summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/memory/lib/freq/sync.C
blob: 389a9455102394e8f88ab23a1035e33b74e9022b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/p9/procedures/hwp/memory/lib/freq/sync.C $   */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2016,2018                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

///
/// @file sync.C
/// @brief Synchronous function implementations
///
// *HWP HWP Owner: Andre Marin <aamarin@us.ibm.com>
// *HWP HWP Backup: Louis Stermole <stermole@us.ibm.com>
// *HWP Team: Memory
// *HWP Level: 3
// *HWP Consumed by: HB:FSP

#include <fapi2.H>
#include <vpd_access.H>
#include <algorithm>
#include <vector>
#include <map>
#include <mss.H>
#include <lib/freq/sync.H>
#include <generic/memory/lib/utils/find.H>
#include <lib/utils/assert_noexit.H>
#include <lib/spd/spd_factory.H>
#include <lib/utils/count_dimm.H>

using fapi2::TARGET_TYPE_DIMM;
using fapi2::TARGET_TYPE_MCS;
using fapi2::TARGET_TYPE_MCA;
using fapi2::TARGET_TYPE_MCBIST;
using fapi2::TARGET_TYPE_SYSTEM;

namespace mss
{

///
/// @brief Retrieves a mapping of MSS frequency values per mcbist target
/// @param[in] i_targets vector of controller targets
/// @param[out] o_freq_map dimm speed map <key, value> = (mcbist target, frequency)
/// @param[out] o_is_speed_equal true if all map dimm speeds are the same
/// @return FAPI2_RC_SUCCESS iff successful
///
fapi2::ReturnCode dimm_speed_map(const std::vector< fapi2::Target<TARGET_TYPE_MCBIST> >& i_targets,
                                 std::map< fapi2::Target<TARGET_TYPE_MCBIST>, uint64_t >& o_freq_map,
                                 speed_equality& o_is_speed_equal)
{
    FAPI_INF("---- In dimm_speed_pairs ----");


    o_freq_map.clear();

    // The find_if loop is meant to find the "first" good (non-zero) freq value
    // so I can compare it against all other freq values from the MCBIST vector
    // I am checking to make sure I don't get a value of 0
    // Since Cronus can hand me back an MCBIST w/no DIMMs
    // Which would give ATTR_MSS_FREQ value of 0 in p9_mss_freq
    uint64_t l_comparator = 0;
    fapi2::ReturnCode l_rc(fapi2::FAPI2_RC_FALSE);

    const auto l_found_comp = std::find_if(i_targets.begin(), i_targets.end(),
                                           [&l_rc, &l_comparator] (const fapi2::Target<TARGET_TYPE_MCBIST>& i_target)->bool
    {
        l_rc = mss::freq(i_target, l_comparator);
        return l_comparator != 0;
    });

    // Getting error cross initializing with the Assert
    // find_if should work if passed in an empty vector. begin() and end() will match and it'll exit without trying freq()
    FAPI_ASSERT( !i_targets.empty(),
                 fapi2::MSS_EMPTY_MCBIST_VECTOR_PASSED(),
                 "Empty MCBIST target vector found when constructing dimm speed mapping!" );


    FAPI_TRY(l_rc, "Failed accessor mss::freq()");

    // If all MCBISTs are 0 we go no further
    // We shouldn't get here though. We check for DIMMS in freq_system. If no DIMMS, we exit
    // We can assume if there is a dimm configured at this point (after mss_freq)
    // It has a valid freq
    // Thus, this shouldn't ever happen, but let's check anyways
    FAPI_ASSERT( l_found_comp != i_targets.end(),
                 fapi2::MSS_ALL_MCBIST_HAVE_0_FREQ()
                 .set_VECTOR_SIZE(i_targets.size()),
                 "All MCBIST have 0 MSS_FREQ, but there are dimms?");

    // DIMM speed is equal until we deduce otherwise
    o_is_speed_equal = speed_equality::EQUAL_DIMM_SPEEDS;

    // Make sure to stick the first one we found in the freq map.
    o_freq_map.emplace( std::make_pair(*l_found_comp, l_comparator) );

    // Loop through all MCBISTs and store dimm speeds
    // Starting from known 1st known good freq (non-zero) value
    // I found above to avoid double looping target vector
    for (auto l_iter = l_found_comp + 1; l_iter != i_targets.end(); ++l_iter)
    {
        uint64_t l_dimm_speed = 0;
        FAPI_TRY( mss::freq(*l_iter, l_dimm_speed), "Failed accessor to mss_freq" );

        // In FW, parents are deconfigured if they have no children
        // So there is no way to get an MCBIST w/no DIMMs.
        // This isn't true for Cronus so I am skipping map
        // insertion and check for dimm speed equality
        // to avoid incorrect settings
        if( l_dimm_speed != 0)
        {
            // At least one mismatch freq value occurred
            if(l_comparator != l_dimm_speed)
            {
                o_is_speed_equal = speed_equality::NOT_EQUAL_DIMM_SPEEDS;
            }

            FAPI_INF("%s: Dimm speed %d MT/s", c_str(*l_iter), l_dimm_speed);

            o_freq_map.emplace( std::make_pair(*l_iter, l_dimm_speed) );
        }
    }

    // Idiot check - most certainly a programming error
    FAPI_ASSERT( o_freq_map.size() != 0,
                 fapi2::MSS_ERROR_FINDING_DIMM_SPEED_MAP(),
                 "freq system freq map is empty? found mcbist: %s",
                 mss::c_str(*l_found_comp) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Deconfigures MCS targets connected to MCBIST
/// @param[in] i_target the controller target
/// @param[in] i_dimm_speed dimm speed in MT/s
/// @param[in] i_nest_freq nest freq in MHz
/// @return true if hardware was deconfigured
///
bool deconfigure(const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
                 const uint64_t i_dimm_speed,
                 const uint32_t i_nest_freq)
{
    FAPI_INF("---- In deconfigure ----");
    bool l_is_hw_deconfigured = false;

    if(i_dimm_speed != i_nest_freq)
    {
        // Deconfigure MCSes
        for( const auto& l_mcs : mss::find_targets<TARGET_TYPE_MCS>(i_target) )
        {
            l_is_hw_deconfigured = true;

            MSS_ASSERT_NOEXIT(false,
                              fapi2::MSS_FREQ_NOT_EQUAL_NEST_FREQ()
                              .set_MSS_FREQ(i_dimm_speed)
                              .set_NEST_FREQ(i_nest_freq)
                              .set_MCS_TARGET(l_mcs),
                              "Deconfiguring %s due to unequal frequencies: mss: %d, nest: %d",
                              mss::c_str(l_mcs),
                              i_dimm_speed,
                              i_nest_freq );
        }// end for
    }// end if

    return l_is_hw_deconfigured;
}

///
/// @brief Selects synchronous mode and performs requirements enforced by ATTR_REQUIRED_SYNCH_MODE
/// @param[in] i_freq_map dimm speed mapping
/// @param[in] i_equal_dimm_speed tracks whether map has equal dimm speeds
/// @param[in] i_nest_freq nest frequency
/// @param[in] i_required_sync_mode system policy to enforce synchronous mode
/// @param[out] o_selected_sync_mode final synchronous mode
/// @param[out] o_selected_nest_freq final freq selected, only valid if final sync mode is in-sync
/// @return FAPI2_RC_SUCCESS iff successful
///
fapi2::ReturnCode select_sync_mode(const std::map< fapi2::Target<TARGET_TYPE_MCBIST>, uint64_t >& i_freq_map,
                                   const speed_equality i_equal_dimm_speed,
                                   const uint32_t i_nest_freq,
                                   const uint8_t i_required_sync_mode,
                                   uint8_t& o_selected_sync_mode,
                                   uint64_t& o_selected_nest_freq)
{
    FAPI_INF("---- In select_sync_mode ----");

    // If we're in SYNC_MODE_NEVER, then we're done and we tell the caller we're not in sync mode
    if (fapi2::ENUM_ATTR_REQUIRED_SYNCH_MODE_NEVER == i_required_sync_mode)
    {
        o_selected_sync_mode = fapi2::ENUM_ATTR_MC_SYNC_MODE_NOT_IN_SYNC;
        return fapi2::FAPI2_RC_SUCCESS;
    }

    switch(i_equal_dimm_speed)
    {
        // If we have MCBIST which have resolved to equal speeds ...
        case speed_equality::EQUAL_DIMM_SPEEDS:

            // Return back the resulting speed. It doesn't matter which we select from the map as they're all equal
            // If we end up not in sync in the conditional below, thats ok - this parameter is ignored by the
            // caller if we're not in sync mode
            o_selected_nest_freq = i_freq_map.begin()->second;

            // When we selected ATTR_MSS_FREQ, we made sure that for forced sync mode cases we didn't
            // select a DIMM freq the nest couldn't support. So if we're in forced sync mode, we're done.
            if (i_required_sync_mode == fapi2::ENUM_ATTR_REQUIRED_SYNCH_MODE_ALWAYS)
            {
                o_selected_sync_mode = fapi2::ENUM_ATTR_MC_SYNC_MODE_IN_SYNC;
                // On Cronus if the o_selected_nest_freq != i_nest_freq we've got a mismatch. Note that p9_mss_freq ensures
                // we don't select an invalid freq, but doesn't ensure we select the current nest freq.
#ifndef __HOSTBOOT_MODULE
                FAPI_ASSERT(o_selected_nest_freq == i_nest_freq,
                            fapi2::MSS_FAILED_SYNC_MODE().set_NEST_FREQ(i_nest_freq).set_MEM_FREQ(o_selected_nest_freq),
                            "Configured in sync mode, but the DIMM freq (%d) and the nest freq (%d) don't align",
                            o_selected_nest_freq, i_nest_freq);
#endif
                return fapi2::FAPI2_RC_SUCCESS;

            }

            // So we need to decide. We know the DIMM speeds are equal and we know we picked the fastest supportable
            // speed. So, if we're within the nest frequencies then we can run sync mode.
            // If we're outside of the nest frequencies we'll run async (highest DIMM speed.)
            // Remember, if sync_mode is set to not_in_sync, o_selected_nest_freq is ignored

#ifdef __HOSTBOOT_MODULE
            // Can only change nest freq on HB modules
            // If the freq from the DIMM is supported by the nest, we're good
            o_selected_sync_mode = is_nest_freq_valid(o_selected_sync_mode) ? fapi2::ENUM_ATTR_MC_SYNC_MODE_IN_SYNC :
                                   fapi2::ENUM_ATTR_MC_SYNC_MODE_NOT_IN_SYNC;
#else
            // Can't change nest freq in cronus
            o_selected_sync_mode = (o_selected_nest_freq == i_nest_freq) ?
                                   fapi2::ENUM_ATTR_MC_SYNC_MODE_IN_SYNC : fapi2::ENUM_ATTR_MC_SYNC_MODE_NOT_IN_SYNC;
#endif
            return fapi2::FAPI2_RC_SUCCESS;
            break;

        case speed_equality::NOT_EQUAL_DIMM_SPEEDS:

            // When we selected ATTR_MSS_FREQ, we made sure that for forced sync mode cases we didn't
            // select a DIMM freq the nest couldn't support. That means that the fastest of the MCBIST
            // is the one that rules the roost (the nest can support it too.) So find that, and set it to
            // the selected frequency. Then deconfigure the slower MCBIST (unless we're in Cronus in which
            // case we just bomb out.)
#ifdef __HOSTBOOT_MODULE
            if( i_required_sync_mode == fapi2::ENUM_ATTR_REQUIRED_SYNCH_MODE_ALWAYS )
            {
                uint64_t l_max_dimm_speed = 0;
                std::for_each(i_freq_map.begin(), i_freq_map.end(),
                              [&l_max_dimm_speed](const std::pair<fapi2::Target<TARGET_TYPE_MCBIST>, uint64_t>& m)
                {
                    l_max_dimm_speed = std::max(l_max_dimm_speed, m.second);
                });

                std::for_each(i_freq_map.begin(), i_freq_map.end(),
                              [&l_max_dimm_speed](const std::pair<fapi2::Target<TARGET_TYPE_MCBIST>, uint64_t>& m)
                {
                    deconfigure(m.first, m.second, l_max_dimm_speed);
                });

                o_selected_sync_mode = fapi2::ENUM_ATTR_MC_SYNC_MODE_IN_SYNC;
                o_selected_nest_freq = l_max_dimm_speed;
                return fapi2::FAPI2_RC_SUCCESS;
            }

#else
            // Cronus only
            FAPI_ASSERT(i_required_sync_mode != fapi2::ENUM_ATTR_REQUIRED_SYNCH_MODE_ALWAYS,
                        fapi2::MSS_FAILED_SYNC_MODE().set_NEST_FREQ(i_nest_freq),
                        "Seeing forced nest/memory sync mode but DIMM speeds differ from nest speed %d", i_nest_freq);
#endif

            // Notice that if we don't have equal DIMM speeds we're never in sync. We either error out (Cronus)
            // or we toss a bunch of DIMM off the boat (f/w) or they didn't care whether we were sync or not.
            o_selected_sync_mode = fapi2::ENUM_ATTR_MC_SYNC_MODE_NOT_IN_SYNC;
            return fapi2::FAPI2_RC_SUCCESS;
            break;

        default:
            // Switches on an enum class
            // The only valid speed_equality values are NOT_EQUAL and EQUAL.
            // If it's something else ,I think it's a code error and really shouldn't be possible, thus fapi2::Assert below
            FAPI_ERR("Invalid speed_equality parameter!");
            fapi2::Assert(false);
            break;
    }// end switch

    return fapi2::FAPI2_RC_SUCCESS;

#ifndef __HOSTBOOT_MODULE
fapi_try_exit:
    return fapi2::current_err;
#endif
}

///
/// @brief Return whether a given freq is supported
/// @param[in] a freq to check for
/// @param[in] reference to a std::vector of supported freqs (sorted)
/// @return bool, true iff input freq is supported
///
bool is_freq_supported(const uint32_t i_freq, const std::vector<uint32_t>& i_freqs)
{
    return std::binary_search(i_freqs.begin(), i_freqs.end(), i_freq);
}

///
/// @brief Create a vector of support freq based on VPD config
/// @param[in] MCBIST target for which to get the DIMM configs
/// @param[out] reference to a std::vector of supported VPD frequencies
/// @return FAPI2_RC_SUCCESS iff ok
///
fapi2::ReturnCode vpd_supported_freqs( const fapi2::Target<fapi2::TARGET_TYPE_MCBIST>& i_target,
                                       std::vector<uint32_t>& o_vpd_supported_freqs)
{
    uint8_t l_rank_count_dimm[MAX_DIMM_PER_PORT] = {};
    uint8_t l_mr_blob[mss::VPD_KEYWORD_MAX] = {};
    bool is_first_supported_freq = true;

    // Clearing output Just.In.Case
    o_vpd_supported_freqs.clear();

    fapi2::VPDInfo<fapi2::TARGET_TYPE_MCS> l_vpd_info(fapi2::MemVpdData::MR);

    for( const auto& mcs : mss::find_targets<TARGET_TYPE_MCS>(i_target) )
    {
        for( const auto& p : mss::find_targets<TARGET_TYPE_MCA>(mcs) )
        {
            if( mss::count_dimm(p) == 0 )
            {
                // Cronus lets you have an MCA w/no DIMMs...
                continue;
            }

            FAPI_TRY( mss::eff_num_master_ranks_per_dimm(p, &(l_rank_count_dimm[0])) );

            l_vpd_info.iv_rank_count_dimm_0 = l_rank_count_dimm[0];
            l_vpd_info.iv_rank_count_dimm_1 = l_rank_count_dimm[1];
            l_vpd_info.iv_is_config_ffdc_enabled = false;

            // Iterate through all Nimbus supported freqs
            for( const auto& freq : NIMBUS_SUPPORTED_FREQS )
            {
                l_vpd_info.iv_freq_mhz = freq;

                FAPI_INF("%s. VPD info - frequency: %d MT/s, rank count for dimm_0: %d, dimm_1: %d",
                         mss::c_str(p), l_vpd_info.iv_freq_mhz, l_vpd_info.iv_rank_count_dimm_0, l_vpd_info.iv_rank_count_dimm_1);

                // In order to retrieve the VPD contents we first need the keyword size.
                // If we are unable to retrieve the keyword size then this speed isn't
                // supported in the VPD in Cronus (but not FW) and we skip to the next
                // possible speed bin.
                if(  fapi2::getVPD(mcs, l_vpd_info, nullptr) != fapi2::FAPI2_RC_SUCCESS )
                {
                    FAPI_INF("Couldn't retrieve MR size from VPD for this config %s -- skipping freq %d MT/s", mss::c_str(p), freq );

                    // If we added a freq that was supported in one MCA, but isn't supported for
                    // another MCA under the same MCBIST (such as one port running single drop and another dual drop),
                    // we remove it from the VPD supported freq list.
                    auto l_it = std::find(o_vpd_supported_freqs.begin(), o_vpd_supported_freqs.end(), freq);

                    if( l_it != o_vpd_supported_freqs.end()  )
                    {
                        o_vpd_supported_freqs.erase(l_it);
                    }

                    fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
                    continue;
                }

                FAPI_ASSERT( l_vpd_info.iv_size <= mss::VPD_KEYWORD_MAX,
                             fapi2::MSS_INVALID_VPD_KEYWORD_MAX().
                             set_MAX(mss::VPD_KEYWORD_MAX).
                             set_ACTUAL(l_vpd_info.iv_size).
                             set_KEYWORD(fapi2::MemVpdData::MR).
                             set_MCS_TARGET(i_target),
                             "VPD MR keyword size retrieved: %d, is larger than max: %d for %s",
                             l_vpd_info.iv_size, mss::VPD_KEYWORD_MAX, mss::c_str(i_target));

                // Firmware doesn't do the VPD lookup in the size check so repeat the logic here
                if(  fapi2::getVPD(mcs, l_vpd_info, &(l_mr_blob[0])) != fapi2::FAPI2_RC_SUCCESS )
                {
                    FAPI_INF("Couldn't retrieve MR data from VPD for this config %s -- skipping freq %d MT/s", mss::c_str(p), freq );

                    // If we added a freq that was supported in one MCA, but isn't supported for
                    // another MCA under the same MCBIST (such as one port running single drop and another dual drop),
                    // we remove it from the VPD supported freq list.
                    auto l_it = std::find(o_vpd_supported_freqs.begin(), o_vpd_supported_freqs.end(), freq);

                    if( l_it != o_vpd_supported_freqs.end()  )
                    {
                        o_vpd_supported_freqs.erase(l_it);
                    }

                    fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
                    continue;
                }

                // Add non-repeating supported freqs
                auto l_it = std::find(o_vpd_supported_freqs.begin(), o_vpd_supported_freqs.end(), freq);

                if( l_it == o_vpd_supported_freqs.end() || is_first_supported_freq )
                {
                    is_first_supported_freq = false;
                    FAPI_INF("VPD supported freq added: %d for %s", freq, mss::c_str(p) );
                    o_vpd_supported_freqs.push_back(freq);
                }
            }// freqs
        }// mca
    }//mcs


    std::sort( o_vpd_supported_freqs.begin(), o_vpd_supported_freqs.end() );

    return fapi2::FAPI2_RC_SUCCESS;

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Removes frequencies unsupported by SPD from a sorted list of supported freqs -- helper function for testing
/// @param[in] i_target the MCBIST target
/// @param[in] i_highest_freq largest SPD supported freq
/// @param[in,out] io_freqs std::vector of VPD supported freqs (sorted)
///
void rm_unsupported_spd_freqs(const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
                              const uint32_t i_highest_freq,
                              std::vector<uint32_t>& io_freqs)
{

    // Don't use 'auto' since I want a const iterator and HB compiler
    // bombs out using 'const auto'...
    // The idea here is that if SPD across and MC can only support 2133 MT/s,
    // we remove any supported frequencies in the vector higher than that (e.g. 2400, 2666)
    auto it = std::upper_bound(io_freqs.begin(), io_freqs.end(), i_highest_freq);

    // Remove all frequencies higher than max supported SPD freq per MCBIST
    // since we set freq at that level
    if( it != io_freqs.end() )
    {
        io_freqs.erase(it, io_freqs.end());
    }

    return;
}

///
/// @brief Retrieves largest supported frequency the MC supports due to DIMM SPD
/// @param[in] i_target the MCBIST target
/// @param[out] o_highest_freq the largest SPD supported freq
/// @return FAPI2_RC_SUCCESS iff okay
///
fapi2::ReturnCode largest_spd_supported_freq(const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
        uint32_t& o_highest_freq)
{
    uint64_t l_largest_tck = 0;

    // Get cached decoder
    std::vector< std::shared_ptr<mss::spd::decoder> > l_factory_caches;

    FAPI_TRY( mss::spd::populate_decoder_caches(i_target, l_factory_caches),
              "%s. Failed to populate decoder cache", mss::c_str(i_target) );

    // Looking for the biggest application period on an MC.
    // This will further reduce supported frequencies the system can run on.
    for ( const auto& l_cache : l_factory_caches )
    {
        const auto l_dimm = l_cache->iv_target;
        uint64_t l_tckmax_in_ps = 0;
        uint64_t l_tck_min_in_ps = 0;

        FAPI_TRY( get_tckmax(l_cache, l_tckmax_in_ps),
                  "%s. Failed to get tCKmax", mss::c_str(l_dimm) );
        FAPI_TRY( get_tckmin(l_cache, l_tck_min_in_ps),
                  "%s. Failed to get tCKmin", mss::c_str(l_dimm) );

        // Determine a proposed tCK value that is greater than or equal tCKmin
        // But less than tCKmax
        l_largest_tck = std::max(l_largest_tck, l_tck_min_in_ps);
        l_largest_tck = std::min(l_largest_tck, l_tckmax_in_ps);
    }

    FAPI_TRY( mss::ps_to_freq(l_largest_tck, o_highest_freq) );
    FAPI_INF("Biggest freq supported from SPD %d MT/s for %s",
             o_highest_freq, mss::c_str(i_target));

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Create and sort a vector of supported MT/s (freq)
/// @param[in] i_target MCBIST target for which to get the DIMM configs
/// @param[out] o_freqs reference to a std::vector to put the sorted vector
/// @return FAPI2_RC_SUCCESS iff ok
/// @note Taken from VPD supported freqs. The result is sorted so such that the min
/// supported freq is std::vector<>.begin and the max is std::vector<>.end - 1. You can
/// search the resulting vector for valid frequencies as it is sorted.
///
fapi2::ReturnCode supported_freqs(const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
                                  std::vector<uint32_t>& o_freqs)
{
    o_freqs.clear();

    std::vector<uint32_t> l_vpd_supported_freqs;
    uint32_t l_largest_spd_freq = 0;
    uint8_t l_req_sync_mode = 0;

    // Retrieve system MRW constraints
    std::vector<uint32_t> l_max_freqs(NUM_MAX_FREQS, 0);
    FAPI_TRY( mss::max_allowed_dimm_freq(l_max_freqs.data()) );

    // Retrieve frequency constraints due to DIMM SPD and VPD per MCBIST
    FAPI_TRY( largest_spd_supported_freq(i_target, l_largest_spd_freq) );
    FAPI_TRY( vpd_supported_freqs(i_target, l_vpd_supported_freqs) );
    rm_unsupported_spd_freqs(i_target, l_largest_spd_freq, l_vpd_supported_freqs);

    FAPI_TRY( mss::required_synch_mode(l_req_sync_mode) );

    FAPI_TRY( supported_freqs_helper( i_target,
                                      l_vpd_supported_freqs,
                                      l_max_freqs,
                                      l_req_sync_mode == fapi2::ENUM_ATTR_REQUIRED_SYNCH_MODE_ALWAYS,
                                      o_freqs) );
fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Create and sort a vector of supported MT/s (freq) - helper for testing purposes
/// @param[in] i_target MCBIST target for which to get the DIMM configs
/// @param[in] i_hw_freqs vector of hardware supported freqs -- from VPD and SPD
/// @param[in] i_max_mrw_freqs vector of max allowed freqs
/// @param[in] i_req_sync_mode bool whether or not we're forced into sync mode
/// @param[out] o_freqs reference to a std::vector to put the sorted vector
/// @return FAPI2_RC_SUCCESS iff ok
/// @note the attributes which drive this are read-only so they're hard to change when
/// testing. So this helper allows us to use the attributes for the main path but
/// have a path for testing (DFT I think the cool kids call it.)
///
fapi2::ReturnCode supported_freqs_helper(const fapi2::Target<TARGET_TYPE_MCBIST>& i_target,
        const std::vector<uint32_t>& i_hw_freqs,
        const std::vector<uint32_t>& i_max_mrw_freqs,
        const bool i_req_sync_mode,
        std::vector<uint32_t>& o_freqs)
{
    // Indexes into the ATTR_MAX_ALLOWED_DIMM_FREQ arrary. e.g., [0][0] is 1R 1 drop
    constexpr size_t l_indexes[MAX_DIMM_PER_PORT][MAX_PRIMARY_RANKS_PER_PORT] =
    {
        {0, 1, 0xFF, 2},
        {3, 4, 0xFF, 0xFF}
    };

    // Holds the max freq allowed for this configuration of DIMMs. This is the minimum of maximum
    // frequencies allowed by the DIMM. So, we start way off the charts so std::min can do the lifting for us.
    uint32_t l_our_max_freq = ~(0);

    // This is the number of elements in the max_allowed_dimm_freq attribute, not the frequencies of
    // the system.
    FAPI_ASSERT( i_max_mrw_freqs.size() == NUM_MAX_FREQS,
                 fapi2::MSS_MAX_FREQ_ATTR_SIZE_CHANGED()
                 .set_ACTUAL_SIZE(i_max_mrw_freqs.size())
                 .set_SUPPOSED_SIZE(NUM_MAX_FREQS)
                 .set_MCA_TARGET(i_target),
                 "%s Incorrect number of max frequencies in attribute for (%d)",
                 mss::c_str(i_target),
                 i_max_mrw_freqs.size());

    FAPI_INF("attribute supported max allowed dimm freqs %d %d %d %d %d for %s",
             i_max_mrw_freqs[0], i_max_mrw_freqs[1], i_max_mrw_freqs[2], i_max_mrw_freqs[3], i_max_mrw_freqs[4],
             mss::c_str(i_target));

    // This is the list of supported frequencies for VPD and SPD
    FAPI_ASSERT( !i_hw_freqs.empty(),
                 fapi2::MSS_EMPTY_VECTOR().
                 set_FUNCTION(SUPPORTED_FREQS).
                 set_TARGET(i_target),
                 "Supported system freqs from VPD and SPD are empty for %s",
                 mss::c_str(i_target));

    for( const auto& freq : i_hw_freqs )
    {
        FAPI_DBG("VPD supported freqs %d for %s", freq, mss::c_str(i_target) );
    }

    for( const auto& p : mss::find_targets<fapi2::TARGET_TYPE_MCA>(i_target) )
    {
        const auto l_dimms = mss::find_targets<TARGET_TYPE_DIMM>(p);
        const uint64_t l_dimms_on_port = l_dimms.size();

        FAPI_ASSERT( (l_dimms_on_port <= MAX_DIMM_PER_PORT),
                     fapi2::MSS_TOO_MANY_DIMMS_ON_PORT()
                     .set_DIMM_COUNT(l_dimms_on_port)
                     .set_MCA_TARGET(p),
                     "Seeing %d DIMM on port %s",
                     l_dimms_on_port,
                     mss::c_str(p));

        for (const auto& d : l_dimms)
        {
            uint8_t l_num_master_ranks = 0;
            size_t l_index = 0xFF;

            FAPI_TRY( mss::eff_num_master_ranks_per_dimm(d, l_num_master_ranks) );

            // Just a quick check but we're in deep yogurt if this triggers
            FAPI_ASSERT( (l_num_master_ranks <= MAX_PRIMARY_RANKS_PER_PORT),
                         fapi2::MSS_TOO_MANY_PRIMARY_RANKS_ON_DIMM()
                         .set_RANK_COUNT(l_num_master_ranks)
                         .set_DIMM_TARGET(d),
                         "seeing %d primary ranks on DIMM %s",
                         l_dimms_on_port,
                         mss::c_str(d));

            l_index = l_indexes[l_dimms_on_port - 1][l_num_master_ranks - 1];

            FAPI_ASSERT( (l_index < NUM_MAX_FREQS),
                         fapi2::MSS_FREQ_INDEX_TOO_LARGE()
                         .set_INDEX(l_index)
                         .set_NUM_MAX_FREQS(NUM_MAX_FREQS),
                         "seeing %d index for %d DIMM and %d ranks on DIMM %s",
                         l_index,
                         l_dimms_on_port,
                         l_num_master_ranks,
                         mss::c_str(d));

            FAPI_INF("%s rank config %d drop %d yields max freq attribute index of %d (%d)",
                     mss::c_str(d), l_num_master_ranks, l_dimms_on_port,
                     l_indexes[l_dimms_on_port - 1][l_num_master_ranks - 1],
                     i_max_mrw_freqs[l_index] );

            l_our_max_freq = std::min(l_our_max_freq, i_max_mrw_freqs[l_index]);
        }// dimm
    }// mca

    FAPI_INF("after processing DIMM, max freq is %d", l_our_max_freq);

    // We need to push things as the memcpy doesn't update the vector's count, etc. and we don't
    // create the vector, we get it passed in. It's not a big deal as we want to touch all the elements
    // to check for 0's anyway.
    for (size_t i = 0; i < i_hw_freqs.size(); ++i)
    {
        // Funky if-tree makes things clearer than a combinatorialy explosive conditional
        if (i_hw_freqs[i] == 0)
        {
            // Skip 0's
            continue;
        }

        if (i_hw_freqs[i] > l_our_max_freq)
        {
            // Skip freqs larger than our max
            continue;
        }

        // Add this freq if we're not in sync mode, or, if we are, add it if it matches a nest freq
        FAPI_INF("attribute required sync mode %d for %s", i_req_sync_mode, mss::c_str(i_target));

        if( i_req_sync_mode && !is_nest_freq_valid(i_hw_freqs[i]) )
        {
            continue;
        }

        o_freqs.push_back(i_hw_freqs[i]);

    }//end for

    {
        // Doing this because the HB compiler freaks out if we have it within the FAPI_ASSERT.
        // Outputting the value and then incrementing the iterator, that's why it's a post increment
        // We have at most 4 memory freqs (1866, 2133, 2400, & 2666), if we ever get a list with < 4 items
        // a value of 0 is logged in FFDC once we hit i_hw_freqs.end()...which is better than no logging.
        auto l_supported = i_hw_freqs.begin();

        const auto l_freq0 = (l_supported != i_hw_freqs.end()) ? *(l_supported++) : 0;
        const auto l_freq1 = (l_supported != i_hw_freqs.end()) ? *(l_supported++) : 0;
        const auto l_freq2 = (l_supported != i_hw_freqs.end()) ? *(l_supported++) : 0;
        const auto l_freq3 = (l_supported != i_hw_freqs.end()) ? *(l_supported++) : 0;

        // If we have an empty set, we have a problem
        FAPI_ASSERT(o_freqs.size() != 0,
                    fapi2::MSS_MRW_FREQ_MAX_FREQ_EMPTY_SET()
                    .set_MSS_VPD_FREQ_0(l_freq0)
                    .set_MSS_VPD_FREQ_1(l_freq1)
                    .set_MSS_VPD_FREQ_2(l_freq2)
                    .set_MSS_VPD_FREQ_3(l_freq3)
                    .set_MSS_MAX_FREQ_0(i_max_mrw_freqs[0])
                    .set_MSS_MAX_FREQ_1(i_max_mrw_freqs[1])
                    .set_MSS_MAX_FREQ_2(i_max_mrw_freqs[2])
                    .set_MSS_MAX_FREQ_3(i_max_mrw_freqs[3])
                    .set_MSS_MAX_FREQ_4(i_max_mrw_freqs[4])
                    .set_MSS_NEST_FREQ_0(fapi2::ENUM_ATTR_FREQ_PB_MHZ_1600)
                    .set_MSS_NEST_FREQ_1(fapi2::ENUM_ATTR_FREQ_PB_MHZ_1866)
                    .set_MSS_NEST_FREQ_2(fapi2::ENUM_ATTR_FREQ_PB_MHZ_2000)
                    .set_MSS_NEST_FREQ_3(fapi2::ENUM_ATTR_FREQ_PB_MHZ_2133)
                    .set_MSS_NEST_FREQ_4(fapi2::ENUM_ATTR_FREQ_PB_MHZ_2400)
                    .set_REQUIRED_SYNC_MODE(i_req_sync_mode)
                    .set_MAX_FREQ_FROM_DIMM(l_our_max_freq)
                    .set_MCBIST_TARGET(i_target),
                    "%s didn't find a frequency which was in VPD and was allowable max", mss::c_str(i_target));
    }

    // We now know o_freqs contains valid frequencies for this DIMM config, system contraints, and sync mode.
    // Sort it so we know supported min is o_freq.begin and supported max is o_freq.end - 1
    std::sort(o_freqs.begin(), o_freqs.end());

fapi_try_exit:
    return fapi2::current_err;
}

}// mss
OpenPOWER on IntegriCloud