summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/memory/lib/eff_config/timing.H
blob: d748400cbb0a87fdf43e736f66f3f871e018d508 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/p9/procedures/hwp/memory/lib/eff_config/timing.H $ */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2016,2019                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
///
/// @file timing.H
/// @brief Determine effective config for mss settings
///
// *HWP HWP Owner: Andre Marin <aamarin@us.ibm.com>
// *HWP FW Owner: Stephen Glancy <sglancy@us.ibm.com>
// *HWP Team: Memory
// *HWP Level: 3
// *HWP Consumed by: HB:FSP

#ifndef _MSS_TIMING_H_
#define _MSS_TIMING_H_

#include <cstdint>
#include <fapi2.H>
#include <lib/mss_attribute_accessors.H>
#include <generic/memory/lib/utils/find.H>
#include <generic/memory/lib/utils/shared/mss_generic_consts.H>
#include <generic/memory/lib/utils/dimm/mss_timing.H>
#include <lib/utils/mss_nimbus_conversions.H>

namespace mss
{

///
/// @brief Returns application clock period (tCK) based on dimm transfer rate
/// @tparam T the fapi2 target
/// @tparam OT output type
/// @param[in] i_target FAPI2 target
/// @param[out] o_tCK_in_ps application period in ps
/// @return fapi2::FAPI2_RC_SUCCESS iff okay
///
template<fapi2::TargetType T, typename OT>
inline fapi2::ReturnCode clock_period(const fapi2::Target<T>& i_target,
                                      OT& o_tCK_in_ps)
{
    uint64_t l_dimm_transfer_rate = 0;
    FAPI_TRY( freq(find_target<fapi2::TARGET_TYPE_MCBIST>(i_target), l_dimm_transfer_rate) );

    FAPI_TRY( freq_to_ps(l_dimm_transfer_rate, o_tCK_in_ps) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief DLL locking time *in clocks*
/// @tparam T the fapi2::TargetType of i_target
/// @tparam OT the type of the output location
/// @param[in] i_target a target for attributes
/// @param[out] o_value reference to space into which to store the output
/// @return fapi2::FAPI2_RC_SUCCESS iff okay
///
template< fapi2::TargetType T, typename OT = uint64_t >
inline fapi2::ReturnCode tdllk( const fapi2::Target<T>& i_target, OT& o_value )
{
    uint64_t l_freq = 0;
    o_value = 854;

    // Calculate tDLLK from our MT/s. Magic numbers (in clocks) from the DDR4 spec
    FAPI_TRY( mss::freq(mss::find_target<fapi2::TARGET_TYPE_MCBIST>(i_target), l_freq) );

    switch(l_freq)
    {
        case fapi2::ENUM_ATTR_MSS_FREQ_MT1866:
            o_value = 597;
            break;

        case fapi2::ENUM_ATTR_MSS_FREQ_MT2133:
        case fapi2::ENUM_ATTR_MSS_FREQ_MT2400:
            o_value = 768;
            break;


        case fapi2::ENUM_ATTR_MSS_FREQ_MT2666:
            o_value = 854;
            break;

        default:
            FAPI_ASSERT( false,
                         fapi2::MSS_INVALID_FREQ_PASSED_IN()
                         .set_FREQ(l_freq)
                         .set_FUNCTION(TDLLK)
                         .set_DIMM_TARGET(i_target),
                         "%s Invalid frequency %lu",
                         mss::c_str(i_target),
                         l_freq);
    }

    return fapi2::FAPI2_RC_SUCCESS;

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Time it takes to do a buffer control word write
/// @return constexpr value of 16 clocks
///
constexpr uint64_t tbcw()
{
    // Per DDR4 buffer JEDEC spec - timing requirements
    return 16;
}

///
/// @brief Mode Register Set Command Cycle Time
/// @return constexpr value of 8 clocks
///
constexpr uint64_t tmrd()
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return 8;
}

///
/// @brief Command Pass Disable Delay Time
/// @return constexpr value of 4 clocks
///
constexpr uint64_t tcpded()
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return 4;
}

///
/// @brief Control word to control word delay
/// @return constexpr value of 16 clocks
///
constexpr uint64_t tmrd_l()
{
    // Per DDR4RCD02 Spec Rev 0.85
    return 16;
}

///
/// @brief Control word to control word delay for L2 (using F0RC0D or F0RC0F)
/// @return constexpr value of 32 clocks
///
constexpr uint64_t tmrd_l2()
{
    // Per DDR4RCD02 Spec Rev 0.85
    return 32;
}

///
/// @brief Control word F0RC06 with or without geardown mode
/// @note using the geardown mode which is longer for saftey
/// @return constexpr value of 32 clocks
///
constexpr uint64_t tmrc1()
{
    // Per DDR4RCD02 Spec Rev 0.85
    return 32;
}

///
/// @brief Stabilization time
/// @return constexpr value of 5 us
///
constexpr uint64_t tstab()
{
    // Per DDR4RCD02 Spec Rev 0.85 CK_t stable
    return 5;
}

///
/// @brief Power-up and RESET calibration time
/// @return constexpr value of 1024 clocks
///
constexpr uint64_t tzqinit()
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return 1024;
}

///
/// @brief Normal operation Full calibration time
/// @return constexpr value of 512 clocks
///
constexpr uint64_t tzqoper()
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return 512;
}

///
/// @brief Normal operation Short calibration time
/// @return constexpr value of 128 clocks
///
constexpr uint64_t tzqcs()
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return 128;
}

///
/// @brief First DQS_t/DQS_n rising edge after write leveling mode is programmed
/// @return constexpr value of 40 clocks
///
constexpr uint64_t twlmrd()
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return 40;
}

///
/// @brief Buffer command word to BCW or DRAM cmd delay
/// @return constexpr value of 16 clocks
///
constexpr uint64_t tmrc()
{
    // DDR4DB01 Spec Rev 1.0 - input timing requirements
    return 16;
}

///
/// @brief Mode Register Set command update delay
/// @tparam T fapi2::TargetType of the target used to calculate cycles from ns
/// @param[in] i_target the target used to get clocks
/// @return max(24nCK,15ns) in clocks
///
template< fapi2::TargetType T >
inline uint64_t tmod( const fapi2::Target<T>& i_target )
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return mss::max_ck_ns<T>( i_target, 24, 15 );
}

///
/// @brief RTT change skew
/// @return constexpr value of 1 clock
///
constexpr uint8_t tadc()
{
    // Per DDR4 spec, this value is between 0.3 and 0.7, so round up to 1 clk
    return 1;
}

///
/// @brief Self Refresh Entry delay
/// @tparam T fapi2::TargetType of the target used to calculate cycles from ns
/// @param[in] i_target the target used to get clocks
/// @return max(5nCK,10ns) in clocks
///
template< fapi2::TargetType T >
inline uint64_t tcksre( const fapi2::Target<T>& i_target )
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return mss::max_ck_ns<T>( i_target, 5, 10 );
}

///
/// @brief Self Refresh Exit delay
/// @tparam T fapi2::TargetType of the target used to calculate cycles from ns
/// @param[in] i_target the target used to get clocks
/// @return max(5nCK,10ns) in clocks
///
template< fapi2::TargetType T >
inline uint64_t tcksrx( const fapi2::Target<T>& i_target )
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return mss::max_ck_ns<T>( i_target, 5, 10 );
}

///
/// @brief DQS_t/DQS_n delay after write leveling mode is programmed
/// @tparam T fapi2::TargetType of the target used to calculate cycles from ns
/// @param[in] i_target the target used to get tMOD clocks
/// @param[out] o_twldqsen *in clocks*
/// @return FAPI2_RC_SUCCESS iff ok
///
template< fapi2::TargetType T >
inline fapi2::ReturnCode twldqsen( const fapi2::Target<T>& i_target, uint8_t& o_twldqsen )
{
    const uint8_t l_tadc = tadc();
    const auto l_tmod = tmod(i_target);
    uint8_t l_ca_parity_latency = 0;
    uint8_t l_al = 0;
    uint8_t l_cwl = 0;

    FAPI_TRY( mss::eff_ca_parity_latency(i_target, l_ca_parity_latency) );
    FAPI_TRY( mss::eff_dram_al(i_target, l_al) );
    FAPI_TRY( mss::eff_dram_cwl(i_target, l_cwl) );

    // tWLDQSEN >= tMOD + WL + tADC
    // WL = CWL + AL + PL
    o_twldqsen = l_tmod + l_cwl + l_al + l_ca_parity_latency + l_tadc;
    FAPI_INF("twldqsen %d for %s", o_twldqsen, mss::c_str(i_target));

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Calculate TWLO_TWLOE
/// @tparam T fapi2::TargetType of the target used to calculate cycles from ns
/// @param[in] i_target the target used to get DIMM clocks
/// @return uint64_t, TWLO_TWLOE in cycles
///
template< fapi2::TargetType T >
inline uint64_t twlo_twloe(const fapi2::Target<T>& i_target)
{
    // From the PHY databook:
    // 12 + std::max((twldqsen - tmod), (twlo - twlow))
    //    + longest DQS delay in clocks (rounded up) + longest DQ delay in clocks (rounded up)
    // Magic numbers taken from talking with Anuwat (twloe) and reviewing the Centaur code (ldq/ldqs)
    constexpr uint64_t l_dq_ck = 1;
    constexpr uint64_t l_dqs_ck = 1;
    uint8_t l_wlo_ck = 0;
    uint64_t l_wloe_ck = mss::ns_to_cycles<T>(i_target, 2);
    uint64_t l_twlo_twloe = 0;
    uint8_t l_twldqsen = 0;

    FAPI_TRY( mss::eff_dphy_wlo(i_target, l_wlo_ck) );
    FAPI_TRY( mss::twldqsen(i_target, l_twldqsen) );

    // TODO RTC:160356 This changes if wlo is signed, which it's not but I wonder if it should
    // be ... (the PHY register is.) It changes because we need to round up to 0 if needed.
    l_twlo_twloe = 12 + std::max( (l_twldqsen + tmod(i_target)), (l_wlo_ck + l_wloe_ck) ) + l_dq_ck + l_dqs_ck;
    FAPI_INF("twlo_twloe %d for %s", l_twlo_twloe, mss::c_str(i_target));
    return l_twlo_twloe;

fapi_try_exit:
    // We're in deep horseradish if we can't get wlo
    FAPI_ERR("failed to calculate twlo_twloe for %s", mss::c_str(i_target));
    fapi2::Assert(false);
    return 0;
}

///
/// @brief Direct ODT turn on Latency
/// @param[in] i_target the DIMM target used to get attributes
/// @param[out] o_dodt *in clocks*
/// @return FAPI2_RC_SUCCESS iff ok
///
inline fapi2::ReturnCode dodt_on( const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target, uint8_t& o_dodt )
{
    // CWL + AL + PL - 2.0 per DDR4 Full spec update(79-4B)

    uint8_t l_ca_parity_latency = 0;
    uint8_t l_al = 0;
    uint8_t l_cwl = 0;

    FAPI_TRY( mss::eff_ca_parity_latency(i_target, l_ca_parity_latency) );
    FAPI_TRY( mss::eff_dram_al(i_target, l_al) );
    FAPI_TRY( mss::eff_dram_cwl(i_target, l_cwl) );

    o_dodt = l_cwl + l_al + l_ca_parity_latency - 2;
    FAPI_INF( "dodt_on %s %d", mss::c_str(i_target), o_dodt );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Direct ODT turn off Latency
/// @param[in] i_target the DIMM target used to get attributes
/// @param[out] o_dodt *in clocks*
/// @return FAPI2_RC_SUCCESS iff ok
///
inline fapi2::ReturnCode dodt_off( const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target, uint8_t& o_dodt )
{
    // Same for all frequencies of DDR4; DDR4 Full spec update(79-4B)
    return dodt_on(i_target, o_dodt);
}

///
/// @brief Direct ODT turn on Latency - max value on port
/// @param[in] i_target the MCA target
/// @param[out] o_dodt *in clocks*
/// @return FAPI2_RC_SUCCESS iff ok
///
inline fapi2::ReturnCode max_dodt_on( const fapi2::Target<fapi2::TARGET_TYPE_MCA>& i_target, uint8_t& o_dodt )
{
    for (const auto& d : mss::find_targets<fapi2::TARGET_TYPE_DIMM>(i_target))
    {
        uint8_t l_odt = 0;
        FAPI_TRY( mss::dodt_on(d, l_odt) );

        o_dodt = std::max(o_dodt, l_odt);
    }

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief Direct ODT turn off Latency - max value on port
/// @param[in] i_target the MCA
/// @param[out] o_dodt *in clocks*
/// @return FAPI2_RC_SUCCESS iff ok
///
inline fapi2::ReturnCode max_dodt_off( const fapi2::Target<fapi2::TARGET_TYPE_MCA>& i_target, uint8_t& o_dodt )
{
    // Same for all frequencies of DDR4; DDR4 Full spec update(79-4B)
    return max_dodt_on(i_target, o_dodt);
}

// TK RODTon - The use would be for the ODT in the PHY, but the max RODT is equal to or less than
// the max DODTon/off so it would really never be used anyway there anyway. We can implement it if
// we find another need for it.

///
/// @brief Number of memory clock cycles to wait between the write and
/// read command pairs during Write Centering.
/// @return constexpr value of 0 clocks
///
constexpr uint64_t fw_wr_rd()
{
    // Per PHY spec, defaults to 0. Would need an attribute to drive differently
    return 0;
}

///
/// @brief This value sets the delay between a read and write command in memory clock cycles.
/// This delay value is used in two places in the write centering algorithm.
/// @param[in] i_target the MCA
/// @param[out] o_fw_rd_wr *in clocks*
/// @return FAPI2_RC_SUCCESS iff ok
///
inline fapi2::ReturnCode fw_rd_wr( const fapi2::Target<fapi2::TARGET_TYPE_MCA>& i_target, uint8_t& o_fw_rd_wr )
{
    // From the PHY spec. Also confirmed with S. Wyatt as this is different than the calculation used in Centaur.
    // This field must be set to the larger of the two values in number of memory clock cycles.
    // FW_RD_WR = max(tWTR + 11, AL + tRTP + 3)
    // Note from J. Bialas: The difference between tWTR_S and tWTR_L is that _S is write to read
    // time to different bank groups, while _L is to the same. The algorithm should be switching
    // bank groups so tWTR_S can be used
    uint8_t l_trtp = 0;
    uint8_t l_twtr_s = 0;
    uint8_t l_al = 0;
    FAPI_TRY( mss::eff_dram_trtp(i_target, l_trtp) );
    FAPI_TRY( mss::eff_dram_twtr_s(i_target, l_twtr_s) );
    FAPI_TRY( mss::eff_dram_al(i_target, l_al) );

    o_fw_rd_wr = std::max(l_twtr_s + 11, l_al + l_trtp + 3);
    return fapi2::FAPI2_RC_SUCCESS;

fapi_try_exit:
    FAPI_ERR("Error calculating the delay between a read and write command in memory clock cycles (fw_rd_wr");
    return fapi2::current_err;
}

///
/// @brief VREF DQ Enter time *in clocks*
/// @tparam T the fapi2::TargetType of i_target
/// @param[in] i_target a target for attributes
/// @return VREF DQ Enter time *in clocks*
///
template< fapi2::TargetType T >
inline uint64_t tvrefdqe( const fapi2::Target<T>& i_target )
{
    // JEDEC tVREFDQE in ns
    constexpr uint64_t tVREFDQE = 150;
    return ns_to_cycles<T>(i_target, tVREFDQE);
}

///
/// @brief VREF DQ Exit time *in clocks*
/// @tparam T the fapi2::TargetType of i_target
/// @param[in] i_target a target for attributes
/// @return VREF DQ Exit time *in clocks*
///
template< fapi2::TargetType T >
inline uint64_t tvrefdqx( const fapi2::Target<T>& i_target )
{
    // JEDEC tVREFDQX in ns
    constexpr uint64_t tVREFDQX = 150;
    return ns_to_cycles<T>(i_target, tVREFDQX);
}

///
/// @brief CAS_n to CAS_n command delay for different bank group
/// @return constexpr value of 4 clocks
///
constexpr uint64_t tccd_s()
{
    // Per DDR4 Full spec update (79-4A) - timing requirements
    return 4;
}

} // mss
#endif
OpenPOWER on IntegriCloud