const fapi2::Target<TARGET_TYPE_DIMM>& i_target,
        std::vector< std::shared_ptr<decoder> >& o_factory_caches,
        const std::shared_ptr<decoder>& i_pDecoder)
{
    if(i_pDecoder == nullptr)
    {
        // This won't work w/a null parameter
        FAPI_ERR("%s. Received decoder is NULL!", mss::c_str(i_target) );
        return fapi2::FAPI2_RC_INVALID_PARAMETER;
    }

    // Custom decoder provided (usually done for testing)
    // Populate custom spd caches maps one dimm at a time
    o_factory_caches.push_back( i_pDecoder );

    // Populate some of the DIMM attributes early. This allows the following code to make
    // decisions based on DIMM information. Expressly done after the factory has decided on the SPD version
    FAPI_TRY( master_ranks_per_dimm_setter(i_target, i_pDecoder),
              "%s. Failed master_ranks_per_dimm_setter()", mss::c_str(i_target) );

fapi_try_exit:
    return fapi2::current_err;
}

}// spd
}// mss
OpenPOWER on IntegriCloud