summaryrefslogtreecommitdiffstats
path: root/src/import/chips/p9/procedures/hwp/memory/lib/ccs/ccs.H
blob: e242dd42687d52f2932133d000ce7e39305b1b62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/p9/procedures/hwp/memory/lib/ccs/ccs.H $     */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2015,2016                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */

///
/// @file ccs.H
/// @brief Run and manage the CCS engine
///
// *HWP HWP Owner: Brian Silver <bsilver@us.ibm.com>
// *HWP HWP Backup: Andre Marin <aamarin@us.ibm.com>
// *HWP Team: Memory
// *HWP Level: 1
// *HWP Consumed by: HB:FSP

#ifndef _MSS_CCS_H_
#define _MSS_CCS_H_

#include <fapi2.H>

#include <p9_mc_scom_addresses.H>

#include <lib/utils/poll.H>
#include <lib/utils/swizzle.H>
#include <lib/mc/port.H>
#include <lib/shared/mss_const.H>

// I have a dream that the CCS engine code can be shared among controllers. So, I drive the
// engine from a set of traits. This might be folly. Allow me to dream. BRS

template< fapi2::TargetType T >
class ccsTraits;

// Centaur CCS Engine traits
template<>
class ccsTraits<fapi2::TARGET_TYPE_MEMBUF_CHIP>
{
    public:
};

// Nimbus CCS Engine traits
template<>
class ccsTraits<fapi2::TARGET_TYPE_MCBIST>
{
    public:
        static const uint64_t MODEQ_REG = MCBIST_CCS_MODEQ;
        static const uint64_t MCB_CNTL_REG = MCBIST_MCB_CNTLQ;
        static const uint64_t CNTLQ_REG = MCBIST_CCS_CNTLQ;
        static const uint64_t STATQ_REG = MCBIST_CCS_STATQ;

        enum
        {
            // CCS MODEQ
            STOP_ON_ERR = MCBIST_CCS_MODEQ_STOP_ON_ERR,
            UE_DISABLE = MCBIST_CCS_MODEQ_UE_DISABLE,
            DATA_COMPARE_BURST_SEL = MCBIST_CCS_MODEQ_DATA_COMPARE_BURST_SEL,
            DATA_COMPARE_BURST_SEL_LEN = MCBIST_CCS_MODEQ_DATA_COMPARE_BURST_SEL_LEN,
            DDR_CAL_TIMEOUT_CNT = MCBIST_CCS_MODEQ_DDR_CAL_TIMEOUT_CNT,
            DDR_CAL_TIMEOUT_CNT_LEN = MCBIST_CCS_MODEQ_DDR_CAL_TIMEOUT_CNT_LEN,
            CFG_PARITY_AFTER_CMD = MCBIST_CCS_MODEQ_CFG_PARITY_AFTER_CMD,
            COPY_CKE_TO_SPARE_CKE = MCBIST_CCS_MODEQ_COPY_CKE_TO_SPARE_CKE,
            DISABLE_ECC_ARRAY_CHK = MCBIST_CCS_MODEQ_DISABLE_ECC_ARRAY_CHK,
            DISABLE_ECC_ARRAY_CORRECTION = MCBIST_CCS_MODEQ_DISABLE_ECC_ARRAY_CORRECTION,
            CFG_DGEN_FIXED_MODE = MCBIST_CCS_MODEQ_CFG_DGEN_FIXED_MODE,
            DDR_CAL_TIMEOUT_CNT_MULT = MCBIST_CCS_MODEQ_DDR_CAL_TIMEOUT_CNT_MULT,
            DDR_CAL_TIMEOUT_CNT_MULT_LEN = MCBIST_CCS_MODEQ_DDR_CAL_TIMEOUT_CNT_MULT_LEN,
            IDLE_PAT_ADDRESS_0_13 = MCBIST_CCS_MODEQ_IDLE_PAT_ADDRESS_0_13,
            IDLE_PAT_ADDRESS_0_13_LEN = MCBIST_CCS_MODEQ_IDLE_PAT_ADDRESS_0_13_LEN,
            IDLE_PAT_ADDRESS_17 = MCBIST_CCS_MODEQ_IDLE_PAT_ADDRESS_17,
            IDLE_PAT_BANK_GROUP_1 = MCBIST_CCS_MODEQ_IDLE_PAT_BANK_GROUP_1,
            IDLE_PAT_BANK_0_1 = MCBIST_CCS_MODEQ_IDLE_PAT_BANK_0_1,
            IDLE_PAT_BANK_0_1_LEN = MCBIST_CCS_MODEQ_IDLE_PAT_BANK_0_1_LEN,
            IDLE_PAT_BANK_GROUP_0 = MCBIST_CCS_MODEQ_IDLE_PAT_BANK_GROUP_0,
            IDLE_PAT_ACTN = MCBIST_CCS_MODEQ_IDLE_PAT_ACTN,
            IDLE_PAT_ADDRESS_16 = MCBIST_CCS_MODEQ_IDLE_PAT_ADDRESS_16,
            IDLE_PAT_ADDRESS_15 = MCBIST_CCS_MODEQ_IDLE_PAT_ADDRESS_15,
            IDLE_PAT_ADDRESS_14 = MCBIST_CCS_MODEQ_IDLE_PAT_ADDRESS_14,
            NTTM_MODE = MCBIST_CCS_MODEQ_NTTM_MODE,
            NTTM_RW_DATA_DLY = MCBIST_CCS_MODEQ_NTTM_RW_DATA_DLY,
            NTTM_RW_DATA_DLY_LEN = MCBIST_CCS_MODEQ_NTTM_RW_DATA_DLY_LEN,
            IDLE_PAT_BANK_2 = MCBIST_CCS_MODEQ_IDLE_PAT_BANK_2,
            DDR_PARITY_ENABLE = MCBIST_CCS_MODEQ_DDR_PARITY_ENABLE,
            IDLE_PAT_PARITY = MCBIST_CCS_MODEQ_IDLE_PAT_PARITY,

            // MCB_CNTRL
            MCB_CNTL_PORT_SEL = MCBIST_MCB_CNTLQ_MCBCNTL_PORT_SEL,
            MCB_CNTL_PORT_SEL_LEN = MCBIST_MCB_CNTLQ_MCBCNTL_PORT_SEL_LEN,

            // CCS CNTL
            CCS_START = MCBIST_CCS_CNTLQ_START,
            CCS_STOP = MCBIST_CCS_CNTLQ_STOP,

            // CCS STATQ
            CCS_IN_PROGRESS = MCBIST_CCS_STATQ_IP,

            // ARR0
            ARR0_DDR_ADDRESS_0_13 = MCBIST_CCS_INST_ARR0_00_DDR_ADDRESS_0_13,
            ARR0_DDR_ADDRESS_0_13_LEN = MCBIST_CCS_INST_ARR0_00_DDR_ADDRESS_0_13_LEN,
            ARR0_DDR_ADDRESS_17 = MCBIST_CCS_INST_ARR0_00_DDR_ADDRESS_17,
            ARR0_DDR_BANK_GROUP_1 = MCBIST_CCS_INST_ARR0_00_DDR_BANK_GROUP_1,
            ARR0_DDR_RESETN = MCBIST_CCS_INST_ARR0_00_DDR_RESETN,
            ARR0_DDR_BANK_0_1 = MCBIST_CCS_INST_ARR0_00_DDR_BANK_0_1,
            ARR0_DDR_BANK_0_1_LEN = MCBIST_CCS_INST_ARR0_00_DDR_BANK_0_1_LEN,
            ARR0_DDR_BANK_GROUP_0 = MCBIST_CCS_INST_ARR0_00_DDR_BANK_GROUP_0,
            ARR0_DDR_ACTN = MCBIST_CCS_INST_ARR0_00_DDR_ACTN,
            ARR0_DDR_ADDRESS_16 = MCBIST_CCS_INST_ARR0_00_DDR_ADDRESS_16,
            ARR0_DDR_ADDRESS_15 = MCBIST_CCS_INST_ARR0_00_DDR_ADDRESS_15,
            ARR0_DDR_ADDRESS_14 = MCBIST_CCS_INST_ARR0_00_DDR_ADDRESS_14,
            ARR0_DDR_CKE = MCBIST_CCS_INST_ARR0_00_DDR_CKE,
            ARR0_DDR_CKE_LEN = MCBIST_CCS_INST_ARR0_00_DDR_CKE_LEN,
            ARR0_DDR_CSN_0_1 = MCBIST_CCS_INST_ARR0_00_DDR_CSN_0_1,
            ARR0_DDR_CSN_0_1_LEN = MCBIST_CCS_INST_ARR0_00_DDR_CSN_0_1_LEN,
            ARR0_DDR_CID_0_1 = MCBIST_CCS_INST_ARR0_00_DDR_CID_0_1,
            ARR0_DDR_CID_0_1_LEN = MCBIST_CCS_INST_ARR0_00_DDR_CID_0_1_LEN,
            ARR0_DDR_CSN_2_3 = MCBIST_CCS_INST_ARR0_00_DDR_CSN_2_3,
            ARR0_DDR_CSN_2_3_LEN = MCBIST_CCS_INST_ARR0_00_DDR_CSN_2_3_LEN,
            ARR0_DDR_CID_2 = MCBIST_CCS_INST_ARR0_00_DDR_CID_2,
            ARR0_DDR_ODT = MCBIST_CCS_INST_ARR0_00_DDR_ODT,
            ARR0_DDR_ODT_LEN = MCBIST_CCS_INST_ARR0_00_DDR_ODT_LEN,
            ARR0_DDR_CAL_TYPE = MCBIST_CCS_INST_ARR0_00_DDR_CAL_TYPE,
            ARR0_DDR_CAL_TYPE_LEN = MCBIST_CCS_INST_ARR0_00_DDR_CAL_TYPE_LEN,
            ARR0_DDR_PARITY = MCBIST_CCS_INST_ARR0_00_DDR_PARITY,
            ARR0_DDR_BANK_2 = MCBIST_CCS_INST_ARR0_00_DDR_BANK_2,
            ARR0_LOOP_BREAK_MODE = MCBIST_CCS_INST_ARR0_00_LOOP_BREAK_MODE,
            ARR0_LOOP_BREAK_MODE_LEN = MCBIST_CCS_INST_ARR0_00_LOOP_BREAK_MODE_LEN,

            // ARR1
            ARR1_IDLES = MCBIST_CCS_INST_ARR1_00_IDLES,
            ARR1_IDLES_LEN = MCBIST_CCS_INST_ARR1_00_IDLES_LEN,
            ARR1_REPEAT_CMD_CNT = MCBIST_CCS_INST_ARR1_00_REPEAT_CMD_CNT,
            ARR1_REPEAT_CMD_CNT_LEN = MCBIST_CCS_INST_ARR1_00_REPEAT_CMD_CNT_LEN,
            ARR1_READ_OR_WRITE_DATA = MCBIST_CCS_INST_ARR1_00_READ_OR_WRITE_DATA,
            ARR1_READ_OR_WRITE_DATA_LEN = MCBIST_CCS_INST_ARR1_00_READ_OR_WRITE_DATA_LEN,
            ARR1_READ_COMPARE_REQUIRED = MCBIST_CCS_INST_ARR1_00_READ_COMPARE_REQUIRED,
            ARR1_DDR_CAL_RANK = MCBIST_CCS_INST_ARR1_00_DDR_CAL_RANK,
            ARR1_DDR_CAL_RANK_LEN = MCBIST_CCS_INST_ARR1_00_DDR_CAL_RANK_LEN,
            ARR1_DDR_CALIBRATION_ENABLE = MCBIST_CCS_INST_ARR1_00_DDR_CALIBRATION_ENABLE,
            ARR1_END = MCBIST_CCS_INST_ARR1_00_END,
            ARR1_GOTO_CMD = MCBIST_CCS_INST_ARR1_00_GOTO_CMD,
            ARR1_GOTO_CMD_LEN = MCBIST_CCS_INST_ARR1_00_GOTO_CMD_LEN,

        };
};

namespace mss
{
namespace ccs
{

enum
{
    // Success is defined as done-bit set, no others.
    STAT_QUERY_SUCCESS    = 0x4000000000000000,

    // Bit positions 3:5
    STAT_READ_MISCOMPARE = 0x1000000000000000,
    STAT_UE_SUE          = 0x0800000000000000,
    STAT_CAL_TIMEOUT     = 0x0400000000000000,

    // If the fail type isn't one of these, we're hung
    STAT_HUNG = 0x0ull,
};

// A ccs instruction is data (array 0) and some control information (array 1)
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
class instruction_t
{
    public:
        fapi2::buffer<uint64_t> arr0;
        fapi2::buffer<uint64_t> arr1;

        ///
        /// @brief intstruction_t ctor
        /// @param[in] i_target the DIMM this instruction is headed for
        /// @param[in] i_rank the rank this instruction is headed for
        /// @param[in] i_arr0 the initial value for arr0, defaults to 0
        /// @param[in] i_arr1 the initial value for arr1, defaults to 0
        ///
        instruction_t( const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target = fapi2::Target<fapi2::TARGET_TYPE_DIMM>(),
                       uint64_t i_rank = 0xFF,
                       const fapi2::buffer<uint64_t> i_arr0 = 0,
                       const fapi2::buffer<uint64_t> i_arr1 = 0):
            arr0(i_arr0),
            arr1(i_arr1)
        {

            static const uint64_t CS_N[mss::MAX_RANK_PER_DIMM] =
            {
                // DCS0 L DCS1 H => Rank 0
                0b01,
                // DCS0 H DCS1 L => Rank 1
                0b10,
            };

            // Start be deselcting everything and we'll clear the bits we want.
            arr0.insertFromRight<TT::ARR0_DDR_CSN_0_1, TT::ARR0_DDR_CSN_0_1_LEN>(0b11);
            arr0.insertFromRight<TT::ARR0_DDR_CSN_2_3, TT::ARR0_DDR_CSN_2_3_LEN>(0b11);

            // If the rank indicates nothing selected (active low) then we're done.
            if (i_rank == 0xFF)
            {
                return;
            }

            //
            // Note: This needs to be able to handle all DIMM, stacked, encoded CS_n, etc. This
            // ain't gonna cut it. Turn this in to a dispatched funtion like c_str() and rcd_load() BRS
            //

            // Direct CS mode - just clear the CS_N you're interested in.
            // Setup the chip select based on which dimm in the slot and the rank
            if (mss::index(i_target) == 0)
            {
                arr0.insertFromRight<TT::ARR0_DDR_CSN_0_1,
                                     TT::ARR0_DDR_CSN_0_1_LEN>(CS_N[i_rank]);
            }
            else
            {
                arr0.insertFromRight<TT::ARR0_DDR_CSN_2_3,
                                     TT::ARR0_DDR_CSN_2_3_LEN>(CS_N[i_rank]);
            }

#ifdef QUAD_ENCODED_CS
            // Implement the Encoded QuadCS Mode DCS, DC mapping and stuff the resulting
            // bits in to the proper location for the CCS instruction (perhaps we need
            // to be a template - p9n CCS is different from Centaur ... make initializing
            // the instruction a policy of the ccsTraits ... BRS)

            // Lookup table for CS_N and CID indexed by rank for Quad encoded CS modee
            // First bits 0:1 is DCS1_n:DCS2_n. Second bits 0:1 are CID 0:1 bit 2 is CID 2
            static const std::pair< uint8_t, uint8_t > CS_CID[mss::MAX_RANK_PER_DIMM] =
            {
                // DCS0 L DCS1 H CID L:L => Rank 0
                { 0b01000000, 0b00000000 },
                // DCS0 L DCS1 H CID H:H => Rank 1
                { 0b01000000, 0b11000000 },
                // DCS0 H DCS1 L CID L:L => Rank 2
                { 0b10000000, 0b00000000 },
                // DCS0 H DCS1 L CID H:H => Rank 3
                { 0b10000000, 0b11000000 },
            };

            // Setup the chip select based on which dimm in the slot and the rank
            if (mss::index(i_target) == 0)
            {
                arr0.insert<TT::ARR0_DDR_CSN_0_1,
                            TT::ARR0_DDR_CSN_0_1_LEN>(CS_CID[i_rank].first);
            }
            else
            {
                arr0.insert<TT::ARR0_DDR_CSN_2_3,
                            TT::ARR0_DDR_CSN_2_3_LEN>(CS_CID[i_rank].first);
            }

            arr0.insert<TT::ARR0_DDR_CID_0_1,
                        TT::ARR0_DDR_CID_0_1_LEN>(CS_CID[i_rank].second);
            arr0.writeBit<TT::ARR0_DDR_CID_2>(
                fapi2::buffer<uint8_t>(CS_CID[i_rank].second).getBit<2>());
#endif
        }
};

///
/// @brief A class representing a series of CCS instructions, and the
/// CCS engine parameters associated with running the instructions
/// @tparam T fapi2::TargetType  representing the fapi2 target which
/// @tparam P fapi2::TargetType representing the port
/// contains the CCS engine (e.g., fapi2::TARGET_TYPE_MCBIST)
template< fapi2::TargetType T, fapi2::TargetType P = fapi2::TARGET_TYPE_MCA >
class program
{
    public:
        // Setup our poll parameters so the CCS executer can see
        // whether to use the delays in the instruction stream or not
        program(): iv_poll(0, 0)
        {}

        // Vector of instructions
        std::vector< instruction_t<T> > iv_instructions;
        poll_parameters                 iv_poll;

        // Vector of polling probes
        std::vector< poll_probe<P> >    iv_probes;
};

///
/// @brief Common setup for all MRS/RCD instructions
/// @param[in,out] i_arr0 fapi2::buffer<uint64_t> representing the ARR0 of the instruction
/// @return void
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
static void mrs_rcd_helper( fapi2::buffer<uint64_t>& i_arr0 )
{
    //
    // Generic DDR4 MRS setup (RCD is an MRS)
    //
    // CKE is high Note: P8 set all 4 of these high - not sure if that's correct. BRS
    i_arr0.insertFromRight<TT::ARR0_DDR_CKE, TT::ARR0_DDR_CKE_LEN>(0b1111);

    // ACT is high
    i_arr0.setBit<TT::ARR0_DDR_ACTN>();

    // RAS, CAS, WE low
    i_arr0.clearBit<TT::ARR0_DDR_ADDRESS_16>();
    i_arr0.clearBit<TT::ARR0_DDR_ADDRESS_15>();
    i_arr0.clearBit<TT::ARR0_DDR_ADDRESS_14>();
}

///
/// @brief Create, initialize an RCD (RCW - JEDEC) CCS command
/// @tparam T the fapi2 type of the unit which contains the CCS engine
/// @param[in] i_target the DIMM this instruction is headed for
/// @return the RCD CCS instruction
/// @note THIS IS DDR4 ONLY RIGHT NOW. We can (and possibly should) specialize this
/// for the controller (Nimbus v Centaur) and then correct for DRAM generation (not included
/// in this template definition)
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline instruction_t<T> rcd_command( const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target )
{
    fapi2::buffer<uint64_t> rcd_boilerplate_arr0;
    fapi2::buffer<uint64_t> rcd_boilerplate_arr1;

    //
    // Generic DDR4 MRS setup (RCD is an MRS)
    //
    mrs_rcd_helper<fapi2::TARGET_TYPE_MCBIST>(rcd_boilerplate_arr0);

    //
    // RCD setup
    //
    // DDR4: Set BG1 to 0. BG0, BA1:BA0 to 0b111
    rcd_boilerplate_arr0.clearBit<TT::ARR0_DDR_BANK_GROUP_1>();
    rcd_boilerplate_arr0.insertFromRight<TT::ARR0_DDR_BANK_0_1, TT::ARR0_DDR_BANK_0_1_LEN>(0b11);
    rcd_boilerplate_arr0.setBit<TT::ARR0_DDR_BANK_GROUP_0>();

    // RCD always goes to rank 0. All we need to know is which DIMM we are on the port
    return instruction_t<T>(i_target, 0, rcd_boilerplate_arr0, rcd_boilerplate_arr1);
}

///
/// @brief Create, initialize an MRS CCS command
/// @tparam T the fapi2 type of the unit which contains the CCS engine
/// @param[in] i_target  the DIMM this instruction is headed for
/// @param[in] i_rank the rank on this dimm
/// @param[in] i_mrs the specific MRS
/// @return the MRS CCS instruction
/// @note THIS IS DDR4 ONLY RIGHT NOW. We can (and possibly should) specialize this
/// for the controller (Nimbus v Centaur) and then correct for DRAM generation (not included
/// in this template definition)
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline instruction_t<T> mrs_command( const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target, const uint64_t i_rank,
                                     const uint64_t i_mrs )
{
    fapi2::buffer<uint64_t> rcd_boilerplate_arr0;
    fapi2::buffer<uint64_t> rcd_boilerplate_arr1;
    fapi2::buffer<uint8_t> mrs(i_mrs);

    //
    // Generic DDR4 MRS setup (RCD is an MRS)
    //
    mrs_rcd_helper<fapi2::TARGET_TYPE_MCBIST>(rcd_boilerplate_arr0);

    //
    // MRS setup
    //
    // DDR4: Set BG1 to 0. BG0, BA1:BA0 to i_mrs
    rcd_boilerplate_arr0.clearBit<TT::ARR0_DDR_BANK_GROUP_1>();
    mss::swizzle<TT::ARR0_DDR_BANK_0_1, 3, 7>(mrs, rcd_boilerplate_arr0);
    FAPI_DBG("mrs rcd boiler 0x%llx 0x%llx", uint8_t(mrs), uint64_t(rcd_boilerplate_arr0));
    return instruction_t<T>(i_target, i_rank, rcd_boilerplate_arr0, rcd_boilerplate_arr1);
}

///
/// @brief Create, initialize a JEDEC Device Deselect CCS command
/// @tparam T the fapi2 type of the unit containing the CCS engine
/// @return the Device Deselect CCS instruction
/// @note THIS IS DDR4 ONLY RIGHT NOW. We can (and possibly should) specialize this
/// for the controller (Nimbus v Centaur) and then correct for DRAM generation (not included
/// in this template definition)
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline instruction_t<T> des_command()
{
    fapi2::buffer<uint64_t> rcd_boilerplate_arr0;
    fapi2::buffer<uint64_t> rcd_boilerplate_arr1;

    // ACT is high. It's a no-care in the spec but it seems to raise questions when
    // people look at the trace, so lets set it high.
    rcd_boilerplate_arr0.setBit<TT::ARR0_DDR_ACTN>();

    // CKE is high Note: P8 set all 4 of these high - not sure if that's correct. BRS
    rcd_boilerplate_arr0.insertFromRight<TT::ARR0_DDR_CKE, TT::ARR0_DDR_CKE_LEN>(0b1111);

    // ACT is high no-care
    // RAS, CAS, WE no-care

    // Device Deslect wants CS_n always high (select nothing using rank 0xFF)
    return instruction_t<T>(fapi2::Target<fapi2::TARGET_TYPE_DIMM>(), 0xFF, rcd_boilerplate_arr0, rcd_boilerplate_arr1);
}

///
/// @brief Create, initialize an instruction which indicates an initial cal
/// @param[in] i_rp the rank-pair (rank) to cal
/// @return the initial cal instruction
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline instruction_t<T> initial_cal_command(const uint64_t i_rp)
{
    // An initial cal arr0 looks just like a DES, but we set the initial cal bits
    instruction_t<T> l_inst = des_command<T>();

    // ACT is low - per Centaur spec (Shelton to confirm for Nimbus) BRS
    l_inst.arr0.template clearBit<TT::ARR0_DDR_ACTN>();

    l_inst.arr0.template insertFromRight<TT::ARR0_DDR_CAL_TYPE, TT::ARR0_DDR_CAL_TYPE_LEN>(0b1100);
    l_inst.arr1.template setBit<TT::ARR1_DDR_CALIBRATION_ENABLE>();

#ifdef USE_LOTS_OF_IDLES
    // Idles is 0xFFFF - per Centaur spec (Shelton to confirm for Nimbus) BRS
    l_inst.arr1.template insertFromRight<TT::ARR1_IDLES, TT::ARR1_IDLES_LEN>(0xFFFF);
#else
    l_inst.arr1.template insertFromRight<TT::ARR1_IDLES, TT::ARR1_IDLES_LEN>(0x0);
#endif

    // The rank we're calibrating is enacoded - it's an int. So rank 3 is 0011 not 0001
    l_inst.arr1.template insertFromRight<TT::ARR1_DDR_CAL_RANK, TT::ARR1_DDR_CAL_RANK_LEN>(i_rp);

    return l_inst;
}

//
// These functions are a little sugar to keep callers from doing the traits-dance to get the
// appropriate bit field
//

///
/// @brief Select the port(s) to be used by the CCS
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] i_target the target to effect
/// @param[in] i_ports the buffer representing the ports
/// @return void
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline fapi2::ReturnCode select_ports( const fapi2::Target<T>& i_target, uint64_t i_ports)
{
    fapi2::buffer<uint64_t> l_data;
    fapi2::buffer<uint64_t> l_ports;

    // Not handling multiple ports here, can't do that for CCS. BRS
    FAPI_TRY( l_ports.setBit(i_ports) );

    FAPI_TRY( mss::getScom(i_target, TT::MCB_CNTL_REG, l_data) );
    l_data.insert<TT::MCB_CNTL_PORT_SEL, TT::MCB_CNTL_PORT_SEL_LEN>(l_ports);
    FAPI_TRY( mss::putScom(i_target, TT::MCB_CNTL_REG, l_data) );

fapi_try_exit:
    return fapi2::current_err;
}

///
/// @brief User sets to a '1'b to tell the Hdw to stop CCS whenever failure occurs. When a
///        '0'b, Hdw will continue CCS even if a failure occurs.
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in]  the target to effect
/// @param[in] i_buffer the buffer representing the mode register
/// @param[in] i_value true iff stop whenever failure occurs.
/// @return void
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline void stop_on_err( const fapi2::Target<T>&, fapi2::buffer<uint64_t>& i_buffer, bool i_value)
{
    i_buffer.writeBit<TT::STOP_ON_ERR>(i_value);
}

///
/// @brief Disable ECC checking on the CCS arrays
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] the target to effect
/// @param[in] i_buffer the buffer representing the mode register
/// @return void
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline void disable_ecc( const fapi2::Target<T>&, fapi2::buffer<uint64_t>& i_buffer)
{
    i_buffer.setBit<TT::DISABLE_ECC_ARRAY_CHK>();
    i_buffer.setBit<TT::DISABLE_ECC_ARRAY_CORRECTION>();
}

///
/// @brief User sets to a '1'b to force the Hdw to ignore any array ue or sue errors
///        during CCS command fetching.
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] the target to effect
/// @param[in] i_buffer the buffer representing the mode register
/// @param[in] i_value true iff ignore any array ue or sue errors.
/// @return void
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline void ue_disable( const fapi2::Target<T>&, fapi2::buffer<uint64_t>& i_buffer, bool i_value)
{
    i_buffer.writeBit<TT::UE_DISABLE>(i_value);
}

///
/// @brief DDr calibration counter
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] the target to effect
/// @param[in] i_buffer the buffer representing the mode register
/// @param[in] i_count the count to wait for DDR cal to complete.
/// @param[in] i_mult the DDR calibration time multiplaction factor
/// @return void
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline void cal_count( const fapi2::Target<T>&, fapi2::buffer<uint64_t>& i_buffer,
                       const uint64_t i_count, const uint64_t i_mult)
{
    i_buffer.insertFromRight<TT::DDR_CAL_TIMEOUT_CNT, TT::DDR_CAL_TIMEOUT_CNT_LEN>(i_count);
    i_buffer.insertFromRight<TT::DDR_CAL_TIMEOUT_CNT_MULT, TT::DDR_CAL_TIMEOUT_CNT_MULT_LEN>(i_mult);
}

///
/// @brief Copy CKE signals to CKE Spare on both ports NOTE: DOESN'T APPLY FOR NIMBUS. NO
///        SPARE CHIPS TO COPY TO. 0 - Spare CKEs not copied with values from CKE(0:1) and
///         CKE(4:5) 1 - Port A CKE(0:1) copied to Port A CKE(2:3), Port A CKE(4:5) copied
///         to Port A CKE(6:7), Port B CKE(0:1) copied to Port B CKE(2:3) and Port B CKE(4:5)
///         copied to Port B CKE(6:7)
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] i_target the target to effect
/// @param[in] i_buffer the buffer representing the mode register
/// @param[in] i_value bool true iff Copy CKE signals to CKE Spare on both ports
/// @note no-op for p9n
/// @return void
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
void copy_cke_to_spare_cke( const fapi2::Target<T>&, fapi2::buffer<uint64_t>& i_buffer, bool i_value);

///
/// @brief Read the modeq register appropriate for this target
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] i_target the target to effect
/// @param[in] i_buffer the buffer representing the mode register
/// @return FAPI2_RC_SUCCSS iff ok
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline fapi2::ReturnCode read_mode( const fapi2::Target<T>& i_target, fapi2::buffer<uint64_t>& i_buffer)
{
    FAPI_DBG("read mode 0x%llx", TT::MODEQ_REG);
    return mss::getScom(i_target, TT::MODEQ_REG, i_buffer);
}

///
/// @brief Write the modeq register appropriate for this target
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] i_target the target to effect
/// @param[in] i_buffer the buffer representing the mode register
/// @return FAPI2_RC_SUCCSS iff ok
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
inline fapi2::ReturnCode write_mode( const fapi2::Target<T>& i_target, const fapi2::buffer<uint64_t>& i_buffer)
{
    return mss::putScom(i_target, TT::MODEQ_REG, i_buffer);
}

///
/// @brief Execute a set of CCS instructions - multiple ports
/// @tparam T the fapi2::TargetType - derived
/// @tparam P the fapi2::TargetType of the ports - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] i_target the target to effect
/// @param[in] i_program the vector of instructions
/// @param[in] i_ports the vector of ports
/// @return FAPI2_RC_SUCCSS iff ok
///
template< fapi2::TargetType T, fapi2::TargetType P, typename TT = ccsTraits<T> >
fapi2::ReturnCode execute( const fapi2::Target<T>& i_target,
                           ccs::program<T>& i_program,
                           const std::vector< fapi2::Target<P> >& i_ports);

///
/// @brief Execute a set of CCS instructions - single port
/// @tparam T the fapi2::TargetType - derived
/// @tparam P the fapi2::TargetType of the ports - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] i_target the target to effect
/// @param[in] i_program the vector of instructions
/// @param[in] i_port the port
/// @return FAPI2_RC_SUCCSS iff ok
///
template< fapi2::TargetType T, fapi2::TargetType P, typename TT = ccsTraits<T> >
fapi2::ReturnCode execute( const fapi2::Target<T>& i_target,
                           ccs::program<T>& i_program,
                           const fapi2::Target<P>& i_port)
{
    // Mmm. Might want to find a better way to do this - seems expensive. BRS
    std::vector< fapi2::Target<P> > l_ports{ i_port };
    return execute(i_target, i_program, l_ports);
}

///
/// @brief Execute a CCS array already loaded in to the engine
/// @tparam T the fapi2::TargetType - derived
/// @tparam TT the ccsTraits associated with T - derived
/// @param[in] i_target the target to effect
/// @param[in] i_program the MCBIST ccs program - to get the polling parameters
/// @return FAPI2_RC_SUCCSS iff ok
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
fapi2::ReturnCode execute_inst_array(const fapi2::Target<T>& i_target, ccs::program<T>& i_program);
///
/// @brief Start or stop the CCS engine
/// @param[in] i_target The MCBIST containing the CCS engine
/// @param[in] i_start_stop bool MSS_CCS_START for starting MSS_CCS_STOP otherwise
/// @return FAPI2_RC_SUCCESS iff success
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
fapi2::ReturnCode start_stop( const fapi2::Target<T>& i_target, bool i_start_stop );

///
/// @brief Query the status of the CCS engine
/// @param[in] i_target The MCBIST containing the CCS engine
/// @param[out] io_status The query result first being the result, second the type
/// @return FAPI2_RC_SUCCESS iff success
///
template< fapi2::TargetType T, typename TT = ccsTraits<T> >
fapi2::ReturnCode status_query( const fapi2::Target<T>& i_target, std::pair<uint64_t, uint64_t>& io_status );

} // ends namespace ccs
}

#endif
OpenPOWER on IntegriCloud