summaryrefslogtreecommitdiffstats
path: root/src/import/chips/centaur/procedures/hwp/memory/p9c_mss_row_repair.C
blob: c613eb50c0ba562017eebb280361048f158ef2c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/centaur/procedures/hwp/memory/p9c_mss_row_repair.C $ */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2018,2019                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
#include <p9c_mss_row_repair.H>
#include <cen_gen_scom_addresses.H>
#include <cen_gen_scom_addresses_fld.H>
#include <generic/memory/lib/utils/c_str.H>
#include <lib/utils/cumulus_find.H>
#include <p9c_mss_funcs.H>
#include <p9c_mss_ddr4_funcs.H>
#include <p9c_mss_rowRepairFuncs.H>
#include <p9c_dimmBadDqBitmapFuncs.H>
#include <p9c_mss_access_delay_reg.H>
#include <map>

using namespace fapi2;

extern "C"
{
    /// @brief Perform a PPR row repair operation
    /// @param[in] i_target_mba mba target
    /// @param[in] i_port port for repair
    /// @param[in] i_mrank master rank of address to repair
    /// @param[in] i_srank slave rank of address to repair
    /// @param[in] i_bg bank group bits of address to repair
    /// @param[in] i_bank bank bits of address to repair
    /// @param[in] i_row row bits of address to repair
    /// @param[in] i_dram_bitmap bitmap of DRAMs selected for repair (b'1 to repair, b'0 to not repair)
    /// @return FAPI2_RC_SUCCESS iff successful
    fapi2::ReturnCode p9c_mss_row_repair(const fapi2::Target<fapi2::TARGET_TYPE_MBA>& i_target_mba,
                                         const uint8_t  i_port,
                                         const uint8_t  i_mrank,
                                         const uint8_t  i_srank,
                                         const uint8_t  i_bg,
                                         const uint8_t  i_bank,
                                         const uint32_t i_row,
                                         const uint32_t i_dram_bitmap)
    {
        constexpr uint64_t REFRESH_BIT = CEN_MBA_MBAREF0Q_CFG_REFRESH_ENABLE;
        constexpr uint32_t NUM_POLL = 10;
        constexpr uint32_t WAIT_TIMER = 1500;
        constexpr uint32_t PPR_ENABLE = 5;
        constexpr uint8_t TMOD = 24;

        const std::vector<uint64_t> MR0_SHADOW_REGS =
        {
            CEN_MBA_DDRPHY_PC_MR0_PRI_RP0_P0,
            CEN_MBA_DDRPHY_PC_MR0_PRI_RP1_P0,
            CEN_MBA_DDRPHY_PC_MR0_PRI_RP2_P0,
            CEN_MBA_DDRPHY_PC_MR0_PRI_RP3_P0,
            CEN_MBA_DDRPHY_PC_MR0_PRI_RP0_P1,
            CEN_MBA_DDRPHY_PC_MR0_PRI_RP1_P1,
            CEN_MBA_DDRPHY_PC_MR0_PRI_RP2_P1,
            CEN_MBA_DDRPHY_PC_MR0_PRI_RP3_P1,
        };

        // MRS address sequence for sPPR setup
        // Note that we need to set a valid column address for these, so we use '0'
        const std::vector<access_address> l_guard_key_sequence =
        {
            {0x0CFF, 0, i_mrank, i_srank, MRS0_BA, i_port},
            {0x07FF, 0, i_mrank, i_srank, MRS0_BA, i_port},
            {0x0BFF, 0, i_mrank, i_srank, MRS0_BA, i_port},
            {0x03FF, 0, i_mrank, i_srank, MRS0_BA, i_port},
        };

        const uint8_t l_bg_bank = (i_bank << 2) | i_bg;
        const uint8_t l_dimm = i_mrank / MAX_RANKS_PER_DIMM;
        const uint8_t l_dimm_rank = i_mrank % MAX_RANKS_PER_DIMM;
        access_address l_addr = {i_row, 0, i_mrank, i_srank, l_bg_bank, i_port};
        access_address l_enable_sppr = l_addr;
        fapi2::variable_buffer l_data_16(16);
        fapi2::variable_buffer l_bank_3(3);
        fapi2::buffer<uint64_t> l_modeq_orig;
        fapi2::buffer<uint64_t> l_row;
        fapi2::buffer<uint64_t> l_bank;
        fapi2::buffer<uint64_t> l_saved_mr0;
        fapi2::buffer<uint64_t> l_reg_buffer;
        fapi2::buffer<uint64_t> l_dram_scratch;
        fapi2::buffer<uint16_t> l_mr_value_16;
        uint64_t l_write_pattern = 0;
        uint32_t l_instruction_number = 0;
        uint8_t l_refresh = 0;
        uint8_t l_dram_gen = 0;
        uint8_t l_dram_width = 0;
        uint8_t l_stack_type_u8array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint8_t l_odt[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT][MAX_RANKS_PER_DIMM] = {0};

        uint8_t l_al = 0;
        uint8_t l_trcd = 0;
        uint8_t l_twr = 0;
        uint8_t l_cwl = 0;
        uint32_t l_trfc = 0;
        uint8_t l_pl = 0;

        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_GEN, i_target_mba,  l_dram_gen));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_VPD_ODT_WR, i_target_mba,  l_odt));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_STACK_TYPE, i_target_mba,  l_stack_type_u8array));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_TRCD, i_target_mba, l_trcd));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_WR, i_target_mba, l_twr));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_AL, i_target_mba, l_al));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_CWL, i_target_mba, l_cwl));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_TRFC, i_target_mba, l_trfc));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_CA_PARITY_LATENCY, i_target_mba, l_pl));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_WIDTH, i_target_mba, l_dram_width));

        // DDR3 doesn't support sPPR, so bail unless we're DDR4
        FAPI_ASSERT(l_dram_gen == fapi2::ENUM_ATTR_CEN_EFF_DRAM_GEN_DDR4,
                    fapi2::CEN_MSS_ROW_REPAIR_NOT_SUPPORTED().
                    set_TARGET_MBA(i_target_mba).
                    set_PORT(i_port).
                    set_MRANK(i_mrank).
                    set_DRAM_GEN(l_dram_gen),
                    "%s Row repair is not supported on DDR3 parts. Port%d mrank%d is %s",
                    mss::c_str(i_target_mba), i_port, i_mrank, (l_dram_gen == 1 ? "DDR3" : "Unknown DRAM gen"));

        // Compute the CCS write pattern to select the desired DRAM(s)
        l_dram_scratch = i_dram_bitmap;
        l_dram_scratch.invert();
        l_dram_scratch.extractToRight<DRAM_START_BIT, DRAM_LEN>(l_write_pattern);

        // Save MR0 data before we write guard key sequence
        FAPI_TRY(fapi2::getScom(i_target_mba, MR0_SHADOW_REGS[0], l_saved_mr0));

        // Turn off refresh
        FAPI_TRY(fapi2::getScom(i_target_mba, CEN_MBA_MBAREF0Q, l_reg_buffer));
        l_refresh = l_reg_buffer.getBit<REFRESH_BIT>();
        l_reg_buffer.clearBit<REFRESH_BIT>();
        FAPI_TRY(fapi2::putScom(i_target_mba, CEN_MBA_MBAREF0Q, l_reg_buffer));

        // Precharge all ranks before we set sPPR mode
        FAPI_TRY(add_precharge_all_to_ccs(i_target_mba, l_addr, l_trcd, l_odt, l_stack_type_u8array, l_instruction_number));

        // Put the DRAM into sPPR mode
        FAPI_TRY(mss_ddr4_load_nominal_mrs_pda(i_target_mba, l_bank_3, l_data_16, MRS4_BA, i_port, l_dimm, l_dimm_rank));
        FAPI_TRY(l_data_16.setBit(PPR_ENABLE));
        l_data_16.extractToRight(l_mr_value_16, 0, 16);
        l_mr_value_16.reverse();
        l_mr_value_16.extractToRight(l_enable_sppr.row_addr, 0, 16);
        l_enable_sppr.bank = MRS4_BA;
        FAPI_TRY(add_mrs_to_ccs_ddr4(i_target_mba, l_enable_sppr, TMOD, l_instruction_number));

        // Enter the guard key sequence
        for (auto l_mrs_addr : l_guard_key_sequence)
        {
            FAPI_TRY(add_mrs_to_ccs_ddr4(i_target_mba, l_mrs_addr, TMOD, l_instruction_number));
        }

        // Enable CCS and set RAS/CAS/WE high during idles
        FAPI_DBG("%s Enabling CCS", mss::c_str(i_target_mba));
        FAPI_TRY(fapi2::getScom(i_target_mba, CEN_MBA_CCS_MODEQ, l_reg_buffer));
        l_modeq_orig = l_reg_buffer;
        FAPI_TRY(l_reg_buffer.setBit(29));    //Enable CCS
        FAPI_TRY(l_reg_buffer.setBit(51));    //ACT high
        FAPI_TRY(l_reg_buffer.setBit(52));    //RAS high
        FAPI_TRY(l_reg_buffer.setBit(53));    //CAS high
        FAPI_TRY(l_reg_buffer.setBit(54));    //WE high
        // Enables manual calculation of CCS parity
        // Manual calculation is needed to workaround a hardware bug calculating parity for DDR4 in CCS
        FAPI_TRY(l_reg_buffer.setBit(61));
        FAPI_TRY(fapi2::putScom(i_target_mba, CEN_MBA_CCS_MODEQ, l_reg_buffer));

        // Subtract one from the instruction count because set_end_bit increments it
        --l_instruction_number;
        FAPI_TRY(mss_ccs_set_end_bit(i_target_mba, l_instruction_number), "CCS_SET_END_BIT FAILED");

        // Execute the CCS program
        FAPI_DBG("%s Executing the CCS array", mss::c_str(i_target_mba));
        FAPI_TRY(mss_execute_ccs_inst_array(i_target_mba, NUM_POLL, WAIT_TIMER), " EXECUTE_CCS_INST_ARRAY FAILED");
        l_instruction_number = 0;

        // Restore the MR0 shadow regs
        for (const auto l_mr0_reg : MR0_SHADOW_REGS)
        {
            FAPI_TRY(fapi2::putScom(i_target_mba, l_mr0_reg, l_saved_mr0));
        }

        // Issue ACT command with bank and row fail address
        FAPI_TRY(add_activate_to_ccs(i_target_mba, l_addr, l_trcd, l_instruction_number));

        // Issue WR command with (tWR + WL + 10) cycles delay, values are the result of lab experimentation
        FAPI_TRY(add_write_to_ccs(i_target_mba, l_addr, (l_twr + l_cwl + l_al + l_pl + 10), l_instruction_number));

        // Write pattern (back up the instruction count so we hit the write instruction)
        --l_instruction_number;
        FAPI_TRY(mss_ccs_load_data_pattern(i_target_mba, l_instruction_number, l_write_pattern));
        ++l_instruction_number;

        // Issue precharge all command
        FAPI_TRY(add_precharge_all_to_ccs(i_target_mba, l_addr, l_trcd, l_odt, l_stack_type_u8array, l_instruction_number));

        // Issue DES command for tPGM_exit (18 clks)
        FAPI_TRY(add_des_with_repeat_to_ccs(i_target_mba, l_addr, 0, 18, l_instruction_number));

        // Take the DRAM out of PPR mode (MR4 command) and restore original value
        FAPI_TRY(mss_ddr4_load_nominal_mrs_pda(i_target_mba, l_bank_3, l_data_16, MRS4_BA, i_port, l_dimm, l_dimm_rank));
        l_data_16.extractToRight(l_mr_value_16, 0, 16);
        l_mr_value_16.reverse();
        l_mr_value_16.extractToRight(l_addr.row_addr, 0, 16);
        l_addr.bank = MRS4_BA;
        FAPI_TRY(add_mrs_to_ccs_ddr4(i_target_mba, l_addr, TMOD, l_instruction_number));

        // Restore MR0 to nominal value
        FAPI_TRY(mss_ddr4_load_nominal_mrs_pda(i_target_mba, l_bank_3, l_data_16, MRS0_BA, i_port, l_dimm, l_dimm_rank));
        l_data_16.extractToRight(l_mr_value_16, 0, 16);
        l_mr_value_16.reverse();
        l_mr_value_16.extractToRight(l_addr.row_addr, 0, 16);
        l_addr.bank = MRS0_BA;
        FAPI_TRY(add_mrs_to_ccs_ddr4(i_target_mba, l_addr, TMOD, l_instruction_number));

        // Enable CCS and set RAS/CAS/WE high during idles
        FAPI_DBG("%s Enabling CCS", mss::c_str(i_target_mba));
        FAPI_TRY(fapi2::getScom(i_target_mba, CEN_MBA_CCS_MODEQ, l_reg_buffer));
        FAPI_TRY(l_reg_buffer.setBit(29));    //Enable CCS
        FAPI_TRY(l_reg_buffer.setBit(51));    //ACT high
        FAPI_TRY(l_reg_buffer.setBit(52));    //RAS high
        FAPI_TRY(l_reg_buffer.setBit(53));    //CAS high
        FAPI_TRY(l_reg_buffer.setBit(54));    //WE high
        // Enables manual calculation of CCS parity
        // Manual calculation is needed to workaround a hardware bug calculating parity for DDR4 in CCS
        FAPI_TRY(l_reg_buffer.setBit(61));
        FAPI_TRY(fapi2::putScom(i_target_mba, CEN_MBA_CCS_MODEQ, l_reg_buffer));

        // Subtract one from the instruction count because set_end_bit increments it
        --l_instruction_number;
        FAPI_TRY(mss_ccs_set_end_bit(i_target_mba, l_instruction_number), "CCS_SET_END_BIT FAILED");

        // Execute the CCS program
        FAPI_DBG("%s Executing the CCS array", mss::c_str(i_target_mba));
        FAPI_TRY(mss_execute_ccs_inst_array(i_target_mba, NUM_POLL, WAIT_TIMER), " EXECUTE_CCS_INST_ARRAY FAILED");
        l_instruction_number = 0;

        // Disable CCS
        FAPI_DBG("%s Disabling CCS", mss::c_str(i_target_mba));
        FAPI_TRY(fapi2::putScom(i_target_mba, CEN_MBA_CCS_MODEQ, l_modeq_orig));

        // Turn on refresh
        FAPI_TRY(fapi2::getScom(i_target_mba, CEN_MBA_MBAREF0Q, l_reg_buffer));
        l_reg_buffer.writeBit<REFRESH_BIT>(l_refresh);
        FAPI_TRY(fapi2::putScom(i_target_mba, CEN_MBA_MBAREF0Q, l_reg_buffer));

    fapi_try_exit:
        return fapi2::current_err;
    }

    /// @brief Clear a row repair entry from the VPD data
    /// @param[in] i_rank master rank
    /// @param[in,out] io_row_repair_data data for this DIMM/rank from the VPD
    /// @return FAPI2_RC_SUCCESS iff successful
    fapi2::ReturnCode clear_row_repair_entry(const uint8_t i_rank,
            uint8_t (&io_row_repair_data)[MAX_RANKS_PER_DIMM][ROW_REPAIR_BYTES_PER_RANK])
    {
        FAPI_ASSERT(i_rank < MAX_RANKS_PER_DIMM,
                    fapi2::CEN_RANK_OUT_OF_BOUNDS().
                    set_RANK(i_rank),
                    "Rank %d supplied to clear_row_repair_entry is out of bounds",
                    i_rank);

        // Clear the entire entry for this DIMM/rank and write it back, to be consistent with PRD
        for (uint8_t l_byte = 0; l_byte < ROW_REPAIR_BYTES_PER_RANK; ++l_byte)
        {
            io_row_repair_data[i_rank][l_byte] = 0;
        }

        return fapi2::FAPI2_RC_SUCCESS;

    fapi_try_exit:
        return fapi2::current_err;
    }

    /// @brief Decode a row repair entry from an encoded buffer
    /// @param[in] i_repair row repair data buffer
    /// @param[out] o_dram DRAM position
    /// @param[out] o_srank slave rank
    /// @param[out] o_bg bank group
    /// @param[out] o_bank bank address
    /// @param[out] o_row row address
    /// @return true if the repair request is valid, false otherwise
    bool valid_row_repair_entry( const fapi2::buffer<uint32_t> i_repair,
                                 uint8_t& o_dram,
                                 uint8_t& o_srank,
                                 uint8_t& o_bg,
                                 uint8_t& o_bank,
                                 uint32_t& o_row )
    {
        i_repair.extractToRight<DRAM_POS, DRAM_POS_LEN>(o_dram);
        i_repair.extractToRight<SRANK, SRANK_LEN>(o_srank);
        i_repair.extractToRight<BANK_GROUP, BANK_GROUP_LEN>(o_bg);
        i_repair.extractToRight<BANK, BANK_LEN>(o_bank);
        i_repair.extractToRight<ROW_ADDR, ROW_ADDR_LEN>(o_row);
        return i_repair.getBit<REPAIR_VALID>();
    }

    /// @brief Build a table of PPR row repairs from attribute data for a given DIMM
    /// @param[in] i_target DIMM target
    /// @param[in] i_dram_width the DRAM width
    /// @param[in] i_row_repair_data array of row repair attribute values for the DIMM
    /// @param[out] o_repairs_per_dimm array of row repair data buffers
    /// @return FAPI2_RC_SUCCESS iff successful
    fapi2::ReturnCode build_row_repair_table(const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target,
            const uint8_t i_dram_width,
            const uint8_t i_row_repair_data[MAX_RANKS_PER_DIMM][ROW_REPAIR_BYTES_PER_RANK],
            std::vector<fapi2::buffer<uint32_t>>& o_repairs_per_dimm)
    {
        const uint8_t l_num_dram = (i_dram_width == fapi2::ENUM_ATTR_EFF_DRAM_WIDTH_X8) ?
                                   MAX_DRAMS_PER_RANK_X8 :
                                   (MC_MAX_DRAMS_PER_RANK_X4);

        o_repairs_per_dimm.clear();

        for (uint8_t l_rank = 0; l_rank < MAX_RANKS_PER_DIMM; ++l_rank)
        {
            fapi2::buffer<uint32_t> l_row_repair_entry;

            // Convert each entry from an array of bytes into a fapi2::buffer
            for (uint8_t l_byte = 0; l_byte < ROW_REPAIR_BYTES_PER_RANK; ++l_byte)
            {
                FAPI_TRY(l_row_repair_entry.insertFromRight(i_row_repair_data[l_rank][l_byte],
                         l_byte * BITS_PER_BYTE,
                         BITS_PER_BYTE));
            }

            // Insert row repair request into list (valid or not, so we can index by DIMM rank)
            o_repairs_per_dimm.push_back(l_row_repair_entry);

            uint8_t l_dram = 0;
            uint8_t l_srank = 0;
            uint8_t l_bg = 0;
            uint8_t l_bank = 0;
            uint32_t l_row = 0;

            if (valid_row_repair_entry(l_row_repair_entry, l_dram, l_srank, l_bg, l_bank, l_row))
            {
                FAPI_INF("Found valid row repair request in VPD for DIMM %s, DRAM %d, mrank %d, srank %d, bg %d, bank %d, row 0x%05x",
                         mss::spd::c_str(i_target), l_dram, l_rank, l_srank, l_bg, l_bank, l_row);

                // Do some sanity checking here
                FAPI_ASSERT(l_dram < l_num_dram,
                            fapi2::CEN_ROW_REPAIR_ENTRY_OUT_OF_BOUNDS().
                            set_DIMM_TARGET(i_target).
                            set_DRAM(l_dram).
                            set_MRANK(l_rank).
                            set_SRANK(l_srank).
                            set_BANK_GROUP(l_bg).
                            set_BANK(l_bank).
                            set_ROW(l_row),
                            "%s VPD contained out of bounds row repair entry: DRAM: %d mrank %d srank %d bg %d bank %d row 0x%05x",
                            mss::spd::c_str(i_target), l_dram, l_rank, l_srank, l_bg, l_bank, l_row);
            }
        }

    fapi_try_exit:
        return fapi2::current_err;
    }

    /// @brief Check the bad bits data to see if a DRAM was not calibrated
    /// @param[in] i_dram_width the DRAM width
    /// @param[in] i_dram the DRAM index
    /// @param[in] i_rankpair_table table of rank to rank pairs for this port
    /// @param[in] i_ranks_on_port number of ranks on this port
    /// @param[in] i_bad_bits array bad bits data from VPD for all ranks on the port
    /// @param[out] o_uncalibrated true if DRAM was marked bad in all ranks, false otherwise
    /// @return FAPI2_RC_SUCCESS iff successful
    fapi2::ReturnCode check_for_uncalibrated_dram(const uint8_t i_dram_width,
            const uint8_t i_dram,
            const uint8_t (&i_rankpair_table)[MAX_RANKS_PER_PORT],
            const uint8_t i_ranks_on_port,
            const uint8_t (&i_bad_bits)[MAX_RANKS_PER_PORT][DIMM_DQ_RANK_BITMAP_SIZE],
            bool& o_uncalibrated)
    {
        constexpr uint8_t NO_RP = 255;

        // On a port with only 1 rank configured, we can't tell if a DRAM is uncalibrated or if it just
        // failed calibration.
        // This is handled in draminit_training by calibrating any DRAM with a row repair request
        // (regardless of whether it had bad bits set), and clearing the row repair request if the
        // DRAM fails training. So by the time we get here, if we're 1-rank and a row repair
        // request exists, we know the DRAM has been calibrated.
        if (i_ranks_on_port == 1)
        {
            FAPI_INF("DRAM index %d was calibrated since it's on a single-rank port", i_dram);
            o_uncalibrated = false;
            return fapi2::FAPI2_RC_SUCCESS;
        }

        // The DRAM index in ATTR_ROW_REPAIR_DATA is relative to Centaur perspective.
        // The bad_bits attribute is as well, so we can just index into the bad bits array
        // using the DRAM index
        const uint8_t l_byte = (i_dram_width == fapi2::ENUM_ATTR_EFF_DRAM_WIDTH_X8) ?
                               i_dram :
                               i_dram / MAX_NIBBLES_PER_BYTE;
        uint8_t l_bad_dram = 0xFF;

        if (i_dram_width == fapi2::ENUM_ATTR_EFF_DRAM_WIDTH_X4)
        {
            l_bad_dram = (i_dram % MAX_NIBBLES_PER_BYTE == 0) ? 0xF0 : 0x0F;
        }

        // Protect our array index
        FAPI_ASSERT(l_byte < DIMM_DQ_RANK_BITMAP_SIZE,
                    fapi2::CEN_DRAM_INDEX_OUT_OF_BOUNDS().
                    set_FUNCTION(CHECK_FOR_UNCALIBRATED_DRAM).
                    set_DRAM(i_dram),
                    "DRAM index %d supplied to check_for_uncalibrated_dram is out of bounds",
                    i_dram);

        o_uncalibrated = true;

        for (uint8_t l_rank = 0; l_rank < MAX_RANKS_PER_PORT; ++l_rank)
        {
            // If the bad bits corresponding to the given DRAM aren't all set in every
            // valid rank, the DRAM must have been calibrated
            if ((i_rankpair_table[l_rank] != NO_RP) &&
                ((i_bad_bits[l_rank][l_byte] & l_bad_dram) != l_bad_dram))
            {
                FAPI_INF("DRAM index %d was calibrated since it isn't marked bad on rank %d",
                         i_dram, l_rank);
                o_uncalibrated = false;
                return fapi2::FAPI2_RC_SUCCESS;
            }
        }

        // If we got here then the DRAM was marked bad in all configured ranks,
        // so we assume it was not calibrated
        FAPI_INF("DRAM index %d was marked bad on all configured ranks", i_dram);
        return fapi2::FAPI2_RC_SUCCESS;

    fapi_try_exit:
        return fapi2::current_err;
    }

    /// @brief Clear the corresponding bad_bits after a row repair operation
    /// @param[in] i_dram_width the DRAM width
    /// @param[in] i_dram the DRAM index
    /// @param[in,out] io_bad_bits array bad bits data from VPD
    /// @return FAPI2_RC_SUCCESS iff successful
    fapi2::ReturnCode clear_bad_dq_for_row_repair(const uint8_t i_dram_width,
            const uint8_t i_dram,
            uint8_t (&io_bad_bits)[DIMM_DQ_RANK_BITMAP_SIZE])
    {
        // The DRAM index in ATTR_ROW_REPAIR_DATA is relative to Centaur perspective.
        // The bad_bits attribute is as well, so we can just index into the bad bits array
        // using the DRAM index
        const uint8_t l_byte = (i_dram_width == fapi2::ENUM_ATTR_EFF_DRAM_WIDTH_X8) ?
                               i_dram :
                               i_dram / MAX_NIBBLES_PER_BYTE;
        uint8_t l_mask = 0;

        if (i_dram_width == fapi2::ENUM_ATTR_EFF_DRAM_WIDTH_X4)
        {
            l_mask = (i_dram % MAX_NIBBLES_PER_BYTE == 0) ? 0x0F : 0xF0;
        }

        // Protect our array index
        FAPI_ASSERT(l_byte < DIMM_DQ_RANK_BITMAP_SIZE,
                    fapi2::CEN_DRAM_INDEX_OUT_OF_BOUNDS().
                    set_FUNCTION(CLEAR_BAD_DQ_FOR_ROW_REPAIR).
                    set_DRAM(i_dram),
                    "DRAM index %d supplied to clear_bad_dq_for_row_repair is out of bounds",
                    i_dram);

        io_bad_bits[l_byte] &= l_mask;

        return fapi2::FAPI2_RC_SUCCESS;

    fapi_try_exit:
        return fapi2::current_err;
    }

    ///
    /// @brief Create an error log and return with a good error code if a valid row repair is found
    /// @param[in] i_target the DIMM target
    /// @param[in] i_rank the master rank
    /// @return successful error code
    ///
    fapi2::ReturnCode repairs_disabled_error_helper(const fapi2::Target<fapi2::TARGET_TYPE_DIMM>& i_target,
            const uint8_t i_rank,
            const fapi2::buffer<uint32_t> i_repair)
    {
        uint8_t l_dram = 0;
        uint8_t l_srank = 0;
        uint8_t l_bg = 0;
        uint8_t l_bank = 0;
        uint32_t l_row = 0;

        FAPI_ASSERT(!valid_row_repair_entry(i_repair, l_dram, l_srank, l_bg, l_bank, l_row),
                    fapi2::CEN_ROW_REPAIR_WITH_MNFG_REPAIRS_DISABLED().
                    set_DIMM_TARGET(i_target).
                    set_RANK(i_rank),
                    "%s Row repair valid for rank %d but DRAM repairs are disabled in MNFG flags",
                    mss::spd::c_str(i_target), i_rank);
        return fapi2::FAPI2_RC_SUCCESS;

    fapi_try_exit:
        // We've found a valid row repair - log it as predictive, so we get callouts in MFG test but don't fail out
        fapi2::logError(fapi2::current_err, fapi2::FAPI2_ERRL_SEV_PREDICTIVE);
        fapi2::current_err = fapi2::FAPI2_RC_SUCCESS;
        return fapi2::FAPI2_RC_SUCCESS;
    }

    /// @brief Deploy enough PPR row repairs to test all spare rows
    /// @param[in] i_target_mba mba target
    /// @return FAPI2_RC_SUCCESS iff successful
    fapi2::ReturnCode p9c_mss_activate_all_spare_rows(const fapi2::Target<fapi2::TARGET_TYPE_MBA>& i_target_mba)
    {
        constexpr uint8_t NUM_BG = 4;

        uint8_t l_ranks_configed[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint8_t num_mranks[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint8_t num_ranks[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};

        FAPI_INF("%s Deploying row repairs to test all spare rows", mss::c_str(i_target_mba));

        for (const auto& l_dimm : mss::find_targets<fapi2::TARGET_TYPE_DIMM>(i_target_mba))
        {
            uint8_t l_port = 0;
            uint8_t l_dimm_index = 0;
            uint8_t l_num_sranks = 0;
            fapi2::buffer<uint64_t> l_dram_bitmap;

            // Set all DRAM select bits so we get repairs on all DRAMs
            l_dram_bitmap.setBit<DRAM_START_BIT, DRAM_LEN>();

            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MBA_PORT, l_dimm, l_port));
            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MBA_DIMM, l_dimm, l_dimm_index));
            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DIMM_RANKS_CONFIGED, i_target_mba, l_ranks_configed));
            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_NUM_MASTER_RANKS_PER_DIMM, i_target_mba, num_mranks));
            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_NUM_RANKS_PER_DIMM, i_target_mba, num_ranks));

            // The number of slave ranks per DIMM is simply the number of total ranks divided by the number of master ranks
            l_num_sranks = num_ranks[l_port][l_dimm_index] / num_mranks[l_port][l_dimm_index];

            for (uint8_t l_mrank = 0; l_mrank < MAX_RANKS_PER_DIMM; ++l_mrank)
            {
                if (l_ranks_configed[l_port][l_dimm_index] & (0x80 >> l_mrank))
                {
                    for (uint8_t l_srank = 0; l_srank < l_num_sranks; ++l_srank)
                    {
                        uint8_t l_port_rank = 0;
                        // Note: setting row = rank so we don't use row0 for every repair
                        uint32_t l_row = l_mrank;

                        // Note: DIMM can only support one repair per BG, so we loop on BG and use BA=0
                        for (uint8_t l_bg = 0; l_bg < NUM_BG; ++l_bg)
                        {
                            uint8_t l_bank = 0;

                            l_port_rank = (l_dimm_index * MAX_RANKS_PER_DIMM) + l_mrank;

                            FAPI_INF("%s Deploying row repair on all DRAMs on mrank %d, srank %d, bg %d, bank %d, row 0x%05x",
                                     mss::spd::c_str(l_dimm), l_mrank, l_srank, l_bg, l_bank, l_row);
                            FAPI_TRY(p9c_mss_row_repair(i_target_mba, l_port, l_port_rank, l_srank, l_bg, l_bank, l_row, l_dram_bitmap));
                        }
                    }
                }
            }
        }

    fapi_try_exit:
        return fapi2::current_err;
    }

    /// @brief Count the number of ranks per port
    /// @param[in] i_target_mba mba target
    /// @return FAPI2_RC_SUCCESS iff successful
    void count_ranks_per_port(const uint8_t (&i_ranks_per_dimm)[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT],
                              uint8_t (&o_ranks_per_port)[MAX_PORTS_PER_MBA])
    {
        for (uint8_t l_port = 0; l_port < MAX_PORTS_PER_MBA; ++l_port)
        {
            o_ranks_per_port[l_port] = 0;

            for (uint8_t l_dimm = 0; l_dimm < MAX_DIMM_PER_PORT; ++l_dimm)
            {
                o_ranks_per_port[l_port] += i_ranks_per_dimm[l_port][l_dimm];
            }
        }
    }

    /// @brief Deploy PPR row repairs, if supported, according to VPD attributes
    /// @param[in] i_target_mba mba target
    /// @return FAPI2_RC_SUCCESS iff successful
    fapi2::ReturnCode p9c_mss_deploy_row_repairs(const fapi2::Target<fapi2::TARGET_TYPE_MBA>& i_target_mba)
    {
        constexpr uint8_t NO_RP = 255;

        bool l_sppr_supported = true;
        uint64_t l_mnfg_flags = 0;
        uint8_t l_dram_width = 0;
        uint8_t l_ranks_per_dimm[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT];
        uint8_t l_ranks_per_port[MAX_PORTS_PER_MBA];
        uint8_t l_dram = 0;
        uint8_t l_srank = 0;
        uint8_t l_bg = 0;
        uint8_t l_bank = 0;
        uint32_t l_row = 0;

        // This table contains a row repair entry for each DIMM/mrank combination
        std::map<fapi2::Target<fapi2::TARGET_TYPE_DIMM>, std::vector<fapi2::buffer<uint32_t>>> l_row_repairs;

        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_MNFG_FLAGS, fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(), l_mnfg_flags));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_WIDTH, i_target_mba, l_dram_width));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_NUM_RANKS_PER_DIMM, i_target_mba, l_ranks_per_dimm));

        // Calculate the number of ranks on each port
        count_ranks_per_port(l_ranks_per_dimm, l_ranks_per_port);

        // If row repairs are not supported, we're done
        for (const auto& l_dimm : mss::find_targets<fapi2::TARGET_TYPE_DIMM>(i_target_mba))
        {
            FAPI_TRY(is_sPPR_supported(l_dimm, l_sppr_supported));

            if (!l_sppr_supported)
            {
                FAPI_INF("%s Skipping row repair deployment since it's not supported in the MRW", mss::c_str(i_target_mba));
                return fapi2::FAPI2_RC_SUCCESS;
            }
        }

        // If mnfg flag is set to test all spare rows, we need to do row repair on all dimm/ranks/DRAMs
        if (l_mnfg_flags & fapi2::ENUM_ATTR_MNFG_FLAGS_MNFG_TEST_ALL_SPARE_DRAM_ROWS)
        {
            return p9c_mss_activate_all_spare_rows(i_target_mba);
        }

        // Get row repair data from attribute and build table
        for (const auto& l_dimm : mss::find_targets<fapi2::TARGET_TYPE_DIMM>(i_target_mba))
        {
            uint8_t l_row_repair_data[MAX_RANKS_PER_DIMM][ROW_REPAIR_BYTES_PER_RANK] = {0};
            std::vector<fapi2::buffer<uint32_t>> l_repairs_per_dimm;

            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_ROW_REPAIR_DATA, l_dimm, l_row_repair_data));

            FAPI_TRY(build_row_repair_table(l_dimm, l_dram_width, l_row_repair_data, l_repairs_per_dimm));
            l_row_repairs.insert(std::make_pair(l_dimm, l_repairs_per_dimm));
        }

        // If DRAM repairs are disabled (mnfg flag), we're done (but need to callout DIMM if it has row repairs in VPD)
        if (l_mnfg_flags & fapi2::ENUM_ATTR_MNFG_FLAGS_MNFG_DISABLE_DRAM_REPAIRS)
        {
            FAPI_INF("%s DRAM repairs are disabled, so skipping row repair deployment", mss::c_str(i_target_mba));

            for (const auto l_pair : l_row_repairs)
            {
                const auto& l_dimm = l_pair.first;
                const auto& l_repairs = l_pair.second;

                for (uint8_t l_rank = 0; l_rank < MAX_RANKS_PER_DIMM; ++l_rank)
                {
                    // If we have a valid repair, call out this DIMM
                    FAPI_TRY(repairs_disabled_error_helper(l_dimm, l_rank, l_repairs[l_rank]));
                }
            }

            return fapi2::FAPI2_RC_SUCCESS;
        }

        // Iterate through DRAM repairs structure
        for (const auto l_pair : l_row_repairs)
        {
            const auto& l_dimm = l_pair.first;
            const auto& l_repairs = l_pair.second;
            uint8_t l_port = 0;
            uint8_t l_rp = 0;
            uint8_t l_rankpair_table[MAX_RANKS_PER_PORT] = {0};
            uint8_t l_row_repair_data[MAX_RANKS_PER_DIMM][ROW_REPAIR_BYTES_PER_RANK] = {0};
            uint8_t l_bad_bits[MAX_RANKS_PER_PORT][DIMM_DQ_RANK_BITMAP_SIZE] = {0};

            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MBA_PORT, l_dimm, l_port));
            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_ROW_REPAIR_DATA, l_dimm, l_row_repair_data));

            // Get our rank table for this port
            FAPI_TRY(mss_getrankpair(i_target_mba, l_port, 0, &l_rp, l_rankpair_table));

            // Get the bad bits array for each valid rank on this port
            for (uint8_t l_rank = 0; l_rank < MAX_RANKS_PER_PORT; ++l_rank)
            {
                if (l_rankpair_table[l_rank] != NO_RP)
                {
                    uint8_t l_dimm_index = l_rank / MAX_RANKS_PER_DIMM;
                    uint8_t l_dimm_rank = l_rank % MAX_RANKS_PER_DIMM;
                    FAPI_TRY(dimmGetBadDqBitmap(i_target_mba, l_port, l_dimm_index, l_dimm_rank, l_bad_bits[l_rank]),
                             "Error from dimmGetBadDqBitmap on %s.", mss::c_str(i_target_mba));
                }
            }

            for (uint8_t l_rank = 0; l_rank < MAX_RANKS_PER_DIMM; ++l_rank)
            {
                if (valid_row_repair_entry(l_repairs[l_rank], l_dram, l_srank, l_bg, l_bank, l_row))
                {
                    uint8_t l_dimm_index = 0;
                    uint8_t l_port_rank = 0;
                    fapi2::buffer<uint64_t> l_dram_bitmap;
                    bool l_uncalibrated = false;

                    FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MBA_DIMM, l_dimm, l_dimm_index));
                    l_port_rank = (l_dimm_index * MAX_RANKS_PER_DIMM) + l_rank;

                    // If a DRAM position is marked bad in VPD for all valid ranks, skip row repair and clear row repair entry from VPD
                    // as this means the DRAM position has not been calibrated during draminit_training (Centaur workaround)
                    FAPI_TRY(check_for_uncalibrated_dram(l_dram_width, l_dram, l_rankpair_table, l_ranks_per_port[l_port],
                                                         l_bad_bits, l_uncalibrated));

                    if (l_uncalibrated)
                    {
                        FAPI_INF("%s Port %d DRAM position %d is bad in all ranks, so appears to be uncalibrated. Skipping row repairs for this DRAM.",
                                 mss::c_str(i_target_mba), l_port, l_dram);

                        FAPI_TRY(clear_row_repair_entry(l_rank, l_row_repair_data));

                        continue;
                    }

                    // Deploy row repair and clear bad DQs
                    FAPI_INF("%s Deploying row repair on port %d, DRAM %d, mrank %d, srank %d, bg %d, bank %d, row 0x%05x",
                             mss::spd::c_str(l_dimm), l_port, l_dram, l_rank, l_srank, l_bg, l_bank, l_row);
                    FAPI_TRY(l_dram_bitmap.setBit(DRAM_START_BIT + l_dram));
                    FAPI_TRY(p9c_mss_row_repair(i_target_mba, l_port, l_port_rank, l_srank, l_bg, l_bank, l_row, l_dram_bitmap));

                    // Clear bad DQ bits for this port, DIMM, rank that will be fixed by this row repair
                    FAPI_INF("%s Updating bad bits on Port %d, DIMM %d, DRAM %d, mrank %d, srank %d, bg %d, bank %d, row 0x%05x",
                             mss::c_str(i_target_mba), l_port, l_dimm_index, l_dram, l_rank, l_srank, l_bg, l_bank, l_row);

                    FAPI_TRY(clear_bad_dq_for_row_repair(l_dram_width, l_dram, l_bad_bits[l_port_rank]));

                    FAPI_TRY(dimmSetBadDqBitmap(i_target_mba, l_port, l_dimm_index, l_rank, l_bad_bits[l_port_rank]),
                             "Error from dimmGetBadDqBitmap on %s.", mss::c_str(i_target_mba));
                }
            }

            // Set the row repair attribute with any changes
            FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_ROW_REPAIR_DATA, l_dimm, l_row_repair_data));
        }

    fapi_try_exit:
        return fapi2::current_err;
    }

}
OpenPOWER on IntegriCloud