summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/memory/lib/power_thermal/throttle.H
blob: 876e277a3240335bbd9e8d42cfc45c64e3d1eadf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/p9/procedures/hwp/memory/lib/power_thermal/throttle.H $ */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2016                             */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
///
/// @file p9_mss_utils_to_throttle.H
/// @brief throttle API
///

// *HWP HWP Owner: Jacob Harvey <jlharvey@us.ibm.com>
// *HWP HWP Backup: Brian Silver <bsilver@us.ibm.com>
// *HWP Team: Memory
// *HWP Level: 2
// *HWP Consumed by: FSP:HB

#ifndef _MSS_POWER_THROTTLE_
#define _MSS_POWER_THROTTLE_

#include <fapi2.H>
#include <mss.H>
namespace mss
{
namespace power_thermal
{
enum throttle_const : size_t
{
    // Dram data bus utilization is bus utilization / 4
    DRAM_BUS_UTILS = 4,
    //10000 to convert to and from c%
    UTIL_CONVERSION = 10000,
    PERCENT_CONVERSION = 100,

    //MIN_UTIL and IDLE_UTIL are in c%
    MIN_UTIL = 100,
    IDLE_UTIL = 0,
};
///
/// @class throttle
/// @brief Determine power_thermal throttles for memory
///
class throttle
{
    private:
        ///
        /// @brief Calculate the power (cW) of inputs and the power curve
        /// @tparam T
        /// @param[in] i_util the databus utilization that the power will be based on
        /// @param[in] l_pos the dimm position for the power value being calculated.
        /// @return Integral type T
        ///
        template<typename T>
        inline T calc_power (const T i_util, const size_t i_pos)
        {
            return ((i_util / UTIL_CONVERSION) * iv_pwr_slope[i_pos]) + iv_pwr_int[i_pos];
        }

        ///
        /// @brief Raise the o_value by the percent passed in
        /// @param[in] i_uplift the percent the o_Value should be raised by
        /// @param[out] o_value the value that will be modified
        ///
        inline void calc_power_uplift (const uint8_t i_uplift, double& o_value)
        {
            o_value *= (1 + (double(i_uplift) / PERCENT_CONVERSION));
        }

    public:
        const fapi2::Target<fapi2::TARGET_TYPE_MCA>& iv_target;
        //dimm level
        uint32_t iv_databus_port_max;
        //TK change thermal limit as well as power curves

        uint8_t iv_power_uplift_idle;
        uint8_t iv_power_uplift;

        uint16_t iv_runtime_n_slot;
        uint16_t iv_runtime_n_port;
        uint32_t iv_m_clocks;
        uint32_t iv_dimm_thermal_limit[MAX_DIMM_PER_PORT] = {};
        uint16_t iv_pwr_slope[MAX_DIMM_PER_PORT] = {};
        uint16_t iv_pwr_int[MAX_DIMM_PER_PORT] = {};
        uint16_t iv_n_slot;
        uint16_t iv_n_port;
        uint32_t iv_port_power_limit;
        uint32_t iv_calc_port_maxpower;

        //default ctor deleted
        throttle() = delete;

        ///
        /// @brief Constructor
        /// @param[in] i_target MCA target to call power thermal stuff on
        /// @param[out] o_rc fapi2::ReturnCode fapi2::FAPI2_RC_SUCCESS iff ctor was successful
        ///
        throttle( const fapi2::Target<fapi2::TARGET_TYPE_MCA>& i_mca, fapi2::ReturnCode o_rc);

        //
        // @brief Destructor
        //
        ~throttle() = default;

        ///
        /// @brief Calculates the min and max power usage for a port
        /// @param[in] i_idle_util the utilization of the databus in idle mode
        /// @param[in] i_max_util  the utilization of the port at maximum possible (mrw or calculated)
        /// @param[out] o_port_power_idle max value of port power in cW
        /// @param[out] o_port_power_max max value of port power in cW
        /// @note Called twice in p9_mss_bulk_pwr_throttles
        ///
        void calc_port_power( const double i_idle_util [MAX_DIMM_PER_PORT],
                              const double i_max_util [MAX_DIMM_PER_PORT],
                              double& o_port_power_idle,
                              double& o_port_power_max);
        ///
        /// @brief Calculates max and min power usages based off of DIMM power curves
        /// @param[in] i_databus_port_max max databus utilization for the port (either calculated or mrw)
        /// @param[in] i_port_power_calc_idle double of the port's power consumption at idle
        /// @param[out] o_dimm_power_idle array of dimm power in cW
        /// @param[out] o_dimm_power_max array of dimm power in cW
        /// @note Called in p9_mss_bulk_pwr_throttles
        /// @note used for the thermal throttles
        ///
        void calc_dimm_power(const double i_databus_idle,
                             const double i_databus_max,
                             double o_dimm_power_idle [MAX_DIMM_PER_PORT],
                             double o_dimm_power_max [MAX_DIMM_PER_PORT]);

        ///
        /// @brief Calculate the power curve in order to calculate databus utilization
        /// @param[in] i_power_idle double of the port's power consumption at idle
        /// @param[in] i_power_max double of the port's power consumption at max utilization
        /// @param[out] o_power_slope
        /// @param[out] o_power_int
        /// @note Called in p9_mss_bulk_pwr_throttles
        /// @note Power curve needed to calculate the utilization
        ///
        fapi2::ReturnCode calc_power_curve(const double i_power_idle,
                                           const double i_power_max,
                                           uint32_t& o_power_slope,
                                           uint32_t& o_power_int);
        ///
        /// @brief Calculate the databus utilization given the power curve
        /// @param[in] i_slope
        /// @param[in] i_int
        /// @param[in] i_power_limit either iv_port_power_limit or thermal_power_limit depending on throttle type
        /// @param[out] o_port_util the port's databus utilization
        /// @note Called in p9_mss_bulk_pwr_throttles
        /// @note Chooses worst case between the maximum allowed databus utilization and the calculated value
        ///
        void calc_util_usage(const uint32_t i_slope,
                             const uint32_t i_int,
                             const uint32_t i_power_limit,
                             double& o_util);
        ///
        ///@brief calculated the output power estimate from the calculated N throttle
        ///@param[in] i_n_port is the throtte N (address operations) that the power (cW) is be calculated from
        ///@return the power calculated from the uint
        ///
        uint32_t calc_power_from_n (const uint16_t i_n_port);

        ///
        /// @brief Converts the port maximum databus util to a dimm level based on powerslopes and dimms installed
        /// @param[in] i_databus_port_max max databus utilization for the port (either calculated or mrw)
        /// @param[out] o_databus_dimm_max array of dimm utilization values
        /// @return fapi2::ReturnCode - FAPI2_RC_SUCCESS iff the split is OK
        /// @note Called in p9_mss_bulk_pwr_throttles
        /// @used to calculate the port power based off of DIMM power curves
        ///
        fapi2::ReturnCode calc_databus( const double i_databus_port_max,
                                        double o_databus_dimm_max [MAX_DIMM_PER_PORT]);

        ///
        /// @brief Calculate ATTR_MSS_CHANNEL_PAIR_MAXPOWER and  ATTR_MSS_MEM_THROTTLED_N_COMMANDS_PER_SLOT,
        /// @return fapi2::ReturnCode - FAPI2_RC_SUCCESS iff get is OK
        /// @note Called in p9_mss_bulk_pwr_throttles
        /// @note determines the throttle levels based off of the port's power curve, max databus utilization,
        /// and memwat target.
        /// @note currently sets the slot and port throttles to the same value
        ///
        fapi2::ReturnCode power_regulator_throttles ();

        ///
        /// @brief Set ATTR_MSS_MEM_THROTTLED_N_COMMANDS_PER_SLOT,
        /// @return fapi2::ReturnCode - FAPI2_RC_SUCCESS iff get is OK
        /// @note Called in p9_mss_bulk_pwr_throttles
        /// @note Sets the throttle levels based off of the dimm's thermal limits
        /// @note both DIMM's on a port are set to the same throttle level
        ///
        fapi2::ReturnCode thermal_throttles ();
};

///
/// @brief Calculate N (address operations) allowed within a window of M DRAM clocks
/// @param[in] i_databus_util databus utilization percentage (e.g. 5% = 5)
/// @param[in] i_num_dram_clocks window of M DRAM clocks
/// @return number of throttled commands allowed
/// @note Uses N/M Throttling.
/// Equation:  N = (DRAM data bus utilization * M) / (4 * 10000)
///
inline uint32_t throttled_cmds(const uint32_t i_databus_util, const uint32_t i_num_dram_clocks)
{
    constexpr uint64_t l_divisor = DRAM_BUS_UTILS * UTIL_CONVERSION;
    const uint64_t l_dividend = i_databus_util * i_num_dram_clocks;
    const uint64_t l_result = l_dividend / l_divisor;

    //Make sure N is not equal to 0, or we brick the dram until reboot
    return ((l_result == 0) ? 1 : l_result);
}

///
/// @brief Calculate the port databus utilization based off of N throttles and M dram clocks
/// @param[in] i_n_throttles N (address operations) allowed within a window of M DRAM clocks
/// @param[in] i_num_dram_clocks window of M DRAM clocks
/// @return number of throttled commands allowed
/// @note Uses N/M Throttling.
/// @note DRAM databus utilization = N * 4 * 10000 / M
///
inline double calc_util_from_throttles(const uint16_t i_n_throttles, const uint32_t i_num_dram_clocks)
{
    constexpr uint32_t l_multiplier = DRAM_BUS_UTILS * UTIL_CONVERSION;
    return  ( (double(i_n_throttles) * l_multiplier) / i_num_dram_clocks);

}

///
/// @brief Determines if the double has decimal digits and adds 1 and rounds if true
/// @param[in] io_val the double to be rounded up if trialing digits
/// @return the input value rounded up to the next whole digit
/// @note Called in p9_mss_bulk_pwr_throttles
///
inline uint32_t round_up(double i_val)
{
    //convert to uint to truncate decimals and convert back to double for comparison
    uint32_t temp = uint32_t (i_val);

    //if not equal, lost something from truncating, so add 1
    temp += (temp == i_val) ? 0 : 1;

    //Truncate final value
    return temp;
}

///
/// @brief Perform thermal calculations as part of the effective configuration
/// @param[in] i_target the MCS target in which the runtime throttles will be reset
/// @return FAPI2_RC_SUCCESS iff ok
///
fapi2::ReturnCode restore_runtime_throttles( const fapi2::Target<fapi2::TARGET_TYPE_MCS>& i_target );

///
/// @brief Update the runtime throttles to the worst case of the general throttle values and the runtime values
/// @param[in] i_target the MCS target in which the runtime throttles will be set
/// @return FAPI2_RC_SUCCESS iff ok
///
fapi2::ReturnCode update_runtime_throttles(const std::vector< fapi2::Target<fapi2::TARGET_TYPE_MCS> >& i_targets);


}//power_thermal
}// mss

#endif
OpenPOWER on IntegriCloud