summaryrefslogtreecommitdiffstats
path: root/src/import/chips/centaur/procedures/hwp/memory/p9c_mss_eff_config_thermal.C
blob: c613abb9f48e63e1cf33d6c7543a9f6724024f5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
/* IBM_PROLOG_BEGIN_TAG                                                   */
/* This is an automatically generated prolog.                             */
/*                                                                        */
/* $Source: src/import/chips/centaur/procedures/hwp/memory/p9c_mss_eff_config_thermal.C $ */
/*                                                                        */
/* OpenPOWER HostBoot Project                                             */
/*                                                                        */
/* Contributors Listed Below - COPYRIGHT 2016,2018                        */
/* [+] International Business Machines Corp.                              */
/*                                                                        */
/*                                                                        */
/* Licensed under the Apache License, Version 2.0 (the "License");        */
/* you may not use this file except in compliance with the License.       */
/* You may obtain a copy of the License at                                */
/*                                                                        */
/*     http://www.apache.org/licenses/LICENSE-2.0                         */
/*                                                                        */
/* Unless required by applicable law or agreed to in writing, software    */
/* distributed under the License is distributed on an "AS IS" BASIS,      */
/* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or        */
/* implied. See the License for the specific language governing           */
/* permissions and limitations under the License.                         */
/*                                                                        */
/* IBM_PROLOG_END_TAG                                                     */
/// @file p9c_mss_eff_config_thermal.C
/// @brief  set the default throttle and power attributes for dimms in a given system
///
/// *HWP HWP Owner: Andre Marin <aamaring@us.ibm.com>
/// *HWP HWP Backup: Mike Pardeik <pardeik@us.ibm.com>
/// *HWP Team: Memory
/// *HWP Level: 2
/// *HWP Consumed by: HB
//
// -- The power attributes are the slope/intercept values.  Note that these
//    values are in cW.
//    -- ISDIMM will use hardcoded values
//    -- CDIMM will get values from VPD
// -- The throttle attributes will setup values for IPL and runtime
//
//------------------------------------------------------------------------------
//  My Includes
//------------------------------------------------------------------------------
#include <p9c_mss_eff_config_thermal.H>
#include <p9c_mss_bulk_pwr_throttles.H>
#include <generic/memory/lib/utils/c_str.H>
#include <dimmConsts.H>
#include <generic/memory/lib/utils/count_dimm.H>
#include <generic/memory/lib/utils/find.H>
//------------------------------------------------------------------------------
//  Includes
//------------------------------------------------------------------------------
#include <fapi2.H>

using fapi2::TARGET_TYPE_MEMBUF_CHIP;
using fapi2::TARGET_TYPE_MBA;
using fapi2::FAPI2_RC_SUCCESS;

// Only use values here (not any valid bits or flag bits)
constexpr uint32_t CDIMM_POWER_SLOPE_DEFAULT = 0x0358;
constexpr uint32_t CDIMM_POWER_INT_DEFAULT = 0x00CE;

// ISDIMM power curves (non-custom DIMMs)
// Hard coded values make one DIMM power curve for all configurations
// If other future systems need different hard coded values, then these will need to come from MRW
constexpr uint32_t ISDIMM_VMEM_POWER_SLOPE_DEFAULT = 0x0234;
constexpr uint32_t ISDIMM_VMEM_POWER_INT_DEFAULT = 0x027F;
constexpr uint32_t ISDIMM_VMEM_PLUS_VPP_POWER_SLOPE_DEFAULT = 0x0247;
constexpr uint32_t ISDIMM_VMEM_PLUS_VPP_POWER_INT_DEFAULT = 0x02BC;

extern "C" {
    ///
    /// @brief This function determines the
    /// power curve and throttle attribute values to use
    /// @param[in] i_target_mba:  MBA Target
    /// @return fapi2::ReturnCode
    ///
    fapi2::ReturnCode p9c_mss_eff_config_thermal(const fapi2::Target<fapi2::TARGET_TYPE_MBA>& i_target_mba)
    {

        FAPI_INF("*** Running mss_eff_config_thermal on %s ***",
                 mss::c_str(i_target_mba));

        // If MBA has no DIMMs, return as there is nothing to do
        if (mss::count_dimm(i_target_mba) == 0)
        {
            FAPI_INF("++++ NO DIMM on %s ++++", mss::c_str(i_target_mba));
            return fapi2::FAPI2_RC_SUCCESS;
        }

        FAPI_TRY(mss_eff_config_thermal_powercurve(i_target_mba));
        FAPI_TRY(mss_eff_config_thermal_throttles(i_target_mba));


        FAPI_INF("*** mss_eff_config_thermal COMPLETE on %s ***",
                 mss::c_str(i_target_mba));
    fapi_try_exit:
        return fapi2::current_err;
    }

    ///
    /// @brief This function determines the
    /// power curve attribute values to use
    /// @param[in] i_target_mba:  MBA Target
    /// @return fapi2::ReturnCode
    ///
    fapi2::ReturnCode mss_eff_config_thermal_powercurve(const fapi2::Target<fapi2::TARGET_TYPE_MBA>& i_target_mba)
    {
        FAPI_INF("*** Running mss_eff_config_thermal_powercurve on %s ***",
                 mss::c_str(i_target_mba));
        uint8_t l_port = 0;
        uint8_t l_dimm = 0;
        uint8_t l_custom_dimm = 0;
        uint8_t l_dimm_ranks_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_power_slope_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_power_int_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_power_slope2_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_power_int2_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_total_power_slope_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_total_power_int_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_total_power_slope2_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_total_power_int2_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_cdimm_master_power_slope = 0;
        uint32_t l_cdimm_master_power_intercept = 0;
        uint32_t l_cdimm_supplier_power_slope = 0;
        uint32_t l_cdimm_supplier_power_intercept = 0;
        uint32_t l_cdimm_master_total_power_slope = 0;
        uint32_t l_cdimm_master_total_power_intercept = 0;
        uint32_t l_cdimm_supplier_total_power_slope = 0;
        uint32_t l_cdimm_supplier_total_power_intercept = 0;
        uint8_t l_dram_gen = 0;
        uint8_t l_logged_error_power_curve = 0;
        uint8_t l_logged_error_total_power_curve = 0;

        //------------------------------------------------------------------------------
        // Get input attributes
        //------------------------------------------------------------------------------

        // Get Centaur target for the given MBA
        const auto l_target_chip = i_target_mba.getParent<fapi2::TARGET_TYPE_MEMBUF_CHIP>();
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_CUSTOM_DIMM, i_target_mba, l_custom_dimm));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_NUM_RANKS_PER_DIMM,
                               i_target_mba, l_dimm_ranks_array));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_GEN,
                               i_target_mba, l_dram_gen));

        // get power curve values for custom DIMMs
        if (l_custom_dimm == fapi2::ENUM_ATTR_CEN_EFF_CUSTOM_DIMM_YES)
        {
            // These are the CDIMM power curve values for only VMEM (DDR3 and DDR4)
            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_CDIMM_VPD_MASTER_POWER_SLOPE,
                                   l_target_chip, l_cdimm_master_power_slope));

            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_CDIMM_VPD_MASTER_POWER_INTERCEPT,
                                   l_target_chip, l_cdimm_master_power_intercept));

            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_CDIMM_VPD_SUPPLIER_POWER_SLOPE,
                                   l_target_chip, l_cdimm_supplier_power_slope));


            FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_CDIMM_VPD_SUPPLIER_POWER_INTERCEPT,
                                   l_target_chip, l_cdimm_supplier_power_intercept));


            // These are for the total CDIMM power (VMEM+VPP for DDR4)
            if (l_dram_gen == fapi2::ENUM_ATTR_CEN_EFF_DRAM_GEN_DDR4)
            {

                FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_CDIMM_VPD_MASTER_TOTAL_POWER_SLOPE,
                                       l_target_chip, l_cdimm_master_total_power_slope));

                FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_CDIMM_VPD_MASTER_TOTAL_POWER_INTERCEPT,
                                       l_target_chip, l_cdimm_master_total_power_intercept));

                FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_CDIMM_VPD_SUPPLIER_TOTAL_POWER_SLOPE,
                                       l_target_chip, l_cdimm_supplier_total_power_slope));

                FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_CDIMM_VPD_SUPPLIER_TOTAL_POWER_INTERCEPT,
                                       l_target_chip, l_cdimm_supplier_total_power_intercept));
            }
            else
            {
                // Set total power curve variables to the VMEM power curve variables for DDR3
                l_cdimm_master_total_power_slope = l_cdimm_master_power_slope;
                l_cdimm_master_total_power_intercept = l_cdimm_master_power_intercept;
                l_cdimm_supplier_total_power_slope = l_cdimm_supplier_power_slope;
                l_cdimm_supplier_total_power_intercept = l_cdimm_supplier_power_intercept;
            }
        }

        // Power Curve Determination
        // Iterate through the MBA ports to get power slope/intercept values
        for (l_port = 0; l_port < MAX_PORTS_PER_MBA; l_port++)
        {
            // iterate through the dimms on each port again to determine power slope and
            // intercept
            for (l_dimm = 0; l_dimm < MAX_DIMM_PER_PORT; l_dimm++)
            {
                // initialize dimm entries to zero
                l_power_slope_array[l_port][l_dimm] = 0;
                l_power_int_array[l_port][l_dimm] = 0;
                l_power_slope2_array[l_port][l_dimm] = 0;
                l_power_int2_array[l_port][l_dimm] = 0;
                l_total_power_slope_array[l_port][l_dimm] = 0;
                l_total_power_int_array[l_port][l_dimm] = 0;
                l_total_power_slope2_array[l_port][l_dimm] = 0;
                l_total_power_int2_array[l_port][l_dimm] = 0;

                // only update values for l_dimms that are physically present
                if (l_dimm_ranks_array[l_port][l_dimm] > 0)
                {
                    // CDIMM power slope/intercept will come from VPD
                    // Data in VPD needs to be the power per virtual dimm on the CDIMM
                    if (l_custom_dimm == fapi2::ENUM_ATTR_CEN_EFF_CUSTOM_DIMM_YES)
                    {
                        l_power_slope_array[l_port][l_dimm] =
                            l_cdimm_master_power_slope;
                        l_power_int_array[l_port][l_dimm] =
                            l_cdimm_master_power_intercept;
                        l_power_slope2_array[l_port][l_dimm] =
                            l_cdimm_supplier_power_slope;
                        l_power_int2_array[l_port][l_dimm] =
                            l_cdimm_supplier_power_intercept;
                        l_total_power_slope_array[l_port][l_dimm] =
                            l_cdimm_master_total_power_slope;
                        l_total_power_int_array[l_port][l_dimm] =
                            l_cdimm_master_total_power_intercept;
                        l_total_power_slope2_array[l_port][l_dimm] =
                            l_cdimm_supplier_total_power_slope;
                        l_total_power_int2_array[l_port][l_dimm] =
                            l_cdimm_supplier_total_power_intercept;

                        // check to see if VMEM power curve data is valid
                        if (
                            (((l_cdimm_master_power_slope & 0x8000) != 0) &&
                             ((l_cdimm_master_power_intercept & 0x8000) != 0))
                            &&
                            (((l_cdimm_supplier_power_slope & 0x8000) != 0) &&
                             ((l_cdimm_supplier_power_intercept & 0x8000) != 0))
                        )
                        {
                            l_power_slope_array[l_port][l_dimm] =
                                l_cdimm_master_power_slope & 0x1FFF;
                            l_power_int_array[l_port][l_dimm] =
                                l_cdimm_master_power_intercept & 0x1FFF;
                            l_power_slope2_array[l_port][l_dimm] =
                                l_cdimm_supplier_power_slope & 0x1FFF;
                            l_power_int2_array[l_port][l_dimm] =
                                l_cdimm_supplier_power_intercept & 0x1FFF;

                            // check to see if data is lab data
                            if (
                                (((l_cdimm_master_power_slope & 0x4000) == 0) ||
                                 ((l_cdimm_master_power_intercept & 0x4000) == 0))
                                ||
                                (((l_cdimm_supplier_power_slope & 0x4000) == 0) ||
                                 ((l_cdimm_supplier_power_intercept &
                                   0x4000) == 0))
                            )
                            {
                                FAPI_INF("%s WARNING:  VMEM power curve data is lab data, not ship level data. Using data anyways.",
                                         mss::c_str(i_target_mba));
                            }

                            // check total power curve (VMEM+VPP) values for DDR4
                            if (l_dram_gen == fapi2::ENUM_ATTR_CEN_EFF_DRAM_GEN_DDR4)
                            {
                                if (
                                    (((l_cdimm_master_total_power_slope & 0x8000) != 0) &&
                                     ((l_cdimm_master_total_power_intercept & 0x8000) != 0))
                                    &&
                                    (((l_cdimm_supplier_total_power_slope & 0x8000) != 0) &&
                                     ((l_cdimm_supplier_total_power_intercept & 0x8000) != 0))
                                )
                                {
                                    l_total_power_slope_array[l_port][l_dimm] =
                                        l_cdimm_master_total_power_slope & 0x1FFF;
                                    l_total_power_int_array[l_port][l_dimm] =
                                        l_cdimm_master_total_power_intercept & 0x1FFF;
                                    l_total_power_slope2_array[l_port][l_dimm] =
                                        l_cdimm_supplier_total_power_slope & 0x1FFF;
                                    l_total_power_int2_array[l_port][l_dimm] =
                                        l_cdimm_supplier_total_power_intercept & 0x1FFF;

                                    // check to see if data is lab data
                                    if (
                                        (((l_cdimm_master_total_power_slope & 0x4000) == 0) ||
                                         ((l_cdimm_master_total_power_intercept & 0x4000) == 0))
                                        ||
                                        (((l_cdimm_supplier_total_power_slope & 0x4000) == 0) ||
                                         ((l_cdimm_supplier_total_power_intercept &
                                           0x4000) == 0))
                                    )
                                    {
                                        FAPI_INF("%s WARNING:  Total power curve data is lab data, not ship level data. Using data anyways.",
                                                 mss::c_str(i_target_mba));
                                    }
                                }
                                else
                                {
                                    // Set to VMEM power curve values if total values are not valid and log an error
                                    // early DDR4 CDIMMs will have the total power curve entries all zero (not valid)
                                    l_total_power_slope_array[l_port][l_dimm] =
                                        l_power_slope_array[l_port][l_dimm];
                                    l_total_power_int_array[l_port][l_dimm] =
                                        l_power_int_array[l_port][l_dimm];
                                    l_total_power_slope2_array[l_port][l_dimm] =
                                        l_power_slope2_array[l_port][l_dimm];
                                    l_total_power_int2_array[l_port][l_dimm] =
                                        l_power_int2_array[l_port][l_dimm];

                                    // only log the error once per MBA, since all dimms will have the same power curve values
                                    if (l_logged_error_total_power_curve == 0)
                                    {
                                        l_logged_error_total_power_curve = 1;
                                        FAPI_ASSERT(false,
                                                    fapi2::CEN_MSS_DIMM_POWER_CURVE_DATA_INVALID().
                                                    set_MEM_CHIP(l_target_chip).
                                                    set_MASTER_SLOPE(l_cdimm_master_power_slope).
                                                    set_MASTER_INTERCEPT(l_cdimm_master_power_intercept).
                                                    set_SUPPLIER_SLOPE(l_cdimm_supplier_power_slope).
                                                    set_SUPPLIER_INTERCEPT(l_cdimm_supplier_power_intercept),
                                                    "%s CDIMM VPD power curve values not valid", mss::c_str(i_target_mba)
                                                   );
                                    }
                                }
                            }
                            else
                            {
                                // Set total power curve values to VMEM power curve values for anything other than DDR4 (ie.  DDR3)
                                l_total_power_slope_array[l_port][l_dimm] =
                                    l_power_slope_array[l_port][l_dimm];
                                l_total_power_int_array[l_port][l_dimm] =
                                    l_power_int_array[l_port][l_dimm];
                                l_total_power_slope2_array[l_port][l_dimm] =
                                    l_power_slope2_array[l_port][l_dimm];
                                l_total_power_int2_array[l_port][l_dimm] =
                                    l_power_int2_array[l_port][l_dimm];
                            }
                        }
                        else
                        {
                            // Set to default values and log an error if VMEM power curve values are not valid
                            l_power_slope_array[l_port][l_dimm] =
                                CDIMM_POWER_SLOPE_DEFAULT;
                            l_power_int_array[l_port][l_dimm] =
                                CDIMM_POWER_INT_DEFAULT;
                            l_power_slope2_array[l_port][l_dimm] =
                                CDIMM_POWER_SLOPE_DEFAULT;
                            l_power_int2_array[l_port][l_dimm] =
                                CDIMM_POWER_INT_DEFAULT;
                            l_total_power_slope_array[l_port][l_dimm] =
                                CDIMM_POWER_SLOPE_DEFAULT;
                            l_total_power_int_array[l_port][l_dimm] =
                                CDIMM_POWER_INT_DEFAULT;
                            l_total_power_slope2_array[l_port][l_dimm] =
                                CDIMM_POWER_SLOPE_DEFAULT;
                            l_total_power_int2_array[l_port][l_dimm] =
                                CDIMM_POWER_INT_DEFAULT;

                            // only log the error once per MBA, since all dimms will have the same power curve values
                            if (l_logged_error_power_curve == 0)
                            {
                                l_logged_error_power_curve = 1;

                                FAPI_ASSERT(false,
                                            fapi2::CEN_MSS_DIMM_POWER_CURVE_DATA_INVALID().
                                            set_MEM_CHIP(l_target_chip).
                                            set_MASTER_SLOPE(l_cdimm_master_power_slope).
                                            set_MASTER_INTERCEPT(l_cdimm_master_power_intercept).
                                            set_SUPPLIER_SLOPE(l_cdimm_supplier_power_slope).
                                            set_SUPPLIER_INTERCEPT(l_cdimm_supplier_power_intercept),
                                            "%s CDIMM VPD power curve values not valid", mss::c_str(i_target_mba)
                                           );
                            }
                        }

                        FAPI_DBG("%s CustomDIMM VMEM Power [P%d:D%d][SLOPE=%d:INT=%d cW][SLOPE2=%d:INT2=%d cW]",
                                 mss::c_str(i_target_mba), l_port, l_dimm,
                                 l_power_slope_array[l_port][l_dimm], l_power_int_array[l_port][l_dimm], l_power_slope2_array[l_port][l_dimm],
                                 l_power_int2_array[l_port][l_dimm]);
                        FAPI_DBG("%s CustomDIMM VMEM+VPP Power [P%d:D%d][SLOPE=%d:INT=%d cW][SLOPE2=%d:INT2=%d cW]",
                                 mss::c_str(i_target_mba), l_port, l_dimm,
                                 l_total_power_slope_array[l_port][l_dimm], l_total_power_int_array[l_port][l_dimm],
                                 l_total_power_slope2_array[l_port][l_dimm],
                                 l_total_power_int2_array[l_port][l_dimm]);
                    }
                    // non custom dimm power curves
                    else
                    {
                        l_power_slope_array[l_port][l_dimm] =
                            ISDIMM_VMEM_POWER_SLOPE_DEFAULT;
                        l_power_int_array[l_port][l_dimm] =
                            ISDIMM_VMEM_POWER_INT_DEFAULT;
                        l_power_slope2_array[l_port][l_dimm] =
                            ISDIMM_VMEM_POWER_SLOPE_DEFAULT;
                        l_power_int2_array[l_port][l_dimm] =
                            ISDIMM_VMEM_POWER_INT_DEFAULT;
                        l_total_power_slope_array[l_port][l_dimm] =
                            ISDIMM_VMEM_PLUS_VPP_POWER_SLOPE_DEFAULT;
                        l_total_power_int_array[l_port][l_dimm] =
                            ISDIMM_VMEM_PLUS_VPP_POWER_INT_DEFAULT;
                        l_total_power_slope2_array[l_port][l_dimm] =
                            ISDIMM_VMEM_PLUS_VPP_POWER_SLOPE_DEFAULT;
                        l_total_power_int2_array[l_port][l_dimm] =
                            ISDIMM_VMEM_PLUS_VPP_POWER_INT_DEFAULT;
                        FAPI_DBG("%s NonCustomDIMM VMEM Power [P%d:D%d][SLOPE=%d:INT=%d cW][SLOPE2=%d:INT2=%d cW]",
                                 mss::c_str(i_target_mba), l_port, l_dimm,
                                 l_power_slope_array[l_port][l_dimm], l_power_int_array[l_port][l_dimm], l_power_slope2_array[l_port][l_dimm],
                                 l_power_int2_array[l_port][l_dimm]);
                        FAPI_DBG("%s NonCustomDIMM VMEM+VPP Power [P%d:D%d][SLOPE=%d:INT=%d cW][SLOPE2=%d:INT2=%d cW]",
                                 mss::c_str(i_target_mba), l_port, l_dimm,
                                 l_total_power_slope_array[l_port][l_dimm], l_total_power_int_array[l_port][l_dimm],
                                 l_total_power_slope2_array[l_port][l_dimm],
                                 l_total_power_int2_array[l_port][l_dimm]);

                    }
                }
            }
        }

        // write output attributes
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_POWER_SLOPE,
                               i_target_mba, l_power_slope_array));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_POWER_INT, i_target_mba, l_power_int_array));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_POWER_SLOPE2,
                               i_target_mba, l_power_slope2_array));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_POWER_INT2,
                               i_target_mba, l_power_int2_array));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_SLOPE,
                               i_target_mba, l_total_power_slope_array));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_INT, i_target_mba, l_total_power_int_array));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_SLOPE2,
                               i_target_mba, l_total_power_slope2_array));
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_INT2,
                               i_target_mba, l_total_power_int2_array));
        FAPI_INF("*** mss_eff_config_thermal_powercurve COMPLETE on %s ***",
                 mss::c_str(i_target_mba));
    fapi_try_exit:
        return fapi2::current_err;
    }

    ///
    /// @brief This function determines the throttle attribute values to use
    /// @param[in] i_target_mba:  MBA Target
    /// @return fapi2::ReturnCode
    ///
    fapi2::ReturnCode mss_eff_config_thermal_throttles(const fapi2::Target<fapi2::TARGET_TYPE_MBA>& i_target_mba)
    {

        FAPI_INF("*** Running mss_eff_config_thermal_throttles on %s ***",
                 mss::c_str(i_target_mba));

        // variables used in this function
        uint8_t l_custom_dimm = 0;
        uint8_t l_num_dimms_on_port = 0;
        uint32_t l_runtime_throttle_n_per_mba = 0;
        uint32_t l_runtime_throttle_n_per_chip = 0;
        uint32_t l_runtime_throttle_d = 0;
        uint32_t l_dimm_thermal_power_limit = 0;
        uint32_t l_channel_pair_thermal_power_limit = 0;
        uint8_t l_num_mba_with_dimms = 0;
        uint8_t l_ras_increment = 0;
        uint8_t l_cas_increment = 0;
        uint32_t l_max_dram_databus_util = 0;
        uint32_t l_dimm_reg_power_limit_per_dimm_adj = 0;
        uint32_t l_dimm_reg_power_limit_per_dimm = 0;
        uint32_t l_dimm_reg_power_limit_per_dimm_ddr3 = 0;
        uint32_t l_dimm_reg_power_limit_per_dimm_ddr4 = 0;
        uint8_t l_max_number_dimms_per_reg = 0;
        uint8_t l_dimm_reg_power_limit_adj_enable = 0;
        uint8_t l_reg_max_dimm_count = 0;
        uint8_t l_dram_gen = 0;
        uint32_t l_power_slope_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_power_int_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_total_power_slope_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        uint32_t l_total_power_int_array[MAX_PORTS_PER_MBA][MAX_DIMM_PER_PORT] = {0};
        fapi2::ReturnCode l_rc;
        uint8_t l_throttle_multiplier = 0;
        uint32_t l_safemode_throttle_n_per_mba = 0;
        uint32_t l_safemode_throttle_n_per_chip = 0;

        // Get Centaur target for the given MBA
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_CUSTOM_DIMM, i_target_mba, l_custom_dimm));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_NUM_DROPS_PER_PORT,
                               i_target_mba, l_num_dimms_on_port));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_MSS_VMEM_REGULATOR_MAX_DIMM_COUNT,
                               fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(), l_reg_max_dimm_count));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_EFF_DRAM_GEN,
                               i_target_mba, l_dram_gen));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MSS_POWER_SLOPE,
                               i_target_mba, l_power_slope_array));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MSS_POWER_INT,
                               i_target_mba, l_power_int_array));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_SLOPE,
                               i_target_mba, l_total_power_slope_array));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_INT,
                               i_target_mba, l_total_power_int_array));

        // If any of these are zero and used, then we will end up with an error in p9c_mss_bulk_pwr_throttles
        //   (CEN_MSS_NOT_ENOUGH_AVAILABLE_DIMM_POWER), so no need to check these here
        // ATTR_CEN_MRW_THERMAL_MEMORY_POWER_LIMIT
        // ATTR_MRW_VMEM_REGULATOR_MEMORY_POWER_LIMIT_PER_DIMM_DDR3
        // ATTR_MRW_VMEM_REGULATOR_MEMORY_POWER_LIMIT_PER_DIMM_DDR4
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MRW_THERMAL_MEMORY_POWER_LIMIT,
                               fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(), l_dimm_thermal_power_limit));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_MRW_VMEM_REGULATOR_MEMORY_POWER_LIMIT_PER_DIMM_DDR3,
                               fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(), l_dimm_reg_power_limit_per_dimm_ddr3));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_MRW_VMEM_REGULATOR_MEMORY_POWER_LIMIT_PER_DIMM_DDR4,
                               fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(), l_dimm_reg_power_limit_per_dimm_ddr4));

        // If these are zero then the power limit adjustment just won't happen
        // Not deemed critical enough to stop the IPL, so no error will be called out
        // ATTR_MSS_MRW_MAX_NUMBER_DIMMS_POSSIBLE_PER_VMEM_REGULATOR
        // ATTR_MSS_MRW_VMEM_REGULATOR_POWER_LIMIT_PER_DIMM_ADJ_ENABLE
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_MSS_MRW_MAX_NUMBER_DIMMS_POSSIBLE_PER_VMEM_REGULATOR,
                               fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(), l_max_number_dimms_per_reg));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_MSS_MRW_VMEM_REGULATOR_POWER_LIMIT_PER_DIMM_ADJ_ENABLE,
                               fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(), l_dimm_reg_power_limit_adj_enable));

        // Error out if we have invalid MRW attribute combination:
        // ATTR_MSS_MRW_MAX_DRAM_DATABUS_UTIL = 0 with ATTR_MSS_MRW_MEM_M_DRAM_CLOCKS > 0 (throttling enabled) is not valid
        //   because we would end up with N=0 and M>0 for N/M throttling which will cause hangs
        // Note that M=0 has memory throttling disabled
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_MSS_MRW_MEM_M_DRAM_CLOCKS, fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(),
                               l_runtime_throttle_d));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_MSS_MRW_MAX_DRAM_DATABUS_UTIL,
                               fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(), l_max_dram_databus_util));
        FAPI_ASSERT( !((l_runtime_throttle_d > 0) && (l_max_dram_databus_util == 0)),
                     fapi2::CEN_MSS_MRW_MAX_DRAM_DATABUS_UTIL_INVALID().
                     set_MRW_DRAM_UTIL(l_max_dram_databus_util).
                     set_MRW_M_THROTTLE(l_runtime_throttle_d),
                     "Invalid MRW values:  ATTR_MSS_MRW_MAX_DRAM_DATABUS_UTIL %d ATTR_MSS_MRW_MEM_M_DRAM_CLOCKS %d", l_max_dram_databus_util,
                     l_runtime_throttle_d);

        // Error out if the safemode MRW attributes are zero
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MRW_SAFEMODE_MEM_THROTTLE_NUMERATOR_PER_MBA,
                               fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(),
                               l_safemode_throttle_n_per_mba));
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MRW_SAFEMODE_MEM_THROTTLE_NUMERATOR_PER_CHIP,
                               fapi2::Target<fapi2::TARGET_TYPE_SYSTEM>(),
                               l_safemode_throttle_n_per_chip));
        FAPI_ASSERT( !((l_safemode_throttle_n_per_mba == 0) || (l_safemode_throttle_n_per_chip == 0)),
                     fapi2::CEN_MSS_MRW_SAFEMODE_THROTTLES_INVALID().
                     set_MRW_SAFEMODE_N_MBA(l_safemode_throttle_n_per_mba).
                     set_MRW_SAFEMODE_N_CHIP(l_safemode_throttle_n_per_chip),
                     "Invalid MRW values:  ATTR_CEN_MRW_SAFEMODE_MEM_THROTTLE_NUMERATOR_PER_MBA %d ATTR_CEN_MRW_SAFEMODE_MEM_THROTTLE_NUMERATOR_PER_CHIP %d",
                     l_safemode_throttle_n_per_mba, l_safemode_throttle_n_per_chip);

        // If throttling is disabled, set max util to MAX_UTIL
        if (l_runtime_throttle_d == 0)
        {
            FAPI_INF("%s Memory Throttling is Disabled with M=0", mss::c_str(i_target_mba));
            l_max_dram_databus_util = MAX_UTIL;
        }

        // get number of mba's with dimms, used below to help determine power limit values below
        // Have to have this section in braces otherwise compile fails
        {
            const auto& l_target_chip = mss::find_target<TARGET_TYPE_MEMBUF_CHIP>(i_target_mba);

            for (const auto& l_mba : mss::find_targets<TARGET_TYPE_MBA>(l_target_chip))
            {
                if (mss::count_dimm(l_mba) > 0)
                {
                    l_num_mba_with_dimms++;
                }
            }
        }

        // Set the throttle multiplier based on how throttles are used
        // CDIMMs use per mba and per chip throttles (for l_throttle_n_per_mba and l_throttle_n_per_chip), set to 2
        // ISDIMMs use per slot and per mba throttles (for l_throttle_n_per_mba and l_throttle_n_per_chip), set to 1
        l_throttle_multiplier = (l_custom_dimm == fapi2::ENUM_ATTR_CEN_EFF_CUSTOM_DIMM_YES) ? 2 : 1;

        FAPI_INF("%s [Number MBAs with DIMMs %d][Throttle Multiplier %d]", mss::c_str(i_target_mba), l_num_mba_with_dimms,
                 l_throttle_multiplier);

//------------------------------------------------------------------------------
// Memory Throttle Determination
//------------------------------------------------------------------------------

// Determine memory throttle settings needed based on dimm thermal power limit

//------------------------------------------------------------------------------
// Determine the thermal power limit to use, which represents a single channel
// pair power limit for the dimms on that channel pair (ie.  power for all dimms
// attached to one MBA).   The procedure mss_bulk_power_throttles takes the
// input of channel pair power to determine throttles.
// CDIMM thermal power limit from MRW is per CDIMM, so divide by number of mbas
// that have dimms to get channel pair power
// CDIMM:  Allow all commands to be directed toward one MBA to achieve the power
// limit
//   This means that the power limit for a MBA channel pair must be the total
// CDIMM power limit minus the idle power of the other MBAs logical dimms
//------------------------------------------------------------------------------

        // adjust the regulator power limit per dimm if enabled and use this if less than the thermal limit

        // If DDR4, use DDR4 regulator power limit
        l_dimm_reg_power_limit_per_dimm = (l_dram_gen == fapi2::ENUM_ATTR_CEN_EFF_DRAM_GEN_DDR4) ?
                                          l_dimm_reg_power_limit_per_dimm_ddr4 : l_dimm_reg_power_limit_per_dimm_ddr3;

        l_dimm_reg_power_limit_per_dimm_adj = l_dimm_reg_power_limit_per_dimm;

        if (l_dimm_reg_power_limit_adj_enable == fapi2::ENUM_ATTR_MSS_MRW_VMEM_REGULATOR_POWER_LIMIT_PER_DIMM_ADJ_ENABLE_TRUE)
        {
            // adjust reg power limit per cdimm only if l_reg_max_dimm_count>0 and l_reg_max_dimm_count<l_max_number_dimms_per_reg
            if (
                (l_reg_max_dimm_count > 0)
                && (l_reg_max_dimm_count < l_max_number_dimms_per_reg)
            )
            {
                l_dimm_reg_power_limit_per_dimm_adj =
                    l_dimm_reg_power_limit_per_dimm
                    * l_max_number_dimms_per_reg
                    / l_reg_max_dimm_count;
                FAPI_INF("%s VMEM Regulator Power/DIMM Limit Adjustment from %d to %d cW (DIMMs under regulator %d/%d)",
                         mss::c_str(i_target_mba), l_dimm_reg_power_limit_per_dimm, l_dimm_reg_power_limit_per_dimm_adj,
                         l_reg_max_dimm_count, l_max_number_dimms_per_reg);
            }
        }

        // Use the smaller of the thermal limit and regulator power limit per dimm
        FAPI_INF("%s Power/DIMM:  VMEM Regulator Limit %d cW, DIMM Thermal Limit %d cW",
                 mss::c_str(i_target_mba), l_dimm_reg_power_limit_per_dimm_adj, l_dimm_thermal_power_limit);
        l_dimm_thermal_power_limit = (l_dimm_reg_power_limit_per_dimm_adj < l_dimm_thermal_power_limit) ?
                                     l_dimm_reg_power_limit_per_dimm_adj : l_dimm_thermal_power_limit;

        // Adjust the thermal/power limit to represent the power for all dimms under an MBA
        // CDIMM thermal power limit is for both MBAs, so divide by number of MBAs
        // ISDIMMs thermal power limit from MRW is per DIMM, so multiply by number of dimms on channel to get channel power and multiply by 2 to get channel pair power
        l_channel_pair_thermal_power_limit = (l_custom_dimm == fapi2::ENUM_ATTR_CEN_EFF_CUSTOM_DIMM_YES) ?
                                             (l_dimm_thermal_power_limit / l_num_mba_with_dimms) :
                                             (l_dimm_thermal_power_limit * l_num_dimms_on_port * 2);

        // Update the channel pair power limit attribute
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_MEM_WATT_TARGET,
                               i_target_mba, l_channel_pair_thermal_power_limit));

        // Initialize the runtime throttle attributes to an unthrottled value for mss_bulk_pwr_throttles
        l_runtime_throttle_n_per_mba = (static_cast<uint32_t>(l_runtime_throttle_d *
                                        ((convert_to_percent(static_cast<double>(l_max_dram_databus_util))) / PERCENT_CONVERSION) /
                                        ADDR_TO_DATA_UTIL_CONVERSION));
        l_runtime_throttle_n_per_chip = (static_cast<uint32_t>(l_runtime_throttle_d *
                                         ((convert_to_percent(static_cast<double>(l_max_dram_databus_util))) / PERCENT_CONVERSION) /
                                         ADDR_TO_DATA_UTIL_CONVERSION) * l_throttle_multiplier);

        // for better custom dimm performance for DDR4, set the per mba throttle to the per chip throttle
        // Not planning on doing this for DDR3
        if ( (l_dram_gen == fapi2::ENUM_ATTR_CEN_EFF_DRAM_GEN_DDR4)
             && (l_custom_dimm == fapi2::ENUM_ATTR_CEN_EFF_CUSTOM_DIMM_YES) )
        {
            l_runtime_throttle_n_per_mba = l_runtime_throttle_n_per_chip;
        }

        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_MBA,
                               i_target_mba, l_runtime_throttle_n_per_mba));

        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_CHIP,
                               i_target_mba, l_runtime_throttle_n_per_chip));

        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_RUNTIME_MEM_THROTTLE_DENOMINATOR,
                               i_target_mba, l_runtime_throttle_d));

        FAPI_INF("%s Min Power/Thermal Limit per MBA %d cW.  Unthrottled values [%d/%d/%d].",
                 mss::c_str(i_target_mba), l_channel_pair_thermal_power_limit,
                 l_runtime_throttle_n_per_mba, l_runtime_throttle_n_per_chip, l_runtime_throttle_d);


        // For DDR4, use the VMEM power to determine the runtime throttle settings that are based
        //  on a VMEM power limit (not a VMEM+VPP power limit which is to be used at runtime for tmgt)
        // Need to temporarily override attributes for mss_bulk_pwr_throttles to use
        // Needed to determines runtime memory throttle settings based on any VMEM power limits
        if (l_dram_gen == fapi2::ENUM_ATTR_CEN_EFF_DRAM_GEN_DDR4)
        {
            FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_SLOPE,
                                   i_target_mba, l_power_slope_array));
            FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_INT, i_target_mba, l_power_int_array));
        }

        // Call the procedure function that takes a channel pair power limit and
        // converts it to throttle values
        FAPI_EXEC_HWP(l_rc, p9c_mss_bulk_pwr_throttles, i_target_mba);
        FAPI_TRY(l_rc, "Failed running p9c_mss_bulk_pwr_throttles on %s", mss::c_str(i_target_mba));

        // Reset the total power curve attributes back to the original values
        if (l_dram_gen == fapi2::ENUM_ATTR_CEN_EFF_DRAM_GEN_DDR4)
        {
            FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_SLOPE,
                                   i_target_mba, l_total_power_slope_array));
            FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_TOTAL_POWER_INT, i_target_mba, l_total_power_int_array));
        }

        // Read back in the updated throttle attribute values (these are now set to
        // values that will give dimm/channel power underneath the thermal power limit)
        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MSS_MEM_THROTTLE_NUMERATOR_PER_MBA,
                               i_target_mba, l_runtime_throttle_n_per_mba));

        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MSS_MEM_THROTTLE_NUMERATOR_PER_CHIP,
                               i_target_mba, l_runtime_throttle_n_per_chip));

        FAPI_TRY(FAPI_ATTR_GET(fapi2::ATTR_CEN_MSS_MEM_THROTTLE_DENOMINATOR,
                               i_target_mba, l_runtime_throttle_d));

        // Setup the RAS and CAS increments used in the throttling register
        l_ras_increment = 0;
        l_cas_increment = 1;

        // update output attributes
        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_MBA,
                               i_target_mba, l_runtime_throttle_n_per_mba));

        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_RUNTIME_MEM_THROTTLE_NUMERATOR_PER_CHIP,
                               i_target_mba, l_runtime_throttle_n_per_chip));

        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_RUNTIME_MEM_THROTTLE_DENOMINATOR,
                               i_target_mba, l_runtime_throttle_d));

        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_THROTTLE_CONTROL_RAS_WEIGHT,
                               i_target_mba, l_ras_increment));

        FAPI_TRY(FAPI_ATTR_SET(fapi2::ATTR_CEN_MSS_THROTTLE_CONTROL_CAS_WEIGHT,
                               i_target_mba, l_cas_increment));

        FAPI_INF("*** mss_eff_config_thermal_throttles COMPLETE on %s ***",
                 mss::c_str(i_target_mba));
    fapi_try_exit:
        return fapi2::current_err;
    }

} //end extern C
OpenPOWER on IntegriCloud