summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/memory/lib/phy/ddr_phy.C
blob: 9c9b04eaadcfed015c34b84db3b59ad070541a27 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: chips/p9/procedures/hwp/memory/lib/phy/ddr_phy.C $            */
/*                                                                        */
/* IBM CONFIDENTIAL                                                       */
/*                                                                        */
/* EKB Project                                                            */
/*                                                                        */
/* COPYRIGHT 2015,2016                                                    */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* The source code for this program is not published or otherwise         */
/* divested of its trade secrets, irrespective of what has been           */
/* deposited with the U.S. Copyright Office.                              */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

///
/// @file ddr_phy.C
/// @brief Subroutines to manipulate the phy, or used during phy procedures
///
// *HWP HWP Owner: Brian Silver <bsilver@us.ibm.com>
// *HWP HWP Backup: Andre Marin <aamarin@us.ibm.com>
// *HWP Team: Memory
// *HWP Level: 2
// *HWP Consumed by: FSP:HB

#include <vector>
#include <initializer_list>

#include <fapi2.H>
#include <mss.H>

#include <phy/ddr_phy.H>
#include <phy/read_cntrl.H>
#include <phy/phy_cntrl.H>
#include <phy/apb.H>

#include <utils/bit_count.H>
#include <utils/dump_regs.H>
#include <utils/scom.H>

using fapi2::TARGET_TYPE_MCBIST;
using fapi2::TARGET_TYPE_PROC_CHIP;
using fapi2::TARGET_TYPE_SYSTEM;
using fapi2::TARGET_TYPE_MCA;
using fapi2::TARGET_TYPE_MCS;
using fapi2::TARGET_TYPE_DIMM;

namespace mss
{

///
/// @brief change resetn to the given state
/// @param[in] i_target the mcbist
/// @param[in] i_state the desired state
/// @return FAPI2_RC_SUCCESS iff ok
///
fapi2::ReturnCode change_resetn( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target, states i_state )
{
    fapi2::buffer<uint64_t> l_data;

    for (const auto& p : i_target.getChildren<TARGET_TYPE_MCA>())
    {
        FAPI_DBG("Change reset to %s PHY: %s", (i_state == HIGH ? "high" : "low"), mss::c_str(p));

        FAPI_TRY( mss::getScom(p, MCA_MBA_CAL0Q, l_data) );
        i_state == HIGH ? l_data.setBit<MCA_MBA_CAL0Q_RESET_RECOVER>() : l_data.clearBit<MCA_MBA_CAL0Q_RESET_RECOVER>();
        FAPI_TRY( mss::putScom(p, MCA_MBA_CAL0Q, l_data) );
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief perform the zctl toggle process
/// @param[in] i_target the mcbist for the reset recover
/// @return FAPI2_RC_SUCCESS iff ok
///
fapi2::ReturnCode toggle_zctl( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target )
{
// With model 31 (Drop X) this became unecessary. Not removing it as it's unclear what
// the final algorithm(s) will be. BRS
#if 0
    fapi2::buffer<uint64_t> l_data;

    const auto l_ports = i_target.getChildren<TARGET_TYPE_MCA>();

    //
    // 4. Write 0x0010 to PC IO PVT N/P FET driver control registers to assert ZCTL reset and enable the internal impedance controller.
    // (SCOM Addr: 0x8000C0140301143F,  0x8000C0140301183F, 0x8001C0140301143F, 0x8001C0140301183F)
    FAPI_DBG("Write 0x0010 to PC IO PVT N/P FET driver control registers to assert ZCTL reset");
    l_data.setBit<59>();
    FAPI_TRY( mss::scom_blastah(l_ports, MCA_DDRPHY_PC_IO_PVT_FET_CONTROL_P0, l_data) );

    //
    // 5. Write 0x0018 to PC IO PVT N/P FET driver control registers to deassert ZCTL reset while impedance controller is still enabled.
    //    (SCOM Addr: 0x8000C0140301143F,  0x8000C0140301183F, 0x8001C0140301143F, 0x8001C0140301183F)
    FAPI_DBG("Write 0x0018 to PC IO PVT N/P FET driver control registers to deassert ZCTL reset.");
    l_data.setBit<59>().setBit<60>();
    FAPI_TRY( mss::scom_blastah(l_ports, MCA_DDRPHY_PC_IO_PVT_FET_CONTROL_P0, l_data) );

    //
    // 6. Write 0x0008 to PC IO PVT N/P FET driver control registers to deassert the impedance controller.
    //    (SCOM Addr: 0x8000C0140301143F,  0x8000C0140301183F, 0x8001C0140301143F, 0x8001C0140301183F)

    FAPI_DBG("Write 0x0008 to PC IO PVT N/P FET driver control registers to deassert the impedance controller");
    l_data.clearBit<59>().setBit<60>();
    FAPI_TRY( mss::scom_blastah(l_ports, MCA_DDRPHY_PC_IO_PVT_FET_CONTROL_P0, l_data) );

fapi_try_exit:
#endif
    return fapi2::current_err;
}

/// @brief Change mclk low
/// @param[in] i_target mcbist target
/// @param[in] i_state mss::HIGH or mss::LOW - desired state.
/// @return FAPI2_RC_SUCCESS iff ok
///
fapi2::ReturnCode change_force_mclk_low (const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
        const mss::states i_state)
{

    // Working with Goldade, we learned this:
    // From John Bailas:  9:49:46 AM: you need to use that force_mclk_low signal, it needs to be asserted which
    // forces RESETN on, and CK/CKN to 0, and all other address/cmd to Z. Then the MC has to establish valid
    // values for all signals after PHY reset before force_mclk_low gets de-asserted
    // And to celar up the ambiguity of "on" <grin>
    // John S. Bialas Jr: Hi Brian, force_mclk_low should force RESETN, CK, and CK# to 0, and all
    // other address/command signals to Z
    // So, this should be enough to get us going. BRS

    // Additionally: from John Bailas
    // The PHY should be reset and initialized such that it can synchronously control the RESETN, CK, and CKN
    // to the DIMM, then force_mclk_low can be de-asserted and the control of those signals will be synchronously
    // maintained. Beyond that the remainder of the DIMM init sequence can be performed, ie. start CK/CKN,
    // de-assert RESETN, etc

    fapi2::buffer<uint64_t> l_data;

    FAPI_DBG("force mclk %s for all ports", (i_state == mss::LOW ? "low" : "high") );

    // Might as well do this for all the ports while we're here.
    for (const auto& p : i_target.getChildren<TARGET_TYPE_MCA>())
    {
        FAPI_TRY( mss::getScom(p, MCA_MBA_FARB5Q, l_data) );

        // TK: use writeBit?
        if (i_state == mss::HIGH)
        {
            l_data.setBit<MCA_MBA_FARB5Q_CFG_FORCE_MCLK_LOW_N>();
        }
        else
        {
            l_data.clearBit<MCA_MBA_FARB5Q_CFG_FORCE_MCLK_LOW_N>();
        }

        FAPI_TRY(mss::putScom( p, MCA_MBA_FARB5Q, l_data));
    }

fapi_try_exit:
    return fapi2::current_err;
}


///
/// @brief Unset the PLL and check to see that the PLL's have started
/// @param[in] i_target the mcbist target
/// @return FAPI2_RC_SUCCES iff ok
///
fapi2::ReturnCode deassert_pll_reset( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target )
{
    fapi2::buffer<uint64_t> l_data;

#ifdef KNOW_ADR_DLL_PROCESS
    static const uint64_t dp16_lock_mask = 0x000000000000FFFE;
    static const uint64_t ad_lock_mask = fapi2::buffer<uint64_t>().setBit<48>().setBit<49>();
#endif

    //
    // Write 0x4000 into the PC Resets Registers. This deasserts the PLL_RESET and leaves the SYSCLK_RESET bit active
    //                                                (SCOM Addr: 0x8000C00E0301143F, 0x8001C00E0301143F, 0x8000C00E0301183F, 0x8001C00E0301183F)
    FAPI_DBG("Write 0x4000 into the PC Resets Regs. This deasserts the PLL_RESET and leaves the SYSCLK_RESET bit active");

    l_data.setBit<MCA_DDRPHY_PC_RESETS_P0_SYSCLK_RESET>();
    FAPI_TRY( mss::scom_blastah(i_target.getChildren<TARGET_TYPE_MCA>(), MCA_DDRPHY_PC_RESETS_P0, l_data) );

    //
    // Wait at least 1 millisecond to allow the PLLs to lock. Otherwise, poll the PC DP18 PLL Lock Status
    //    and the PC AD32S PLL Lock Status to determine if all PLLs have locked.
    //    PC DP18 PLL Lock Status should be 0xF800:  (SCOM Addr: 0x8000C0000301143F, 0x8001C0000301143F, 0x8000C0000301183F, 0x8001C0000301183F)
    //    PC AD32S PLL Lock Status should be 0xC000: (SCOM Addr: 0x8000C0010301143F, 0x8001C0010301143F, 0x8000C0010301183F, 0x8001C0010301183F)

#ifdef KNOW_ADR_DLL_PROCESS
    // Poll for lock bits
    FAPI_DBG("Poll until DP18 and AD32S PLLs have locked");

    do
    {
        // Set in the CHECK_PLL macro
        done_polling = true;

        fapi2::delay(DELAY_1US, cycles_to_simcycles(us_to_cycles(i_target, 1)));

        // Note: in the latest scomdef this is DP16 BRS
        // Note: Not sure what the proper registers here are. I took the following old addresses from Ed's
        // version of the code and mapped the addresses to the latests mc_scom_addresses.H. This needs to
        // be fixed up when the extended addressing is fixed up. BRS

        // CONST_UINT64_T(DDRPHY_PC_DP18_PLL_LOCK_STATUS_P0_0x8000C0000701143F,                  ULL(0x8000C0000701143F) );
        CHECK_PLL( l_target_proc, MCA_0_DDRPHY_PC_DP18_PLL_LOCK_STATUS_P0, l_data, dp16_lock_mask );

        // CONST_UINT64_T(DDRPHY_PC_DP18_PLL_LOCK_STATUS_P1_0x8001C0000701143F,                  ULL(0x8001C0000701143F) );
        CHECK_PLL( l_target_proc, MCA_1_DDRPHY_PC_DP18_PLL_LOCK_STATUS_P1, l_data, dp16_lock_mask );

        // CONST_UINT64_T(DDRPHY_PC_DP18_PLL_LOCK_STATUS_P2_0x8000C0000701183F,                  ULL(0x8000C0000701183F) );
        CHECK_PLL( l_target_proc, MCA_2_DDRPHY_PC_DP18_PLL_LOCK_STATUS_P2, l_data, dp16_lock_mask );

        // CONST_UINT64_T(DDRPHY_PC_DP18_PLL_LOCK_STATUS_P3_0x8001C0000701183F,                  ULL(0x8001C0000701183F) );
        CHECK_PLL( l_target_proc, MCA_3_DDRPHY_PC_DP18_PLL_LOCK_STATUS_P3, l_data, dp16_lock_mask );

        // CONST_UINT64_T( DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P0_0x8000C0010701143F,        ULL(0x8000C0010701143F) );
        CHECK_PLL( l_target_proc, MCA_0_DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P0, l_data, ad_lock_mask );

        // CONST_UINT64_T( DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P1_0x8001C0010701143F,        ULL(0x8001C0010701143F) );
        CHECK_PLL( l_target_proc, MCA_1_DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P1, l_data, ad_lock_mask );

        // CONST_UINT64_T( DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P2_0x8000C0010701183F,        ULL(0x8000C0010701183F) );
        CHECK_PLL( l_target_proc, MCA_2_DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P2, l_data, ad_lock_mask );

        // CONST_UINT64_T( DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P3_0x8001C0010701183F,        ULL(0x8001C0010701183F) );
        CHECK_PLL( l_target_proc, MCA_3_DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P3, l_data, ad_lock_mask );
    }
    while (!done_polling && --max_poll_loops);

    // If we ran out of iterations, report we have a pll lock failure.
    if (max_poll_loops == 0)
    {
        FAPI_ERR("DDR PHY PLL failed to lock for %s", mss::c_str(i_target));
        FFDC_PLL( l_target_proc, MCA_0_DDRPHY_PC_DP18_PLL_LOCK_STATUS_P0, l_data, dp16_lock_mask,
                  fapi2::MSS_DP16_PLL_FAILED_TO_LOCK() );
        FFDC_PLL( l_target_proc, MCA_1_DDRPHY_PC_DP18_PLL_LOCK_STATUS_P1, l_data, dp16_lock_mask,
                  fapi2::MSS_DP16_PLL_FAILED_TO_LOCK() );
        FFDC_PLL( l_target_proc, MCA_2_DDRPHY_PC_DP18_PLL_LOCK_STATUS_P2, l_data, dp16_lock_mask,
                  fapi2::MSS_DP16_PLL_FAILED_TO_LOCK() );
        FFDC_PLL( l_target_proc, MCA_3_DDRPHY_PC_DP18_PLL_LOCK_STATUS_P3, l_data, dp16_lock_mask,
                  fapi2::MSS_DP16_PLL_FAILED_TO_LOCK() );

        FFDC_PLL( l_target_proc, MCA_0_DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P0, l_data, ad_lock_mask,
                  fapi2::MSS_AD32S_PLL_FAILED_TO_LOCK() );
        FFDC_PLL( l_target_proc, MCA_1_DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P1, l_data, ad_lock_mask,
                  fapi2::MSS_AD32S_PLL_FAILED_TO_LOCK() );
        FFDC_PLL( l_target_proc, MCA_2_DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P2, l_data, ad_lock_mask,
                  fapi2::MSS_AD32S_PLL_FAILED_TO_LOCK() );
        FFDC_PLL( l_target_proc, MCA_3_DDRPHY_PC_AD32S_PLL_LOCK_STATUS_P3, l_data, ad_lock_mask,
                  fapi2::MSS_AD32S_PLL_FAILED_TO_LOCK() );
    }

#endif
fapi_try_exit:
    return fapi2::current_err;

}

///
/// @brief Setup the phase rotator control registers
/// @param[in] i_target the mcbist target
/// @param[in] i_data the value for the registers
/// @return FAPI2_RC_SUCCES iff ok
///
fapi2::ReturnCode setup_phase_rotator_control_registers( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
        const fapi2::buffer<uint64_t>& i_data )
{
    FAPI_DBG("Write 0x%lx into the ADR SysClk Phase Rotator Control Regs and the DP18 SysClk Phase Rotator Control Regs",
             i_data);

    std::vector<uint64_t> addrs(
    {
        MCA_DDRPHY_ADR_SYSCLK_CNTL_PR_P0_ADR32S0, MCA_DDRPHY_ADR_SYSCLK_CNTL_PR_P0_ADR32S1,
    } );

    // Need to set these up for proper non-sim values, move to dp16 reset when it's written BRS
    // MCA_DDRPHY_DP16_WRCLK_PR_P0_0, MCA_DDRPHY_DP16_WRCLK_PR_P0_1,
    // MCA_DDRPHY_DP16_WRCLK_PR_P0_2, MCA_DDRPHY_DP16_WRCLK_PR_P0_3, MCA_DDRPHY_DP16_WRCLK_PR_P0_4,

    FAPI_TRY( mss::scom_blastah(i_target.getChildren<TARGET_TYPE_MCA>(), addrs, i_data) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Deassetr the sys clk reset
/// @param[in] i_target the mcbist target
/// @return FAPI2_RC_SUCCES iff ok
///
fapi2::ReturnCode deassert_sysclk_reset( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target )
{
    FAPI_DBG("Write 0x0000 into the PC Resets Register. This deasserts the SysClk Reset.");
    FAPI_TRY( mss::scom_blastah(i_target.getChildren<TARGET_TYPE_MCA>(), MCA_DDRPHY_PC_RESETS_P0, 0) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Flush the DDR PHY
/// @param[in] i_target the mcbist target
/// @return FAPI2_RC_SUCCES iff ok
///
fapi2::ReturnCode ddr_phy_flush( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target )
{
    fapi2::buffer<uint64_t> l_data;
    fapi2::buffer<uint64_t> l_mask;

    FAPI_INF( "Performing mss_ddr_phy_flush routine" );

    FAPI_INF("ADR/DP18 FLUSH: 1) set PC_POWERDOWN_1 register, powerdown enable(48), flush bit(58)");
    // set MASTER_PD_CNTL bit set WR_FIFO_STAB bit
    l_data.setBit<48>().setBit<58>();
    l_mask.setBit<48>().setBit<58>();

    const auto l_ports = i_target.getChildren<TARGET_TYPE_MCA>();

    for (const auto& p : l_ports)
    {
        FAPI_TRY(mss::putScomUnderMask(p, MCA_DDRPHY_PC_POWERDOWN_1_P0, l_data, l_mask) );
    }

    fapi2::delay(DELAY_100NS, cycles_to_simcycles(ns_to_cycles(i_target, 100)));

    FAPI_INF("ADR/DP18 FLUSH: 2) clear PC_POWERDOWN_1 register, powerdown enable(48), flush bit(58)");

    for (const auto& p : l_ports)
    {
        FAPI_TRY(mss::putScomUnderMask(p, MCA_DDRPHY_PC_POWERDOWN_1_P0, 0, l_mask) );
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Lock dphy_gckn and sysclk
/// @param[in] i_target a port target
/// @return FAPI2_RC_SUCCESS iff ok
///
fapi2::ReturnCode bang_bang_lock( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target )
{
    fapi2::buffer<uint64_t> l_start_update(0x8024);
    fapi2::buffer<uint64_t> l_stop_update(0x8020);

    // Per Bialas, we don't want to do true alignment in the cycle sim as we have
    // a chnace of being off one-tick (which is detremental.) Per his recomendations,
    // we write 0's to the control registers and then configure them with x8080.
    uint8_t is_sim = 0;
    FAPI_TRY( FAPI_ATTR_GET(fapi2::ATTR_IS_SIMULATION, fapi2::Target<TARGET_TYPE_SYSTEM>(), is_sim) );

    if (is_sim)
    {
        l_start_update = 0x0;
        l_stop_update = 0x8080;
    }

    // 9.
    FAPI_TRY( mss::setup_phase_rotator_control_registers(i_target, l_start_update),
              "set up of phase rotator controls failed (in to cont update) %s", mss::c_str(i_target) );

    //
    // 10.Wait at least 5932 memory clock cycles to allow the clock alignment circuit to perform initial alignment.
    // wait 2000 simcycles per Ed Maj,
    FAPI_DBG("Wait at least 5932 memory clock cycles to allow the clock alignment circuit to perform initial alignment");
    FAPI_TRY( fapi2::delay(mss::cycles_to_ns(i_target, 5932), 2000) );

    //
    // 11.Write 0x0000 into the PC Resets Register. This deasserts the SysClk Reset
    //                                                (SCOM Addr: 0x8000C00E0301143F, 0x8001C00E0301143F, 0x8000C00E0301183F, 0x8001C00E0301183F)
    FAPI_TRY( mss::deassert_sysclk_reset(i_target), "deassert_sysclk_reset failed for %s", mss::c_str(i_target) );

    // 12.
    FAPI_TRY( mss::setup_phase_rotator_control_registers(i_target, l_stop_update),
              "set up of phase rotator controls failed (out of cont update) %s", mss::c_str(i_target) );

    // 13.
    FAPI_DBG("Wait at least 32 memory clock cycles");
    FAPI_TRY( fapi2::delay(mss::cycles_to_ns(i_target, 32), mss::cycles_to_simcycles(32)) );

    // Don't bother in cycle sim, we don't do the actual aligment
    if (!is_sim)
    {
        // Check for BB lock.
        for (const auto& p : i_target.getChildren<TARGET_TYPE_MCA>())
        {
            FAPI_DBG("Wait for BB lock in status register, bit %u",
                     MCA_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P0_ADR32S0_ADR0_BB_LOCK);

            FAPI_ASSERT( mss::poll(p, MCA_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P0_ADR32S0, mss::poll_parameters(DELAY_100NS),
                                   [](const size_t poll_remaining, const fapi2::buffer<uint64_t>& stat_reg) -> bool
            {
                FAPI_DBG("stat_reg 0x%llx, remaining: %d", stat_reg, poll_remaining);
                return stat_reg.getBit<MCA_DDRPHY_ADR_SYSCLK_PR_VALUE_RO_P0_ADR32S0_ADR0_BB_LOCK>();
            }),
            fapi2::MSS_BANG_BANG_FAILED_TO_LOCK().set_MCA_IN_ERROR(p),
            "MCA %s failed bang-bang alignment", mss::c_str(p) );
        }
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Return the DIMM target for the primary rank in the specificed rank pair
/// @param[in] i_target the MCA target
/// @param[in] i_rp the rank pair
/// @param[out] o_dimm fapi2::Target<TARGET_TYPE_DIMM>
/// @return FAPI2_RC_SUCCESS iff ok
///
template<>
fapi2::ReturnCode rank_pair_primary_to_dimm( const fapi2::Target<TARGET_TYPE_MCA>& i_target,
        const uint64_t i_rp,
        fapi2::Target<TARGET_TYPE_DIMM>& o_dimm)
{
    fapi2::buffer<uint64_t> l_data;
    fapi2::buffer<uint64_t> l_rank;
    uint64_t l_rank_on_dimm;

    const auto l_dimms = i_target.getChildren<TARGET_TYPE_DIMM>();

    // Sanity check the rank pair
    FAPI_INF("%s rank pair: %d", mss::c_str(i_target), i_rp);

    fapi2::Assert(i_rp < MAX_RANK_PER_DIMM);

    // We need to get the register containing the specification for this rank pair,
    // and fish out the primary rank for this rank pair
    switch(i_rp)
    {
        case 0:
            FAPI_TRY( mss::getScom(i_target, MCA_DDRPHY_PC_RANK_PAIR0_P0, l_data) );
            l_data.extractToRight<MCA_DDRPHY_PC_RANK_PAIR0_P0_PRI,
                                  MCA_DDRPHY_PC_RANK_PAIR0_P0_PRI_LEN>(l_rank);
            break;

        case 1:
            FAPI_TRY( mss::getScom(i_target, MCA_DDRPHY_PC_RANK_PAIR0_P0, l_data) );
            l_data.extractToRight<MCA_DDRPHY_PC_RANK_PAIR0_P0_PAIR1_PRI,
                                  MCA_DDRPHY_PC_RANK_PAIR0_P0_PAIR1_PRI_LEN>(l_rank);
            break;

        case 2:
            FAPI_TRY( mss::getScom(i_target, MCA_DDRPHY_PC_RANK_PAIR1_P0, l_data) );
            l_data.extractToRight<MCA_DDRPHY_PC_RANK_PAIR1_P0_PAIR2_PRI,
                                  MCA_DDRPHY_PC_RANK_PAIR1_P0_PAIR2_PRI_LEN>(l_rank);
            break;

        case 3:
            FAPI_TRY( mss::getScom(i_target, MCA_DDRPHY_PC_RANK_PAIR1_P0, l_data) );
            l_data.extractToRight<MCA_DDRPHY_PC_RANK_PAIR1_P0_PAIR3_PRI,
                                  MCA_DDRPHY_PC_RANK_PAIR1_P0_PAIR3_PRI_LEN>(l_rank);
            break;
    };

    // Now we need to figure out which DIMM this rank is on. It's either on DIMM0 or DIMM1, and DIMM0
    // has ranks 0-3 and DIMM1 has ranks 4-7. Return the DIMM associated.
    l_rank_on_dimm = get_dimm_from_rank(l_rank);

    // Sanity check the DIMM list
    FAPI_INF("%s rank is on dimm: %d, number of dimms: %d", mss::c_str(i_target), l_rank_on_dimm, l_dimms.size());

    fapi2::Assert(l_rank_on_dimm < l_dimms.size());

    o_dimm = l_dimms[l_rank_on_dimm];

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief check and process initial cal errors
/// @param[in] i_target the port in question
/// @return fapi2::ReturnCode, FAPI2_RC_SUCCESS iff no error
///
template<>
fapi2::ReturnCode process_initial_cal_errors( const fapi2::Target<TARGET_TYPE_MCA>& i_target )
{
    typedef pcTraits<TARGET_TYPE_MCA> TT;

    uint64_t l_errors = 0;
    uint64_t l_rank_pairs = 0;

    fapi2::buffer<uint64_t> l_err_data;

    fapi2::Target<TARGET_TYPE_DIMM> l_failed_dimm;

    FAPI_TRY( pc::read_init_cal_error(i_target, l_err_data) );

    l_err_data.extractToRight<TT::INIT_CAL_ERROR_WR_LEVEL, TT::CAL_ERROR_FIELD_LEN>(l_errors);
    l_err_data.extractToRight<TT::INIT_CAL_ERROR_RANK_PAIR, TT::INIT_CAL_ERROR_RANK_PAIR_LEN>(l_rank_pairs);
    FAPI_INF("initial cal err: 0x%016llx, rp: 0x%016llx (0x%016llx)", l_errors, l_rank_pairs, uint64_t(l_err_data));

    if ((l_rank_pairs == 0) || (l_errors == 0))
    {
        FAPI_INF("Initial cal - no errors reported");
        return fapi2::current_err;
    }

    // Get the DIMM which failed. We should only have one rank pair as we calibrate the
    // rank pairs individually (we do this so we can see which DIMM failed if more than one
    // fails ...) Note first_bit_set gives a bit position (0 being left most.) So, the rank
    // in question is the bit postion minus the position of the 0th rank in the register.
    // (the rank bits are bits 60:63, for example, so rank 0 is in position 60)
    FAPI_TRY( mss::rank_pair_primary_to_dimm(i_target, mss::first_bit_set(l_rank_pairs) - TT::INIT_CAL_ERROR_RANK_PAIR,
              l_failed_dimm) );
    FAPI_ERR("initial cal failed for %s", mss::c_str(l_failed_dimm));

    // So we can do a few things here. If we're aborting on the first calibration error,
    // we only expect to have one error bit set. If we ran all the calibrations, we can
    // either have one bit set or more than one bit set. If we have more than one bit set
    // the result is the same - a broken DIMM which will be deconfigured. So put enough
    // information in the FFDC for the lab but we don't need one error for every cal fail.
    FAPI_ASSERT(mss::bit_count(l_errors) == 1,
                fapi2::MSS_DRAMINIT_TRAINING_MULTIPLE_ERRORS()
                .set_FAILED_STEPS(uint64_t(l_err_data))
                .set_PORT_POSITION(mss::fapi_pos(i_target))
                .set_RANKGROUP_POSITION(l_rank_pairs)
                .set_TARGET_IN_ERROR(l_failed_dimm),
                "Initial CAL failed multiple training steps. dimm: %s, cal err: 0x%016llx",
                mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_WR_LEVEL>(),
                 fapi2::MSS_DRAMINIT_TRAINING_WR_LVL_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed write leveling. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_INITIAL_PAT_WRITE>(),
                 fapi2::MSS_DRAMINIT_TRAINING_INITIAL_PAT_WRITE_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed initial pattern write. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_DQS_ALIGN>(),
                 fapi2::MSS_DRAMINIT_TRAINING_DQS_ALIGNMENT_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed DQS alignenment. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_RDCLK_ALIGN>(),
                 fapi2::MSS_DRAMINIT_TRAINING_RD_CLK_SYS_CLK_ALIGNMENT_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed read clk alignenment. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_READ_CTR>(),
                 fapi2::MSS_DRAMINIT_TRAINING_RD_CENTERING_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed read centering. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_WRITE_CTR>(),
                 fapi2::MSS_DRAMINIT_TRAINING_WR_CENTERING_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed write centering. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_INITIAL_COARSE_WR>(),
                 fapi2::MSS_DRAMINIT_TRAINING_INITIAL_COARSE_WR_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed initial coarse write. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_COARSE_RD>(),
                 fapi2::MSS_DRAMINIT_TRAINING_COARSE_RD_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed coarse read. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_CUSTOM_RD>(),
                 fapi2::MSS_DRAMINIT_TRAINING_CUSTOM_PATTERN_RD_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed custom read. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_CUSTOM_WR>(),
                 fapi2::MSS_DRAMINIT_TRAINING_CUSTOM_PATTERN_WR_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed custom write. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

    FAPI_ASSERT( ! l_err_data.getBit<TT::INIT_CAL_ERROR_DIGITAL_EYE>(),
                 fapi2::MSS_DRAMINIT_TRAINING_DIGITAL_EYE_ERROR()
                 .set_PORT_POSITION(mss::fapi_pos(i_target))
                 .set_RANKGROUP_POSITION(l_rank_pairs)
                 .set_TARGET_IN_ERROR(l_failed_dimm),
                 "Initial CAL failed digital eye. dimm: %s, cal err: 0x%016llx",
                 mss::c_str(l_failed_dimm), uint64_t(l_err_data)
               );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Setup the PC CONFIG0 register
/// @tparam T the fapi2::TargetType
/// @param[in] i_target the target (MCA or MBA?)
/// @return FAPI2_RC_SUCCESS if and only if ok
///
template<>
fapi2::ReturnCode set_pc_config0(const fapi2::Target<TARGET_TYPE_MCA>& i_target)
{
    fapi2::buffer<uint64_t> l_data;
    FAPI_TRY( mss::getScom(i_target, MCA_DDRPHY_PC_CONFIG0_P0, l_data) );

    // Note: This needs to get the DRAM gen from an attribute. - 0x1 is DDR4 Note for Nimbus PHY
    // this is ignored and hard-wired to DDR4, per John Bialas 10/15 BRS
    // repurposed to pda_enable_override, so zero per John Bialas 4/16 JJM
    l_data.insertFromRight<MCA_DDRPHY_PC_CONFIG0_P0_PROTOCOL, MCA_DDRPHY_PC_CONFIG0_P0_PROTOCOL_LEN>(0x0);

    l_data.setBit<MCA_DDRPHY_PC_CONFIG0_P0_DDR4_CMD_SIG_REDUCTION>();
    l_data.setBit<MCA_DDRPHY_PC_CONFIG0_P0_DDR4_VLEVEL_BANK_GROUP>();

    FAPI_DBG("phy pc_config0 0x%0llx", l_data);
    FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_PC_CONFIG0_P0, l_data) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Setup the PC CONFIG1 register
/// @tparam T the fapi2::TargetType
/// @param[in] i_target <the target (MCA or MBA?)
/// @return FAPI2_RC_SUCCESS if and only if ok
///
template<>
fapi2::ReturnCode set_pc_config1(const fapi2::Target<TARGET_TYPE_MCA>& i_target)
{
    // Static table of PHY config values for MEMORY_TYPE.
    // [EMPTY, RDIMM, CDIMM, or LRDIMM][EMPTY, DDR3 or DDR4]
    static const uint64_t memory_type[4][3] =
    {
        { 0, 0,     0     },  // Empty, never really used.
        { 0, 0b001, 0b101 },  // RDIMM
        { 0, 0b000, 0b000 },  // CDIMM
        { 0, 0b011, 0b111 },  // LRDIMM
    };

    fapi2::buffer<uint64_t> l_data;

    uint8_t l_rlo = 0;
    uint8_t l_wlo = 0;
    uint8_t l_dram_gen[MAX_DIMM_PER_PORT]    = {0};
    uint8_t l_dimm_type[MAX_DIMM_PER_PORT]   = {0};
    uint8_t l_custom_dimm[MAX_DIMM_PER_PORT] = {0};
    uint8_t l_type_index = 0;
    uint8_t l_gen_index = 0;

    FAPI_TRY( mss::vpd_rlo(i_target, l_rlo) );
    FAPI_TRY( mss::vpd_wlo(i_target, l_wlo) );
    FAPI_TRY( mss::eff_dram_gen(i_target, &(l_dram_gen[0])) );
    FAPI_TRY( mss::eff_dimm_type(i_target, &(l_dimm_type[0])) );
    FAPI_TRY( mss::eff_custom_dimm(i_target, &(l_custom_dimm[0])) );

    // There's no way to configure the PHY for more than one value. However, we don't know if there's
    // a DIMM in one slot, the other or double drop. So we do a little gyration here to make sure
    // we have one of the two values (and assume effective config caught a bad config.)
    l_type_index = (l_custom_dimm[0] | l_custom_dimm[1]) == fapi2::ENUM_ATTR_EFF_CUSTOM_DIMM_YES ?
                   2 : l_dimm_type[0] | l_dimm_type[1];
    l_gen_index = l_dram_gen[0] | l_dram_gen[1];

    // FOR NIMBUS PHY (as the protocol choice above is) BRS
    FAPI_TRY( mss::getScom(i_target, MCA_DDRPHY_PC_CONFIG1_P0, l_data) );

    l_data.insertFromRight<MCA_DDRPHY_PC_CONFIG1_P0_MEMORY_TYPE,
                           MCA_DDRPHY_PC_CONFIG1_P0_MEMORY_TYPE_LEN>(memory_type[l_type_index][l_gen_index]);
    l_data.insertFromRight<MCA_DDRPHY_PC_CONFIG1_P0_READ_LATENCY_OFFSET,
                           MCA_DDRPHY_PC_CONFIG1_P0_READ_LATENCY_OFFSET_LEN>(l_rlo);
    l_data.insertFromRight<MCA_DDRPHY_PC_CONFIG1_P0_WRITE_LATENCY_OFFSET,
                           MCA_DDRPHY_PC_CONFIG1_P0_WRITE_LATENCY_OFFSET_LEN>(l_wlo);

    // Model 31 changed the MCA_DDRPHY_PC_CONFIG1_P0_DDR4_LATENCY_SW bit to '0' for DDR4
    // and '1' for 'extended 3ds.' We need to check an attribute here when we get to 3ds BRS
    l_data.clearBit<MCA_DDRPHY_PC_CONFIG1_P0_DDR4_LATENCY_SW>();

    FAPI_DBG("phy pc_config1 0x%0llx", l_data);
    FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_PC_CONFIG1_P0, l_data) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Perform initializations for the PHY
/// @param[in] i_target the MCBIST which has the PHYs to initialize
/// @return FAPI2_RC_SUCCESS iff ok
///
fapi2::ReturnCode phy_scominit(const fapi2::Target<TARGET_TYPE_MCBIST>& i_target)
{
    // Returned from set_rank_pairs, it tells us how many rank pairs we configured on this port.
    std::vector<uint64_t> l_pairs;

    // Setup the DP16 IO TX, DLL/VREG. They use freq which is an MCBIST attribute
    FAPI_TRY( mss::dp16::reset_io_tx_config0(i_target) );
    FAPI_TRY( mss::dp16::reset_dll_vreg_config1(i_target) );

    for (const auto& p : i_target.getChildren<TARGET_TYPE_MCA>())
    {
        // The following registers must be configured to the correct operating environment:

        // Undocumented, noted by Bialas
        FAPI_TRY( mss::set_pc_config0(p) );
        FAPI_TRY( mss::set_pc_config1(p) );

        // Section 5.2.1.3 PC Rank Pair 0 on page 177
        // Section 5.2.1.4 PC Rank Pair 1 on page 179
        FAPI_TRY( mss::set_rank_pairs(p) );

        // Section 5.2.4.1 DP16 Data Bit Enable 0 on page 284
        // Section 5.2.4.2 DP16 Data Bit Enable 1 on page 285
        // Section 5.2.4.3 DP16 Data Bit Disable 0 on page 288
        // Section 5.2.4.4 DP16 Data Bit Disable 1 on page 289
        FAPI_TRY( mss::dp16::reset_data_bit_enable(p) );
        FAPI_TRY( mss::dp16::reset_bad_bits(p) );

        FAPI_TRY( mss::get_rank_pairs(p, l_pairs) );

        // Section 5.2.4.8 DP16 Write Clock Enable & Clock Selection on page 301
        FAPI_TRY( mss::dp16::reset_write_clock_enable(p, l_pairs) );
        FAPI_TRY( mss::dp16::reset_read_clock_enable(p, l_pairs) );

        // Write Control reset
        FAPI_TRY( mss::wc::reset(p) );

        // Read Control reset
        FAPI_TRY( mss::rc::reset(p) );
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Setup all the cal config register
/// @param[in] i_target the MCA target associated with this cal setup
/// @param[in] i_rank_pairs the vector of currently configured rank pairs
/// @param[in] i_cal_steps_enabled fapi2::buffer<uint8_t> representing the cal steps to enable
/// @return FAPI2_RC_SUCCESS iff setup was successful
///
template<>
fapi2::ReturnCode setup_cal_config( const fapi2::Target<fapi2::TARGET_TYPE_MCA>& i_target,
                                    const std::vector<uint64_t> i_rank_pairs,
                                    fapi2::buffer<uint16_t> i_cal_steps_enabled)
{
    fapi2::buffer<uint64_t> l_cal_config;
    fapi2::buffer<uint64_t> l_vref_config;

    // This is the buffer which will be written to CAL_CONFIG0. It starts
    // life assuming no cal sequences, no rank pairs - but we set the abort-on-error
    // bit ahead of time.
    l_cal_config.writeBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ABORT_ON_ERROR>(CAL_ABORT_ON_ERROR);

    // Check the write centering bits - if write centering is defined, don't run 2D. Vice versa.
    if (i_cal_steps_enabled.getBit<WRITE_CTR>() && i_cal_steps_enabled.getBit<WRITE_CTR_2D_VREF>())
    {
        FAPI_INF("Both 1D and 2D write centering were defined - only performing 2D");
        i_cal_steps_enabled.clearBit<WRITE_CTR>();
    }

    // Sadly, the bits in the register don't align directly with the bits in the attribute.
    // So, arrange the bits accordingly and write the config register.
    {
        // Skip EXT_ZQCAL as it's not in the config register - we do it outside.
        // Loop (unrolled because static) over the remaining bits.
        l_cal_config.writeBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_WR_LEVEL>(
            i_cal_steps_enabled.getBit<WR_LEVEL>());
        l_cal_config.writeBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_DQS_ALIGN>(
            i_cal_steps_enabled.getBit<DQS_ALIGN>());
        l_cal_config.writeBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_RDCLK_ALIGN>(
            i_cal_steps_enabled.getBit<RDCLK_ALIGN>());
        l_cal_config.writeBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_READ_CTR>(
            i_cal_steps_enabled.getBit<READ_CTR>() || i_cal_steps_enabled.getBit<READ_CTR_2D_VREF>());
        l_cal_config.writeBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_WRITE_CTR>(
            i_cal_steps_enabled.getBit<WRITE_CTR>() || i_cal_steps_enabled.getBit<WRITE_CTR_2D_VREF>());
        l_cal_config.writeBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_INITIAL_COARSE_WR>(
            i_cal_steps_enabled.getBit<COARSE_WR>());
        l_cal_config.writeBit<MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_COARSE_RD>(
            i_cal_steps_enabled.getBit<COARSE_RD>());
    }

    // Blast the VREF config with the proper setting for these cal bits.
    // Read Centering
    {
        fapi2::buffer<uint64_t> l_data;

        // The two bits we care about are the calibration enable and skip read centering
        // bits in rc_vref_config1. If CALIBRATION_ENABLE is set, the vref is run before
        // read centering. If SKIPRDCENTERING is set, the cal stops after vref centering.
        // So
        // If READ_CNTR == 1 && READ_CTR_2D_VREF == 1, CALIBRATION_ENABLE = 1 and SKIP = 0
        // If READ_CNTR == 0 && READ_CTR_2D_VREF == 1, CALIBRATION_ENABLE = 1 and SKIP = 1
        // If READ_CNTR == 1 && READ_CTR_2D_VREF == 0, CALIBRATION_ENABLE = 0 and SKIP = don't care
        // If READ_CNTR == 0 && READ_CTR_2D_VREF == 0, CALIBRATION_ENABLE = 0 and SKIP = don't care
        FAPI_TRY( mss::rc::read_vref_config1(i_target, l_data) );

        l_data.writeBit<MCA_DDRPHY_RC_RDVREF_CONFIG1_P0_CALIBRATION_ENABLE>(
            i_cal_steps_enabled.getBit<WRITE_CTR_2D_VREF>());
        l_data.writeBit<MCA_DDRPHY_RC_RDVREF_CONFIG1_P0_SKIP_RDCENTERING>(
            ! i_cal_steps_enabled.getBit<WRITE_CTR>());

        FAPI_TRY( mss::rc::write_vref_config1(i_target, l_data) );
    }

    // Write Centering
    {
        static const std::vector<uint64_t> l_vref_regs =
        {
            MCA_DDRPHY_DP16_WR_VREF_CONFIG0_P0_0, MCA_DDRPHY_DP16_WR_VREF_CONFIG0_P0_1,
            MCA_DDRPHY_DP16_WR_VREF_CONFIG0_P0_2, MCA_DDRPHY_DP16_WR_VREF_CONFIG0_P0_3,
            MCA_DDRPHY_DP16_WR_VREF_CONFIG0_P0_4
        };

        if (i_cal_steps_enabled.getBit<WRITE_CTR>())
        {
            l_vref_config.setBit<MCA_DDRPHY_DP16_WR_VREF_CONFIG0_P0_0_01_CTR_1D_CHICKEN_SWITCH>();
        }

        if (i_cal_steps_enabled.getBit<WRITE_CTR_2D_VREF>())
        {
            l_vref_config.clearBit<MCA_DDRPHY_DP16_WR_VREF_CONFIG0_P0_0_01_CTR_1D_CHICKEN_SWITCH>();
            // TK: Other 2D config information
        }

        FAPI_DBG("wr_vref_config: 0x%016lu", l_vref_config);
        FAPI_TRY( mss::scom_blastah(i_target, l_vref_regs, l_vref_config) );
    }

    // Note: This rank encoding isn't used if the cal is initiated from the CCS engine
    // as they use the recal inteface.
    // Configure the rank pairs
    for (const auto& rp : i_rank_pairs)
    {
        l_cal_config.setBit(MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0_ENA_RANK_PAIR + rp);
    }

    FAPI_INF("cal_config for %s: 0x%lx (steps: 0x%lx)",
             mss::c_str(i_target), uint16_t(l_cal_config), uint16_t(i_cal_steps_enabled));
    FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_PC_INIT_CAL_CONFIG0_P0, l_cal_config) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Setup all the cal config register
/// @param[in] i_target the target associated with this cal setup
/// @param[in] i_rank one currently configured rank pairs
/// @param[in] i_cal_steps_enabled fapi2::buffer<uint16_t> representing the cal steps to enable
/// @return FAPI2_RC_SUCCESS iff setup was successful
///
fapi2::ReturnCode setup_cal_config( const fapi2::Target<fapi2::TARGET_TYPE_MCA>& i_target,
                                    const uint64_t i_rank,
                                    const fapi2::buffer<uint16_t> i_cal_steps_enabled)
{
    std::vector< uint64_t > l_ranks({i_rank});
    return setup_cal_config(i_target, l_ranks, i_cal_steps_enabled);
}

///
/// @brief Setup seq_config0
/// @param[in] i_target the MCA target associated with this cal setup
/// @return FAPI2_RC_SUCCESS iff setup was successful
///
template<>
fapi2::ReturnCode reset_seq_config0( const fapi2::Target<fapi2::TARGET_TYPE_MCA>& i_target )
{
    fapi2::buffer<uint64_t> l_data;

    // ATTR_VPD_DRAM_2N_MODE_ENABLED  49, 0b1, (def_2N_mode);       # enable 2 cycle addr mode BRS

    FAPI_DBG("seq_config0 0x%llx", l_data);
    FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_CONFIG0_P0, l_data) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Setup odt_wr/rd_config
/// @param[in] i_target the MCA target associated with this cal setup
/// @return FAPI2_RC_SUCCESS iff setup was successful
///
template<>
fapi2::ReturnCode reset_odt_config( const fapi2::Target<fapi2::TARGET_TYPE_MCA>& i_target )
{
    uint8_t l_odt_rd[MAX_DIMM_PER_PORT][MAX_RANK_PER_DIMM];
    uint8_t l_odt_wr[MAX_DIMM_PER_PORT][MAX_RANK_PER_DIMM];

    FAPI_TRY( mss::eff_odt_rd(i_target, &(l_odt_rd[0][0])) );
    FAPI_TRY( mss::eff_odt_wr(i_target, &(l_odt_wr[0][0])) );

    // Nimbus PHY is more or less hard-wired for 2 DIMM/port 4R/DIMM
    // So there's not much point in looping over DIMM or ranks.

    //
    // ODT Read
    //
    {
        // DPHY01_DDRPHY_SEQ_ODT_RD_CONFIG0_P0
        // 48:55, ATTR_VPD_ODT_RD[0][0][0]; # when Read of Rank0
        // 56:63, ATTR_VPD_ODT_RD[0][0][1]; # when Read of Rank1
        fapi2::buffer<uint64_t> l_data;

        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_RD_CONFIG0_P0_VALUES0,
                               MCA_DDRPHY_SEQ_ODT_RD_CONFIG0_P0_VALUES0_LEN>(l_odt_rd[0][0]);
        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_RD_CONFIG0_P0_VALUES1,
                               MCA_DDRPHY_SEQ_ODT_RD_CONFIG0_P0_VALUES1_LEN>(l_odt_rd[0][1]);
        FAPI_DBG("odt_rd_config0: 0x%016llx", uint64_t(l_data));
        FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_ODT_RD_CONFIG0_P0, l_data) );
    }

    {
        // DPHY01_DDRPHY_SEQ_ODT_RD_CONFIG1_P0
        // 48:55, ATTR_VPD_ODT_RD[0][0][2]; # when Read of Rank2
        // 56:63, ATTR_VPD_ODT_RD[0][0][3]; # when Read of Rank3
        fapi2::buffer<uint64_t> l_data;

        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_RD_CONFIG1_P0_VALUES2,
                               MCA_DDRPHY_SEQ_ODT_RD_CONFIG1_P0_VALUES2_LEN>(l_odt_rd[0][2]);
        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_RD_CONFIG1_P0_VALUES3,
                               MCA_DDRPHY_SEQ_ODT_RD_CONFIG1_P0_VALUES3_LEN>(l_odt_rd[0][3]);
        FAPI_DBG("odt_rd_config1: 0x%016llx", uint64_t(l_data));
        FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_ODT_RD_CONFIG1_P0, l_data) );
    }

    {
        // DPHY01_DDRPHY_SEQ_ODT_RD_CONFIG2_P0
        // 48:55, ATTR_VPD_ODT_RD[0][1][0]; # when Read of Rank4
        // 56:63, ATTR_VPD_ODT_RD[0][1][1]; # when Read of Rank5
        fapi2::buffer<uint64_t> l_data;

        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_RD_CONFIG2_P0_VALUES4,
                               MCA_DDRPHY_SEQ_ODT_RD_CONFIG2_P0_VALUES4_LEN>(l_odt_rd[1][0]);
        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_RD_CONFIG2_P0_VALUES5,
                               MCA_DDRPHY_SEQ_ODT_RD_CONFIG2_P0_VALUES5_LEN>(l_odt_rd[1][1]);
        FAPI_DBG("odt_rd_config2: 0x%016llx", uint64_t(l_data));
        FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_ODT_RD_CONFIG2_P0, l_data) );
    }

    {
        // DPHY01_DDRPHY_SEQ_ODT_RD_CONFIG3_P0
        // 48:55, ATTR_VPD_ODT_RD[0][1][2]; # when Read of Rank6
        // 56:63, ATTR_VPD_ODT_RD[0][1][3]; # when Read of Rank7
        fapi2::buffer<uint64_t> l_data;

        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_RD_CONFIG3_P0_VALUES6,
                               MCA_DDRPHY_SEQ_ODT_RD_CONFIG3_P0_VALUES6_LEN>(l_odt_rd[1][2]);
        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_RD_CONFIG3_P0_VALUES7,
                               MCA_DDRPHY_SEQ_ODT_RD_CONFIG3_P0_VALUES7_LEN>(l_odt_rd[1][3]);
        FAPI_DBG("odt_rd_config3: 0x%016llx", uint64_t(l_data));
        FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_ODT_RD_CONFIG3_P0, l_data) );
    }

    //
    // ODT Write
    //
    {
        // DPHY01_DDRPHY_SEQ_ODT_WR_CONFIG0_P0
        // 48:55, ATTR_VPD_ODT_WR[0][0][0]; # when Read of Rank0
        // 56:63, ATTR_VPD_ODT_WR[0][0][1]; # when Read of Rank1
        fapi2::buffer<uint64_t> l_data;

        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_WR_CONFIG0_P0_VALUES0,
                               MCA_DDRPHY_SEQ_ODT_WR_CONFIG0_P0_VALUES0_LEN>(l_odt_wr[0][0]);
        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_WR_CONFIG0_P0_VALUES1,
                               MCA_DDRPHY_SEQ_ODT_WR_CONFIG0_P0_VALUES1_LEN>(l_odt_wr[0][1]);
        FAPI_DBG("odt_wr_config0: 0x%016llx", uint64_t(l_data));
        FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_ODT_WR_CONFIG0_P0, l_data) );
    }

    {
        // DPHY01_DDRPHY_SEQ_ODT_WR_CONFIG1_P0
        // 48:55, ATTR_VPD_ODT_WR[0][0][2]; # when Read of Rank2
        // 56:63, ATTR_VPD_ODT_WR[0][0][3]; # when Read of Rank3
        fapi2::buffer<uint64_t> l_data;

        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_WR_CONFIG1_P0_VALUES2,
                               MCA_DDRPHY_SEQ_ODT_WR_CONFIG1_P0_VALUES2_LEN>(l_odt_wr[0][2]);
        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_WR_CONFIG1_P0_VALUES3,
                               MCA_DDRPHY_SEQ_ODT_WR_CONFIG1_P0_VALUES3_LEN>(l_odt_wr[0][3]);
        FAPI_DBG("odt_wr_config1: 0x%016llx", uint64_t(l_data));
        FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_ODT_WR_CONFIG1_P0, l_data) );
    }

    {
        // DPHY01_DDRPHY_SEQ_ODT_WR_CONFIG2_P0
        // 48:55, ATTR_VPD_ODT_WR[0][1][0]; # when Read of Rank4
        // 56:63, ATTR_VPD_ODT_WR[0][1][1]; # when Read of Rank5
        fapi2::buffer<uint64_t> l_data;

        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_WR_CONFIG2_P0_VALUES4,
                               MCA_DDRPHY_SEQ_ODT_WR_CONFIG2_P0_VALUES4_LEN>(l_odt_wr[1][0]);
        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_WR_CONFIG2_P0_VALUES5,
                               MCA_DDRPHY_SEQ_ODT_WR_CONFIG2_P0_VALUES5_LEN>(l_odt_wr[1][1]);
        FAPI_DBG("odt_wr_config2: 0x%016llx", uint64_t(l_data));
        FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_ODT_WR_CONFIG2_P0, l_data) );
    }

    {
        // DPHY01_DDRPHY_SEQ_ODT_WR_CONFIG3_P0
        // 48:55, ATTR_VPD_ODT_WR[0][1][2]; # when Read of Rank6
        // 56:63, ATTR_VPD_ODT_WR[0][1][3]; # when Read of Rank7
        fapi2::buffer<uint64_t> l_data;

        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_WR_CONFIG3_P0_VALUES6,
                               MCA_DDRPHY_SEQ_ODT_WR_CONFIG3_P0_VALUES6_LEN>(l_odt_wr[1][2]);
        l_data.insertFromRight<MCA_DDRPHY_SEQ_ODT_WR_CONFIG3_P0_VALUES7,
                               MCA_DDRPHY_SEQ_ODT_WR_CONFIG3_P0_VALUES7_LEN>(l_odt_wr[1][3]);
        FAPI_DBG("odt_wr_config3: 0x%016llx", uint64_t(l_data));
        FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_ODT_WR_CONFIG3_P0, l_data) );
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Setup seq_rd_wr_data
/// @param[in] i_target the MCA target associated with this cal setup
/// @return FAPI2_RC_SUCCESS iff setup was successful
///
template<>
fapi2::ReturnCode reset_seq_rd_wr_data( const fapi2::Target<fapi2::TARGET_TYPE_MCA>& i_target )
{
    // MPR_PATTERN_BIT of 0F0F0F0F pattern
    static const uint64_t MPR_PATTERN = 0x5555;
    fapi2::buffer<uint64_t> l_data;

    l_data.insertFromRight<MCA_DDRPHY_SEQ_RD_WR_DATA0_P0_DATA_REG0,
                           MCA_DDRPHY_SEQ_RD_WR_DATA0_P0_DATA_REG0_LEN>(MPR_PATTERN);

    FAPI_DBG("seq_rd_wr 0x%llx", l_data);
    FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_RD_WR_DATA0_P0, l_data) );
    FAPI_TRY( mss::putScom(i_target, MCA_DDRPHY_SEQ_RD_WR_DATA1_P0, l_data) );

fapi_try_exit:
    return fapi2::current_err;
}

}

OpenPOWER on IntegriCloud