1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
#!/usr/bin/python
# IBM_PROLOG_BEGIN_TAG
# This is an automatically generated prolog.
#
# $Source: src/build/debug/simics-debug-framework.py $
#
# IBM CONFIDENTIAL
#
# COPYRIGHT International Business Machines Corp. 2011-2012
#
# p1
#
# Object Code Only (OCO) source materials
# Licensed Internal Code Source Materials
# IBM HostBoot Licensed Internal Code
#
# The source code for this program is not published or other-
# wise divested of its trade secrets, irrespective of what has
# been deposited with the U.S. Copyright Office.
#
# Origin: 30
#
# IBM_PROLOG_END_TAG
# @file simics-debug-framework.py
# @brief Simics/Python implementation of the common debug framework.
#
# This is the Python side of the simics implementation of the debug framework.
# It operates by opening a Perl script as a subprocess using stdin/stdout to
# the subprocess as an IPC pipe.
#
# The Python script will handle the bridging from framework primatives, such
# as 'readData', to Simics interfaces. The script will also search for all
# existing debug modules and automatically instantiate simics commands of the
# form 'hb-Tool' so they can be used.
#
# If the users are expecting another tool name, such as 'hb-printk' instead of
# 'hb-Printk', or are expecting nicer parameter passing, such as
# 'hb-trace COMP1,COMP2' instead of 'hb-Trace "components=COMP1,COMP2"', then a
# manual wrapper command should be implemented in 'hb-simdebug.py'.
import os
import subprocess
import re
# @class DebugFrameworkIPCMessage
# @brief Wrapper class for constructing a properly formed IPC message for the
# Python-Perl bridge.
#
# The class provides a Pickle-like API (dumps / loads).
#
# Messages are of the format:
# [ "type", "data-in-ascii-encoded-hex" ]
# Example:
# The message...
# [ "display", "48656c6c6f20576f726c642e0a" ]
# means 'display "Hello World.\n"'
#
class DebugFrameworkIPCMessage:
msgtype = "unknown"
msg = ""
def __init__(self, msgtype = "unknown", msg = ""):
self.msgtype = msgtype
self.msg = msg
def dumps(self):
return ("[ \"" + self.msgtype + "\", \"" +
self.msg.encode("hex") + "\" ]\n")
def loads(self,string):
pattern = re.compile("\[ \"([^\"]+)\", \"([0-9a-f]*)\" ]")
match = pattern.search(string)
if match is None:
print "error: empty message >%s< received from perl"%(string)
print " Check for print's in your perl script!!!"
else:
self.msgtype = match.group(1)
self.msg = match.group(2).decode("hex")
# @class DebugFrameworkProcess
# @brief Provides a wrapper to the 'subprocess' interface and IPC bridge.
#
# This class also provides the handling functions for various bridge message
# types into the appropriate simics interface.
#
class DebugFrameworkProcess:
process = ""; # subprocess object.
tool = ""; # string - tool module name.
toolOptions = ""; # string - tool options
outputToString = None; # mode - String output instead of STDOUT.
imgPath = None; # Image dir path override.
result = ""; # Result string for Usage-mode.
outputFile = None; # Output file for results in addition to STDOUT
def __init__(self, tool = "Printk", toolOptions = "",
outputToString = None, usage = None,
imgPath = None,
outputFile = None):
# Assign instance 'imgPath' variable.
self.imgPath = imgPath if imgPath else (os.environ['HB_TOOLPATH']+"/");
# Determine sub-process arguments.
process_args = [self.imgPath+"simics-debug-framework.pl"];
if (usage): # Pass --usage if Usage mode selected.
process_args = process_args + [ "--usage" ];
outputToString = True;
# Spawn sub-process
self.process = subprocess.Popen(process_args,
stdin=subprocess.PIPE, stdout=subprocess.PIPE)
# Update instance variables.
self.tool = tool;
self.toolOptions = toolOptions;
self.outputToString = outputToString;
self.outputFile = open(outputFile, 'w') if outputFile else None;
# Read a message from the process pipe.
def recvMsg(self):
msg = DebugFrameworkIPCMessage()
line = self.process.stdout.readline()
if len(line) != 0:
msg.loads(line)
return (msg.msgtype, msg.msg)
else:
return ("", "")
# Send a message into the process pipe.
def sendMsg(self,msgtype,msg):
msg = DebugFrameworkIPCMessage(msgtype, msg)
self.process.stdin.write(msg.dumps())
# End sub-process by closing its pipe.
def endProcess(self):
self.process.stdin.close()
# Display string (or save to result in Usage mode).
def display(self,data):
if (self.outputToString):
self.result += data
else:
print data,
if self.outputFile:
print >>self.outputFile,data,
# Read data from memory.
# This message has data of the format "0dADDRESS,0dSIZE".
def read_data(self,data):
pattern = re.compile("([0-9]+),([0-9]+)")
match = pattern.search(data)
addr = int(match.group(1))
size = int(match.group(2))
data = "".join(map(chr, conf.phys_mem.memory[[addr , addr+size-1]]))
self.sendMsg("data-response", data)
# Write data to memory.
# This message has data of the format "0dADDR,0dSIZE,hDATA".
def write_data(self,data):
pattern = re.compile("([0-9]+),([0-9]+),([0-9A-Fa-f]+)")
match = pattern.search(data)
addr = int(match.group(1))
size = int(match.group(2))
data = map(ord, match.group(3).decode("hex"));
conf.phys_mem.memory[[addr, addr+size-1]] = data;
# Clock forward the model.
# This message had data of the format "0dCYCLES".
def execute_instrs(self,data):
pattern = re.compile("([0-9]+)")
match = pattern.search(data)
cycles = int(match.group(1))
if (not SIM_simics_is_running()):
SIM_continue(cycles)
def ready_for_instr(self,data):
self.sendMsg("data-response", "0" if SIM_simics_is_running() else "1")
# Get tool module name.
def get_tool(self,data):
self.sendMsg("data-response", self.tool)
# Get tool options.
def get_tool_options(self,data):
self.sendMsg("data-response", self.toolOptions)
# Get image path.
def get_img_path(self,data):
self.sendMsg("data-response", self.imgPath)
# Read data from xscom address.
# This message has data of the format "0dADDRESS,0dSIZE".
def read_xscom(self,data):
pattern = re.compile("([0-9]+),([0-9]+)")
match = pattern.search(data)
addr = int(match.group(1))
size = int(match.group(2))
## read the register using xscom reg addresses
runStr = "phys_mem.read 0x%x 0x%x"%(addr, size)
( result, out ) = quiet_run_command( runStr, output_modes.regular )
## DEBUG print ">> %s: "%(runStr) + "0x%16.16x"%(result) + " : " + out
self.sendMsg("data-response", "%16.16x"%(result) )
# Write data to xscom address..
# This message has data of the format "0dADDR,0dSIZE,hDATA".
def write_xscom(self,data):
pattern = re.compile("([0-9]+),([0-9]+),([0-9]+)")
match = pattern.search(data)
addr = int(match.group(1))
size = int(match.group(2))
data = int(match.group(3) )
runStr = "phys_mem.write 0x%x 0x%x 0x%x"%(addr, data, size)
( result, out ) = quiet_run_command( runStr, output_modes.regular )
## DEBUG print ">> %s : "%(runStr) + " 0x%16.16x"%(result) + " : " + out
# @fn run_hb_debug_framework
# @brief Wrapper function to execute a tool module.
#
# @param tool - Tool module to execute.
# @param toolOpts - String containing tool options.
# @param usage - Usage mode or Execute mode.
# @param imgPath - Image path override.
def run_hb_debug_framework(tool = "Printk", toolOpts = "",
outputToString = None, usage = None,
imgPath = None, outputFile = None):
# Create debug sub-process.
fp = DebugFrameworkProcess(tool,toolOpts,outputToString,
usage,imgPath,outputFile)
# Read / handle messages until there are no more.
msg = fp.recvMsg()
while msg[0] != "":
operations = { "display" : DebugFrameworkProcess.display,
"read-data" : DebugFrameworkProcess.read_data,
"write-data" : DebugFrameworkProcess.write_data,
"execute-instrs" : DebugFrameworkProcess.execute_instrs,
"ready-for-instr" : DebugFrameworkProcess.ready_for_instr,
"get-tool" : DebugFrameworkProcess.get_tool,
"get-tool-options" : DebugFrameworkProcess.get_tool_options,
"get-img-path" : DebugFrameworkProcess.get_img_path,
"write-scom" : DebugFrameworkProcess.write_xscom,
"read-scom" : DebugFrameworkProcess.read_xscom,
"exit" : DebugFrameworkProcess.endProcess,
}
operations[msg[0]](fp,msg[1])
msg = fp.recvMsg()
# If in Usage mode, return result string.
if (usage or outputToString):
return fp.result
return None
# @fn register_hb_debug_framework_tools
# @brief Create a simics command wrapper for each debug tool module.
def register_hb_debug_framework_tools():
# Find all modules from within Hostboot subdirectory.
files = os.listdir(os.environ['HB_TOOLPATH']+"/Hostboot")
# Filter out any prefixed with '_' (utility module) or a '.' (hidden file).
pattern = re.compile("[^\._]");
files = [f for f in files if pattern.match(f)]
# Filter out modules written for vbu only
pattern = re.compile("AutoIpl|ContTrace");
files = [f for f in files if not pattern.match(f)]
# Remove the .pm extension from the tool modules.
files = [re.sub("\.pm","",f) for f in files];
# Create an entry for each module.
for tool in files:
# Get usage information for each module, fix text to HTML-like.
usage = run_hb_debug_framework(tool, usage = 1)
usage = re.sub("<","<", usage);
usage = re.sub(">",">", usage);
usage = re.sub("\t"," ",usage)
usage = "<pre>"+usage+"</pre>"
# Create command hook.
new_command("hb-" + tool,
(lambda toolname:
lambda options:
run_hb_debug_framework(toolname, options,
outputFile="hb-debug-"+toolname+".output"))
(tool),
args = [arg(str_t, "options", "?", "")],
alias = "hb-debug-" + tool,
type = ["hostboot-commands"],
short = "Runs the debug framework for tool " + tool,
doc = usage)
print "Hostboot Debug Framework: Registered tool:", "hb-" + tool
# Return a number/address built from the input list elements. Each element
# in the input is a string representation of a byte-sized hex number, for
# example '0x2b' or '0x0' or '0xa'. This does no endian conversion, thus
# the input needs to be big endian. The length of the input list can be
# any size, usually 2, 4, or 8.
def hexDumpToNumber(hexlist):
strNumber=""
for i in range(len(hexlist)):
# take away 0x for this byte
hexlist[i] = hexlist[i][2:]
# zero-fill leading zeroes to make a 2-char string
hexlist[i] = hexlist[i].zfill(2)
# concatenate onto addr
strNumber += hexlist[i]
return int(strNumber,16)
# Read simics memory and return a list of strings such as ['0x0','0x2b','0x8']
# representing the data read from simics. The list returned may be handed
# to hexDumpToNumber() to turn the list into a number.
def dumpSimicsMemory(address,bytecount):
hexlist = map(hex,conf.phys_mem.memory[[address,address+bytecount-1]])
return hexlist
# Read the 64-bit big endian at the address given, return it as a number.
def readLongLong(address):
hexlist = dumpSimicsMemory(address,8)
return hexDumpToNumber(hexlist)
def readLong(address):
hexlist = dumpSimicsMemory(address,4)
return hexDumpToNumber(hexlist)
def writeLong(address,datvalue):
conf.phys_mem.memory[[address,address+3]] = [0,0,0,datvalue]
return
# Write simics memory. address is an integer.
# data is a list of byte-sized integers.
def writeSimicsMemory(address,data):
size = len(data)
conf.phys_mem.memory[[address, address+size-1]] = data;
# Convert an integer to a byte list <size> bytes long.
def intToList(n,size):
lst = []
for i in range(size):
b = n & 0xFF;
lst.insert(0,b)
n = n >> 8
return lst
# Write the 64-bit big endian n at the address given.
def writeLongLong(address,n):
writeSimicsMemory(address,intToList(n,8))
# MAGIC_INSTRUCTION hap handler
# arg contains the integer parameter n passed to MAGIC_INSTRUCTION(n)
# See src/include/arch/ppc.H for the definitions of the magic args.
# Hostboot magic args should range 7000..7999.
def magic_instruction_callback(user_arg, cpu, arg):
if arg == 7006: # MAGIC_SHUTDOWN
# KernelMisc::shutdown()
print "KernelMisc::shutdown() called."
# Could break/stop/pause the simics run, but presently
# shutdown() is called four times. --Monte Jan 2012
# SIM_break_simulation( "Shutdown. Simulation stopped." )
if arg == 7007: # MAGIC_BREAK
# Stop the simulation, much like a hard-coded breakpoint
SIM_break_simulation( "Simulation stopped. (hap 7007)" )
if arg == 7055: # MAGIC_CONTINUOUS_TRACE
# Set execution environment flag to 0
writeLongLong(contTraceTrigInfo+32,0)
# Continuous trace.
# Residing at tracBinaryInfoAddr is the pointer to the tracBinary buffer
pTracBinaryBuffer = readLongLong(tracBinaryInfoAddr)
# Read the count of bytes used in the tracBinary buffer
cbUsed = readLongLong(tracBinaryInfoAddr+8)
triggerActive = readLong(tracBinaryInfoAddr+16)
if triggerActive == 0 and cbUsed == 1:
pTracBinaryBuffer = readLongLong(tracBinaryInfoAddr+24)
cbUsed = readLongLong(tracBinaryInfoAddr+32)
writeLong(tracBinaryInfoAddr+40,0)
# Reset the buffer byte count in Simics memory to 1, preserving
# the byte at offset 0 of the buffer which contains a 0x02 in
# fsp-trace style.
writeLongLong(tracBinaryInfoAddr+32,1)
else:
writeLong(tracBinaryInfoAddr+16,0)
# Reset the buffer byte count in Simics memory to 1, preserving
# the byte at offset 0 of the buffer which contains a 0x02 in
# fsp-trace style.
writeLongLong(tracBinaryInfoAddr+8,1)
# Save the tracBinary buffer to a file named tracBINARY in current dir
saveCommand = "(system_cmp0.phys_mem)->map[0][1]->image.save tracBINARY 0x%x %d"%(pTracBinaryBuffer,cbUsed)
SIM_run_alone(run_command, saveCommand )
# Run fsp-trace on tracBINARY file (implied), append output to tracMERG
os.system( "fsp-trace ./ -s "+os.environ['HB_TOOLPATH']+
"/hbotStringFile >>tracMERG 2>/dev/null" )
# Continuous trace: Open the symbols and find the address for
# "g_tracBinaryInfo" Convert to a number and save in tracBinaryInfoAddr
# The layout of g_tracBinaryInfo is a 64-bit pointer to the mixed buffer
# followed by a 64-bit count of bytes used in the buffer. See
# src/usr/trace/trace.C and mixed_trace_info_t.
for line in open(os.environ['HB_TOOLPATH']+'/hbicore.syms'):
if "g_tracBinaryInfo" in line:
words=line.split(",")
tracBinaryInfoAddr=int(words[1],16)
break
# Find the address of the g_cont_trace_trigger_info and save it in
# contTraceTrigInfo
for line in open(os.environ['HB_TOOLPATH']+'/hbicore.syms'):
if "g_cont_trace_trigger_info" in line:
words=line.split(",")
contTraceTrigInfo=int(words[1],16)
break
# Continuous trace: Clear these files.
rc = os.system( "rm -f tracMERG" )
rc = os.system( "rm -f tracBINARY" )
# Register the magic instruction hap handler (a callback).
SIM_hap_add_callback_range( "Core_Magic_Instruction", magic_instruction_callback, None, 7000, 7999 )
# Run the registration automatically whenever this script is loaded.
register_hb_debug_framework_tools()
|