summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/memory/lib/mcbist/memdiags.C
blob: 3a25dd8c967287fb310ff579013c297881e6fbfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/p9/procedures/hwp/memory/lib/mcbist/memdiags.C $ */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2016,2017                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

///
/// @file memdiags.C
/// @brief Run and manage the MEMDIAGS engine
///
// *HWP HWP Owner: Stephen Glancy <sglancy@us.ibm.com>
// *HWP HWP Backup: Marc Gollub <gollub@us.ibm.com>
// *HWP Team: Memory
// *HWP Level: 3
// *HWP Consumed by: FSP:HB

#include <fapi2.H>

#include <p9_mc_scom_addresses.H>
#include <p9_mc_scom_addresses_fld.H>

#include <lib/mcbist/memdiags.H>
#include <lib/mcbist/mcbist.H>
#include <lib/mcbist/address.H>
#include <lib/mcbist/settings.H>
#include <lib/mcbist/sim.H>

#include <lib/utils/poll.H>

using fapi2::TARGET_TYPE_MCBIST;
using fapi2::TARGET_TYPE_MCA;
using fapi2::TARGET_TYPE_DIMM;
using fapi2::TARGET_TYPE_SYSTEM;
using fapi2::FAPI2_RC_SUCCESS;
using fapi2::FAPI2_RC_INVALID_PARAMETER;

namespace memdiags
{

///
/// @brief Stop the current command
/// @param[in] i_target the target
/// @return FAPI2_RC_SUCCESS iff ok
///
template<>
fapi2::ReturnCode stop( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target )
{
    // Too long, make shorter
    using TT = mss::mcbistTraits<TARGET_TYPE_MCBIST>;

    // Poll parameters are defined as TK so that we wait a nice time for operations
    // For now use the defaults
    mss::poll_parameters l_poll_parameters;
    fapi2::buffer<uint64_t> l_status;
    fapi2::buffer<uint64_t> l_last_address;
    bool l_poll_result = false;

    FAPI_INF("Stopping any mcbist operations which are in progress");

    // TODO RTC:153951 Add masking of FIR when stopping
    FAPI_TRY( mss::mcbist::start_stop(i_target, mss::STOP) );

    // Poll waiting for the engine to stop
    l_poll_result = mss::poll(i_target, TT::STATQ_REG, l_poll_parameters,
                              [&l_status](const size_t poll_remaining, const fapi2::buffer<uint64_t>& stat_reg) -> bool
    {
        FAPI_DBG("looking for mcbist not in-progress, mcbist statq 0x%llx, remaining: %d", stat_reg, poll_remaining);
        l_status = stat_reg;
        // We're done polling when either we see we're in progress or we see we're done.
        return l_status.getBit<TT::MCBIST_IN_PROGRESS>() == false;
    });

    // Pass or fail output the current address. This is useful for debugging when we can get it.
    // It's in the register FFDC for memdiags so we don't need it below
    FAPI_TRY( mss::getScom(i_target, TT::LAST_ADDR_REG, l_last_address) );
    FAPI_INF("MCBIST last address (during stop): 0x%016lx", l_last_address);

    // So we've either stopped or we timed out
    FAPI_ASSERT( l_poll_result == true,
                 fapi2::MSS_MEMDIAGS_MCBIST_FAILED_TO_STOP().set_TARGET(i_target),
                 "The MCBIST engine failed to stop its program" );

fapi_try_exit:
    return fapi2::current_err;

}

///
/// @brief memdiags init helper
/// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
/// in subclassed constructors more easily.
/// @return FAPI2_RC_SUCCESS iff everything ok
///
template<>
fapi2::ReturnCode operation<TARGET_TYPE_MCBIST>::base_init()
{
    FAPI_INF("memdiags base init");

    // Check the state of the MCBIST engine to make sure its OK that we proceed.
    // Force stop the engine (per spec, as opposed to waiting our turn)
    FAPI_TRY( memdiags::stop(iv_target) );

    // Zero out cmd timebase - mcbist::program constructor does that for us.
    // Load pattern
    FAPI_TRY( iv_program.change_pattern(iv_const.iv_pattern) );

    // Load end boundaries
    iv_program.change_end_boundary(iv_const.iv_end_boundary);

    // Load thresholds
    iv_program.change_thresholds(iv_const.iv_stop);

    // Setup the requested speed
    FAPI_TRY( iv_program.change_speed(iv_target, iv_const.iv_speed) );

    // Enable maint addressing mode - enabled by default in the mcbist::program ctor

    // Apparently the MCBIST engine needs the ports selected even tho the ports are specified
    // in the subtest. We can just select them all, and it adjusts when it executes the subtest
    iv_program.select_ports(0b1111);

    // Kick it off, don't wait for a result
    iv_program.change_async(mss::ON);

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Single port initializer
/// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
/// in subclassed constructors more easily.
/// @return FAPI2_RC_SUCCESS iff everything ok
///
template<>
fapi2::ReturnCode operation<TARGET_TYPE_MCBIST>::single_port_init()
{
    FAPI_INF("single port init %s", mss::c_str(iv_target));

    const uint64_t l_relative_port_number = iv_const.iv_start_address.get_port();
    const uint64_t l_dimm_number = iv_const.iv_start_address.get_dimm();

    // Make sure the specificed port is functional
    FAPI_ASSERT( mss::is_functional<TARGET_TYPE_MCA>(iv_target, l_relative_port_number),
                 fapi2::MSS_MEMDIAGS_PORT_NOT_FUNCTIONAL()
                 .set_RELATIVE_PORT_POSITION(l_relative_port_number)
                 .set_ADDRESS( uint64_t(iv_const.iv_start_address) )
                 .set_TARGET(iv_target),
                 "Port with relative postion %d is not functional", l_relative_port_number );

    // No broadcast mode for this one
    // Push on a read subtest
    {
        mss::mcbist::subtest_t<TARGET_TYPE_MCBIST> l_subtest = iv_subtest;

        l_subtest.enable_port(l_relative_port_number);
        l_subtest.enable_dimm(l_dimm_number);
        iv_program.iv_subtests.push_back(l_subtest);
        FAPI_INF("adding subtest 0x%x for port %d, DIMM %d", l_subtest, l_relative_port_number, l_dimm_number);
    }

    // The address should have the port and DIMM noted in it. All we need to do is calculate the
    // remainder of the address
    if (iv_l_sim)
    {
        iv_const.iv_start_address.get_sim_end_address(iv_const.iv_end_address);
    }
    else if (iv_const.iv_end_address == mss::mcbist::address::LARGEST_ADDRESS)
    {
        // Only the DIMM range as we don't want to cross ports.
        iv_const.iv_start_address.get_range<mss::mcbist::address::DIMM>(iv_const.iv_end_address);
    }

    // Configure the address range
    FAPI_TRY( mss::mcbist::config_address_range0(iv_target, iv_const.iv_start_address, iv_const.iv_end_address) );

    // Initialize the common sections
    FAPI_TRY( base_init() );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Helper to encapsualte the setting of multi-port address configurations
/// @return FAPI2_RC_SUCCESS iff ok
///
template<>
fapi2::ReturnCode operation<TARGET_TYPE_MCBIST>::multi_port_addr()
{
    mss::mcbist::address l_end_of_start_port;
    mss::mcbist::address l_end_of_complete_port(mss::mcbist::address::LARGEST_ADDRESS);
    mss::mcbist::address l_start_of_end_port;

    // The last address in the start port is the start address thru the "DIMM range" (all addresses left on this DIMM)
    iv_const.iv_start_address.get_range<mss::mcbist::address::DIMM>(l_end_of_start_port);

    // The first address in the end port is the 0th address of the 0th DIMM on said port.
    l_start_of_end_port.set_port(iv_const.iv_end_address.get_port());

    // Before we do anything else, fix up the address for sim. The end address given has to be limted so
    // we don't run too many cycles. Also, if there are intermediate ports the end addresses of those ports
    // need to be limited as well - they override the end address of a complete port (which is otherwise the
    // largest address.)
    if (iv_l_sim)
    {
        iv_const.iv_start_address.get_sim_end_address(l_end_of_start_port);
        mss::mcbist::address().get_sim_end_address(l_end_of_complete_port);
        l_start_of_end_port.get_sim_end_address(iv_const.iv_end_address);
    }

    FAPI_INF("last addr in start port 0x%016lx first addr in end port 0x%016lx",
             uint64_t(l_end_of_start_port), uint64_t(l_start_of_end_port));

    // We know we have three address configs: start address -> end of DIMM, 0 -> end of DIMM and 0 -> end address.
    FAPI_TRY( mss::mcbist::config_address_range0(iv_target, iv_const.iv_start_address, l_end_of_start_port) );
    FAPI_TRY( mss::mcbist::config_address_range1(iv_target, mss::mcbist::address(), l_end_of_complete_port) );
    FAPI_TRY( mss::mcbist::config_address_range2(iv_target, l_start_of_end_port, iv_const.iv_end_address) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief memdiags multi-port init helper
/// Initializes common sections. Broken out rather than the base class ctor to enable checking return codes
/// in subclassed constructors more easily.
/// @return FAPI2_RC_SUCCESS iff everything ok
///
template<>
fapi2::ReturnCode operation<TARGET_TYPE_MCBIST>::multi_port_init()
{
    FAPI_INF("multi-port init %s", mss::c_str(iv_target));

    // Deterimine which ports are functional and whether we can broadcast to them
    // TK on the broadcast BRS
    // Disable broadcast mode - disabled by default

    // We need to do three things here. One is to create a subtest which starts at start address and runs to
    // the end of the port. Next, create subtests to go from the start of the next port to the end of the
    // next port. Last we need a subtest which goes from the start of the last port to the end address specified
    // in the end address. Notice this may mean one subtest (start and end are on the same port) or it might
    // mean two subtests (start is one one port, end is on the next.) Or it might mean threee or more subtests.

    // Get the port/DIMM information for the addresses. This is an integral value which allows us to index
    // all the DIMM across a controller.
    const uint64_t l_portdimm_start_address = iv_const.iv_start_address.get_port_dimm();
    const uint64_t l_portdimm_end_address = iv_const.iv_end_address.get_port_dimm();

    FAPI_INF("start port/dimm: %d end port/dimm: %d", l_portdimm_start_address, l_portdimm_end_address);

    // Since start address <= end address we can handle the single port case simply
    if (l_portdimm_start_address == l_portdimm_end_address)
    {
        // Single port case; simple.
        FAPI_TRY( single_port_init() );
        return fapi2::current_err;
    }

    fapi2::Assert(l_portdimm_start_address < l_portdimm_end_address);

    // If we're here we know start port < end port. We want to run one subtest (for each DIMM) from start_address
    // to the max range of the start address port, then one subtest (for each DIMM) for each port between the
    // start/end ports and one test (for each DIMM) from the start of the end port to the end address.

    // Setup the address configurations
    FAPI_TRY( multi_port_addr() );

    // Loop over all the DIMM on this MCBIST. Check the port/DIMM value for what to do.
    for (const auto& d : mss::find_targets<TARGET_TYPE_DIMM>(iv_target))
    {
        // The port/DIMM value for this DIMM is a three-bit field where the left-two are the relative position
        // in the controller and the right-most is the DIMMs index. We use this to decide how to process this dimm
        uint64_t l_rel_port = mss::relative_pos<TARGET_TYPE_MCBIST>(mss::find_target<TARGET_TYPE_MCA>(d));
        uint64_t l_dimm =  mss::index(d);
        const uint64_t l_portdimm_this_dimm = (l_rel_port << 1) | l_dimm;

        FAPI_INF("port/dimm %d, port/dimm start: %d", l_portdimm_this_dimm, l_portdimm_start_address);

        // No need to process DIMM which are lower as they're not between the start and the end of the port.
        if (l_portdimm_this_dimm < l_portdimm_start_address)
        {
            continue;
        }

        // Ok, we're gonna need to push on a subtest.
        auto l_subtest = iv_subtest;

        l_subtest.enable_port(l_rel_port);
        l_subtest.enable_dimm(l_dimm);

        // Ok this is the starting point. We know it's address selection is config0
        if (l_portdimm_this_dimm == l_portdimm_start_address)
        {
            l_subtest.change_addr_sel(0);
        }

        // If this DIMM represents the end, we know that's address config2
        else if (l_portdimm_this_dimm == l_portdimm_end_address)
        {
            l_subtest.change_addr_sel(2);
        }

        // Otherwise, we're someplace in between - address config1
        else
        {
            l_subtest.change_addr_sel(1);
        }

        iv_program.iv_subtests.push_back(l_subtest);
        FAPI_INF("adding subtest for %s (port: %d dimm %d)", mss::c_str(iv_target), l_rel_port, l_dimm);
    }

    // Here's an interesting problem. PRD (and others maybe) expect the operation to proceed in address-order.
    // That is, when PRD finds an address it stops on, it wants to continue from there "to the end." That means
    // we need to keep the subtests sorted, otherwise PRD could pass one subtest come upon a fail in a subsequent
    // subtest and re-test something it already passed. So we sort the resulting iv_subtest vector by port/DIMM
    // in the subtest.
    std::sort(iv_program.iv_subtests.begin(), iv_program.iv_subtests.end(),
              [](const decltype(iv_subtest)& a, const decltype(iv_subtest)& b) -> bool
    {
        uint64_t l_a_portdimm = (a.get_port() << 1) | a.get_dimm();
        uint64_t l_b_portdimm = (b.get_port() << 1) | b.get_dimm();

        return l_a_portdimm < l_b_portdimm;
    });

    // Initialize the common sections
    FAPI_TRY( base_init() );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief memdiags::continuous_scrub_operation constructor
/// @param[in] i_target the target of the mcbist engine
/// @param[in] i_const the contraints of the operation
/// @param[out] o_rc the fapi2::ReturnCode of the intialization process
///
template<>
continuous_scrub_operation<TARGET_TYPE_MCBIST>::continuous_scrub_operation(
    const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
    const constraints i_const,
    fapi2::ReturnCode& o_rc ):
    operation<TARGET_TYPE_MCBIST>(i_target, mss::mcbist::scrub_subtest<TARGET_TYPE_MCBIST>(), i_const)
{
    mss::mcbist::address l_generic_start_address;
    mss::mcbist::address l_generic_end_address;

    FAPI_INF("setting up for continuous scrub");

    // Scrub operations run 128B
    iv_program.change_len64(mss::OFF);

    // We build a little program here which allows us to restart the loop in the event of a pause.
    // So we need to craft some of the address ranges and some of the subtests by hand.

    // Setup address config 0 to cover all the addresses for a port/dimm.
    // We leverage the MCBIST's ability to skip invalid addresses, and just setup
    // If we're running in the simulator, we want to only touch the addresses which training touched
    // *INDENT-OFF*
    iv_l_sim ?
        l_generic_start_address.get_sim_end_address(l_generic_end_address) :
        l_generic_start_address.get_range<mss::mcbist::address::DIMM>(l_generic_end_address);
    // *INDENT-ON*

    FAPI_TRY( mss::mcbist::config_address_range0(i_target, l_generic_start_address, l_generic_end_address) );

    // We push on a fake subtest 0 and subtest 1. We fix them up after we fill in the
    // rest of the subtests.
    iv_program.iv_subtests.push_back(iv_subtest);
    iv_program.iv_subtests.push_back(iv_subtest);

    // a generic 0 - DIMM address range.
    //
    // Subtests 2-9: One subtest per port/dimm each covering the whole range of that
    // port/dimm. scrub_subtests by default are using address config 0, so each of
    // these get their full address complement.
    for (const auto& p : iv_target.template getChildren<TARGET_TYPE_MCA>())
    {
        for (const auto& d : p.template getChildren<TARGET_TYPE_DIMM>())
        {
            // Don't destroy the subtest passed in, copy it
            auto l_subtest = iv_subtest;

            l_subtest.enable_port(mss::relative_pos<TARGET_TYPE_MCBIST>(p));
            l_subtest.enable_dimm(mss::index(d));
            iv_program.iv_subtests.push_back(l_subtest);
            FAPI_INF("adding scrub subtest for %s (dimm %d) (0x%x)", mss::c_str(d), mss::index(d), l_subtest);
        }
    }

    //
    // Subtest 10: goto subtest 2. This causes us to loop back to the first port/dimm and go thru them all
    // This subtest will be marked the last when the MCBMR registers are filled in.
    //
    iv_program.iv_subtests.push_back(mss::mcbist::goto_subtest<TARGET_TYPE_MCBIST>(2));
    FAPI_INF("last goto subtest (10) is going to subtest 2 (0x%x)", iv_program.iv_subtests[2]);

    // Ok, now we can go back in to fill in the first two subtests.

    {
        auto l_subtest = iv_subtest;
        auto l_port = iv_const.iv_start_address.get_port();
        auto l_dimm = iv_const.iv_start_address.get_dimm();
        size_t l_index = 2;

        // By default if we don't find our port/dimm in the subtests, we just go back to the beginning.
        uint64_t l_goto_subtest = 2;

        //
        // subtest 0
        //

        // load the start address given and calculate the end address. Stick this into address config 1
        // We don't need to account for the simulator here as the caller can do that when they setup the
        // start address.
        // *INDENT-OFF*
        iv_l_sim ?
            iv_const.iv_start_address.get_sim_end_address(iv_const.iv_end_address) :
            iv_const.iv_start_address.get_range<mss::mcbist::address::DIMM>(iv_const.iv_end_address);
        // *INDENT-ON*

        FAPI_TRY( mss::mcbist::config_address_range1(i_target, iv_const.iv_start_address, iv_const.iv_end_address) );

        // We need to use this address range. We know it's ok to write to element 0 as we pushed it on above
        l_subtest.change_addr_sel(1);
        l_subtest.enable_port(l_port);
        l_subtest.enable_dimm(l_dimm);

        iv_program.iv_subtests[0] = l_subtest;
        FAPI_INF("adding scrub subtest 0 for port %d dimm %d (0x%02x)", l_port, l_dimm, l_subtest);

        //
        // subtest 1
        //

        // From the port/dimm specified in the start address, we know what subtest should execute next. The idea
        // being that this 0'th subtest is a mechanism to allow the caller to start a scrub 'in the middle' and
        // jump to the next port/dimm which would have been scrubbed. The hard part is that we don't know where
        // in the subtest vector the 'next' port/dimm are placed. So we look for our port/dimm (skipping subtest 0
        // since we know that's us and skipping subtest 1 since it isn't there yet.)
        for (; l_index < iv_program.iv_subtests.size(); ++l_index)
        {
            auto l_my_dimm = iv_program.iv_subtests[l_index].get_dimm();
            auto l_my_port = iv_program.iv_subtests[l_index].get_port();

            if ((l_dimm == l_my_dimm) && (l_port == l_my_port))
            {
                l_goto_subtest = l_index + 1;
                break;
            }
        }

        // Since we set l_goto_subtest up with a meaningful default, we can just make a subtest with the
        // l_goto_subtest subtest specified and pop that in to index 1.
        FAPI_INF("adding scrub subtest 1 to goto subtest %d (port %d, dimm %d, test 0x%02x)", l_goto_subtest,
                 iv_program.iv_subtests[l_goto_subtest].get_port(),
                 iv_program.iv_subtests[l_goto_subtest].get_dimm(),
                 iv_program.iv_subtests[l_goto_subtest] );

        iv_program.iv_subtests[1] = mss::mcbist::goto_subtest<TARGET_TYPE_MCBIST>(l_goto_subtest);
    }

    // Initialize the common sections
    FAPI_TRY( base_init() );

fapi_try_exit:
    o_rc = fapi2::current_err;
    return;
}

///
/// @brief Super Fast Read Init - used to init all memory behind a target with a given pattern
/// @note Uses broadcast mode if possible
/// @param[in] i_target the target behind which all memory should be initialized
/// @param[in] i_pattern an index representing a pattern to use to initize memory (defaults to 0)
/// @return FAPI2_RC_SUCCESS iff everything ok
/// @note The function is asynchronous, and the caller should be looking for a done attention
///
template<>
fapi2::ReturnCode sf_init( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
                           const uint64_t i_pattern )
{
    FAPI_INF("superfast init start");

    uint8_t l_sim = false;
    FAPI_TRY( mss::is_simulation( l_sim) );

    if (l_sim)
    {
        // Use some sort of pattern in sim in case the verification folks need to look for something
        // TK. Need a verification pattern. This is a not-good pattern for verification ... We don't really
        // have a good pattern for verification defined.
        FAPI_INF("running mss sim init in place of sf_init");
        return mss::mcbist::sim::sf_init(i_target, i_pattern);
    }
    else
    {
        fapi2::ReturnCode l_rc;
        constraints l_const(i_pattern);
        sf_init_operation<TARGET_TYPE_MCBIST> l_init_op(i_target, l_const, l_rc);

        FAPI_ASSERT( l_rc == FAPI2_RC_SUCCESS,
                     fapi2::MSS_MEMDIAGS_SUPERFAST_INIT_FAILED_TO_INIT().set_TARGET(i_target),
                     "Unable to initialize the MCBIST engine for a sf read %s", mss::c_str(i_target) );

        return l_init_op.execute();
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Super Fast Read to End of MCBIST - used to run superfast read on all memory behind the target
/// @tparam T the fapi2::TargetType of the target
/// @param[in] i_target the target behind which all memory should be read
/// @param[in] i_stop stop conditions
/// @param[in] i_address mcbist::address representing the address from which to start.
//    Defaults to the first address behind the target
/// @param[in] i_end whether to end, and where
///   Defaults to stop after slave rank
/// @return FAPI2_RC_SUCCESS iff everything ok
/// @note The function is asynchronous, and the caller should be looking for a done attention
/// @note The address is often the port, dimm, rank but this is not enforced in the API.
///
template<>
fapi2::ReturnCode sf_read( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
                           const stop_conditions& i_stop,
                           const mss::mcbist::address& i_address,
                           const end_boundary i_end)
{
    FAPI_INF("superfast read - start");

    fapi2::ReturnCode l_rc;
    constraints l_const(i_stop, speed::LUDICROUS, i_end, i_address);
    sf_read_operation<TARGET_TYPE_MCBIST> l_read_op(i_target, l_const, l_rc);

    FAPI_ASSERT( l_rc == FAPI2_RC_SUCCESS,
                 fapi2::MSS_MEMDIAGS_SUPERFAST_READ_FAILED_TO_INIT().set_TARGET(i_target),
                 "Unable to initialize the MCBIST engine for a sf read %s", mss::c_str(i_target) );

    return l_read_op.execute();

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Scrub - continuous scrub all memory behind the target
/// @param[in] i_target the target behind which all memory should be scrubbed
/// @param[in] i_stop stop conditions
/// @param[in] i_speed the speed to scrub
/// @param[in] i_address mcbist::address representing the port, dimm, rank
/// @return FAPI2_RC_SUCCESS iff everything ok
/// @warning The function is asynchronous, and the caller should be looking for a done attention
/// @note The operation will fail immediately when a stop condition is encountered
///
template<>
fapi2::ReturnCode background_scrub( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
                                    const stop_conditions& i_stop,
                                    const speed i_speed,
                                    const mss::mcbist::address& i_address )
{
    FAPI_INF("continuous (background) scrub");

    fapi2::ReturnCode l_rc;
    constraints l_const(i_stop, i_speed, end_boundary::STOP_AFTER_ADDRESS, i_address);
    continuous_scrub_operation<TARGET_TYPE_MCBIST> l_op(i_target, l_const, l_rc);

    FAPI_ASSERT( l_rc == FAPI2_RC_SUCCESS,
                 fapi2::MSS_MEMDIAGS_CONTINUOUS_SCRUB_FAILED_TO_INIT().set_TARGET(i_target),
                 "Unable to initialize the MCBIST engine for a continuous scrub %s", mss::c_str(i_target) );

    return l_op.execute();

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Scrub - targeted scrub all memory behind the target
/// @param[in] i_target the target behind which all memory should be scrubbed
/// @param[in] i_stop stop conditions
/// @param[in] i_start_address mcbist::address representing the address from which to start.
/// @param[in] i_end_address mcbist::address representing the address at which to end.
/// @param[in] i_end whether to end, and where (defaults to not stop on error)
/// @return FAPI2_RC_SUCCESS iff everything ok
/// @note The function is asynchronous, and the caller should be looking for a done attention
/// @note The caller can use the address range functions to calculate the end address as needed
///
template<>
fapi2::ReturnCode targeted_scrub( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
                                  const stop_conditions& i_stop,
                                  const mss::mcbist::address& i_start_address,
                                  const mss::mcbist::address& i_end_address,
                                  const end_boundary i_end )
{
    FAPI_INF("targeted scrub");

    fapi2::ReturnCode l_rc;
    constraints l_const(i_stop, speed::LUDICROUS, i_end, i_start_address, i_end_address);
    targeted_scrub_operation<TARGET_TYPE_MCBIST> l_op(i_target, l_const, l_rc);

    FAPI_ASSERT( l_rc == FAPI2_RC_SUCCESS,
                 fapi2::MSS_MEMDIAGS_TARGETED_SCRUB_FAILED_TO_INIT().set_TARGET(i_target),
                 "Unable to initialize the MCBIST engine for a targeted scrub %s", mss::c_str(i_target) );

    return l_op.execute();

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Continue current command on next address
/// The current commaand has paused on an error, so we can record the address of the error
/// and finish the current master or slave rank.
/// @param[in] i_target the target
/// @param[in] i_end whether to end, and where (default = don't stop at end of rank)
/// @param[in] i_stop stop conditions (default - 0 meaning 'don't change conditions')
/// @param[in] i_speed the speed to scrub (default - SAME_SPEED meaning leave speed untouched)
/// @return FAPI2_RC_SUCCESS iff ok
/// @note overloaded as there's no 'invalid' state for thresholds.
///
template<>
fapi2::ReturnCode continue_cmd( const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
                                const end_boundary i_end,
                                const stop_conditions& i_stop,
                                const speed i_speed )
{
    // Too long, make shorter
    using TT = mss::mcbistTraits<TARGET_TYPE_MCBIST>;

    // We can use a local mcbist::program to help with the bit processing, and then write just the registers we touch.
    mss::mcbist::program<TARGET_TYPE_MCBIST> l_program;
    fapi2::buffer<uint64_t> l_status;

    FAPI_INF("continue_cmd");

    // TODO RTC:155518 Check for stop or in progress before allowing continue. Not critical
    // as the caller should know and can check the in-progress bit in the event they don't

    if (i_end != end_boundary::DONT_CHANGE)
    {
        // Before we go too far, check to see if we're already stopped at the boundary we are asking to stop at
        bool l_stopped_at_boundary = false;
        uint64_t l_error_mode = 0;
        bool l_detect_slave = false;

        FAPI_TRY( mss::getScom(i_target, TT::CFGQ_REG, l_program.iv_config) );
        FAPI_TRY( mss::getScom(i_target, TT::MCBAGRAQ_REG, l_program.iv_addr_gen) );
        l_program.iv_config.extractToRight<TT::CFG_PAUSE_ON_ERROR_MODE, TT::CFG_PAUSE_ON_ERROR_MODE_LEN>(l_error_mode);
        l_detect_slave = l_program.iv_addr_gen.getBit<TT::MAINT_DETECT_SRANK_BOUNDARIES>();

        switch (i_end)
        {
            case end_boundary::STOP_AFTER_ADDRESS:
                l_stopped_at_boundary =
                    l_program.iv_config.getBit<TT::MCBIST_CFG_FORCE_PAUSE_AFTER_ADDR>() ||
                    l_error_mode == end_boundary::STOP_AFTER_ADDRESS;
                break;

            case end_boundary::STOP_AFTER_SLAVE_RANK:
                // Note: we really want STOP_AFTER_MASTER_RANK here even though we're in the slave
                // case because MASTER_RANK has the a 0 so that l_error_mode will check correctly
                l_stopped_at_boundary =
                    l_program.iv_config.getBit<TT::MCBIST_CFG_PAUSE_AFTER_RANK>() ||
                    ((l_error_mode == end_boundary::STOP_AFTER_MASTER_RANK) && (l_detect_slave == false));
                break;

            case end_boundary::STOP_AFTER_MASTER_RANK:
                l_stopped_at_boundary =
                    l_program.iv_config.getBit<TT::MCBIST_CFG_PAUSE_AFTER_RANK>() ||
                    ((l_error_mode == end_boundary::STOP_AFTER_MASTER_RANK) && (l_detect_slave == true));
                break;

            case end_boundary::STOP_AFTER_SUBTEST:
                l_stopped_at_boundary =
                    l_program.iv_config.getBit<TT::MCBIST_CFG_FORCE_PAUSE_AFTER_SUBTEST>() ||
                    l_error_mode == end_boundary::STOP_AFTER_SUBTEST;
                break;

            // By default we're not stopped at a boundary we're going to continue from
            default:
                break;
        };

        FAPI_ASSERT( l_stopped_at_boundary == false,
                     fapi2::MSS_MEMDIAGS_ALREADY_AT_BOUNDARY().set_TARGET(i_target).set_BOUNDARY(i_stop),
                     "Asked to stop at a boundary, but we're already there" );

        // Ok, if we're here either we need to change the stop and boundary conditions.
        // Read-modify-write the fields in the program.
        FAPI_TRY( mss::getScom(i_target, TT::MCBAGRAQ_REG, l_program.iv_addr_gen) );

        l_program.change_end_boundary(i_end);

        FAPI_TRY( mss::mcbist::load_addr_gen(i_target, l_program) );

        FAPI_TRY( mss::mcbist::load_config(i_target, l_program) );
    }

    // Thresholds
    // According to API definition, 0 means don't change conditions
    if( i_stop != stop_conditions::DONT_CHANGE)
    {
        FAPI_TRY( mss::mcbist::load_thresholds(i_target, i_stop) );
    }

    // Setup speed
    FAPI_TRY( l_program.change_speed(i_target, i_speed) );

    // Load new speed unless we aren't changing it
    if( i_speed != speed::SAME_SPEED )
    {
        FAPI_TRY( load_mcbparm(i_target, l_program) );
    }

    // Tickle the resume from pause
    FAPI_TRY( mss::mcbist::resume(i_target) );

fapi_try_exit:
    return fapi2::current_err;
}

}
OpenPOWER on IntegriCloud