1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
|
// Vector implementation -*- C++ -*-
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
*
* Copyright (c) 1994
* Hewlett-Packard Company
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Hewlett-Packard Company makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_vector.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef __GLIBCPP_INTERNAL_VECTOR_H
#define __GLIBCPP_INTERNAL_VECTOR_H
#include <bits/stl_iterator_base_funcs.h>
#include <bits/functexcept.h>
#include <bits/concept_check.h>
// Since this entire file is within namespace std, there's no reason to
// waste two spaces along the left column. Thus the leading indentation is
// slightly violated from here on.
namespace std
{
/// @if maint Primary default version. @endif
/**
* @if maint
* See bits/stl_deque.h's _Deque_alloc_base for an explanation.
* @endif
*/
template <typename _Tp, typename _Allocator, bool _IsStatic>
class _Vector_alloc_base
{
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type
get_allocator() const { return _M_data_allocator; }
_Vector_alloc_base(const allocator_type& __a)
: _M_data_allocator(__a), _M_start(0), _M_finish(0), _M_end_of_storage(0)
{}
protected:
allocator_type _M_data_allocator;
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
_Tp*
_M_allocate(size_t __n) { return _M_data_allocator.allocate(__n); }
void
_M_deallocate(_Tp* __p, size_t __n)
{ if (__p) _M_data_allocator.deallocate(__p, __n); }
};
/// @if maint Specialization for instanceless allocators. @endif
template <typename _Tp, typename _Allocator>
class _Vector_alloc_base<_Tp, _Allocator, true>
{
public:
typedef typename _Alloc_traits<_Tp, _Allocator>::allocator_type
allocator_type;
allocator_type
get_allocator() const { return allocator_type(); }
_Vector_alloc_base(const allocator_type&)
: _M_start(0), _M_finish(0), _M_end_of_storage(0)
{}
protected:
_Tp* _M_start;
_Tp* _M_finish;
_Tp* _M_end_of_storage;
typedef typename _Alloc_traits<_Tp, _Allocator>::_Alloc_type _Alloc_type;
_Tp*
_M_allocate(size_t __n) { return _Alloc_type::allocate(__n); }
void
_M_deallocate(_Tp* __p, size_t __n) { _Alloc_type::deallocate(__p, __n);}
};
/**
* @if maint
* See bits/stl_deque.h's _Deque_base for an explanation.
* @endif
*/
template <typename _Tp, typename _Alloc>
struct _Vector_base
: public _Vector_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
public:
typedef _Vector_alloc_base<_Tp, _Alloc,
_Alloc_traits<_Tp, _Alloc>::_S_instanceless>
_Base;
typedef typename _Base::allocator_type allocator_type;
_Vector_base(const allocator_type& __a)
: _Base(__a) {}
_Vector_base(size_t __n, const allocator_type& __a)
: _Base(__a)
{
_M_start = _M_allocate(__n);
_M_finish = _M_start;
_M_end_of_storage = _M_start + __n;
}
~_Vector_base() { _M_deallocate(_M_start, _M_end_of_storage - _M_start); }
};
/**
* @brief A standard container which offers fixed time access to individual
* elements in any order.
*
* @ingroup Containers
* @ingroup Sequences
*
* Meets the requirements of a <a href="tables.html#65">container</a>, a
* <a href="tables.html#66">reversible container</a>, and a
* <a href="tables.html#67">sequence</a>, including the
* <a href="tables.html#68">optional sequence requirements</a> with the
* %exception of @c push_front and @c pop_front.
*
* In some terminology a %vector can be described as a dynamic C-style array,
* it offers fast and efficient access to individual elements in any order
* and saves the user from worrying about memory and size allocation.
* Subscripting ( @c [] ) access is also provided as with C-style arrays.
*/
template <typename _Tp, typename _Alloc = allocator<_Tp> >
class vector : protected _Vector_base<_Tp, _Alloc>
{
// concept requirements
__glibcpp_class_requires(_Tp, _SGIAssignableConcept)
typedef _Vector_base<_Tp, _Alloc> _Base;
typedef vector<_Tp, _Alloc> vector_type;
public:
typedef _Tp value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef __gnu_cxx::__normal_iterator<pointer, vector_type> iterator;
typedef __gnu_cxx::__normal_iterator<const_pointer, vector_type>
const_iterator;
typedef reverse_iterator<const_iterator> const_reverse_iterator;
typedef reverse_iterator<iterator> reverse_iterator;
typedef value_type& reference;
typedef const value_type& const_reference;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef typename _Base::allocator_type allocator_type;
protected:
/** @if maint
* These two functions and three data members are all from the top-most
* base class, which varies depending on the type of %allocator. They
* should be pretty self-explanatory, as %vector uses a simple contiguous
* allocation scheme.
* @endif
*/
using _Base::_M_allocate;
using _Base::_M_deallocate;
using _Base::_M_start;
using _Base::_M_finish;
using _Base::_M_end_of_storage;
public:
// [23.2.4.1] construct/copy/destroy
// (assign() and get_allocator() are also listed in this section)
/**
* @brief Default constructor creates no elements.
*/
explicit
vector(const allocator_type& __a = allocator_type())
: _Base(__a) {}
/**
* @brief Create a %vector with copies of an exemplar element.
* @param n The number of elements to initially create.
* @param value An element to copy.
*
* This constructor fills the %vector with @a n copies of @a value.
*/
vector(size_type __n, const value_type& __value,
const allocator_type& __a = allocator_type())
: _Base(__n, __a)
{ _M_finish = uninitialized_fill_n(_M_start, __n, __value); }
/**
* @brief Create a %vector with default elements.
* @param n The number of elements to initially create.
*
* This constructor fills the %vector with @a n copies of a
* default-constructed element.
*/
explicit
vector(size_type __n)
: _Base(__n, allocator_type())
{ _M_finish = uninitialized_fill_n(_M_start, __n, _Tp()); }
/**
* @brief %Vector copy constructor.
* @param x A %vector of identical element and allocator types.
*
* The newly-created %vector uses a copy of the allocation object used
* by @a x. All the elements of @a x are copied, but any extra memory in
* @a x (for fast expansion) will not be copied.
*/
vector(const vector& __x)
: _Base(__x.size(), __x.get_allocator())
{ _M_finish = uninitialized_copy(__x.begin(), __x.end(), _M_start); }
/**
* @brief Builds a %vector from a range.
* @param first An input iterator.
* @param last An input iterator.
*
* Creats a %vector consisting of copies of the elements from [first,last).
*
* If the iterators are forward, bidirectional, or random-access, then
* this will call the elements' copy constructor N times (where N is
* distance(first,last)) and do no memory reallocation. But if only
* input iterators are used, then this will do at most 2N calls to the
* copy constructor, and logN memory reallocations.
*/
template <typename _InputIterator>
vector(_InputIterator __first, _InputIterator __last,
const allocator_type& __a = allocator_type())
: _Base(__a)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_initialize_dispatch(__first, __last, _Integral());
}
/**
* The dtor only erases the elements, and note that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
~vector() { _Destroy(_M_start, _M_finish); }
/**
* @brief %Vector assignment operator.
* @param x A %vector of identical element and allocator types.
*
* All the elements of @a x are copied, but any extra memory in @a x (for
* fast expansion) will not be copied. Unlike the copy constructor, the
* allocator object is not copied.
*/
vector&
operator=(const vector& __x);
/**
* @brief Assigns a given value to a %vector.
* @param n Number of elements to be assigned.
* @param val Value to be assigned.
*
* This function fills a %vector with @a n copies of the given value.
* Note that the assignment completely changes the %vector and that the
* resulting %vector's size is the same as the number of elements assigned.
* Old data may be lost.
*/
void
assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
/**
* @brief Assigns a range to a %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This function fills a %vector with copies of the elements in the
* range [first,last).
*
* Note that the assignment completely changes the %vector and that the
* resulting %vector's size is the same as the number of elements assigned.
* Old data may be lost.
*/
template<typename _InputIterator>
void
assign(_InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_assign_dispatch(__first, __last, _Integral());
}
/// Get a copy of the memory allocation object.
allocator_type
get_allocator() const { return _Base::get_allocator(); }
// iterators
/**
* Returns a read/write iterator that points to the first element in the
* %vector. Iteration is done in ordinary element order.
*/
iterator
begin() { return iterator (_M_start); }
/**
* Returns a read-only (constant) iterator that points to the first element
* in the %vector. Iteration is done in ordinary element order.
*/
const_iterator
begin() const { return const_iterator (_M_start); }
/**
* Returns a read/write iterator that points one past the last element in
* the %vector. Iteration is done in ordinary element order.
*/
iterator
end() { return iterator (_M_finish); }
/**
* Returns a read-only (constant) iterator that points one past the last
* element in the %vector. Iteration is done in ordinary element order.
*/
const_iterator
end() const { return const_iterator (_M_finish); }
/**
* Returns a read/write reverse iterator that points to the last element in
* the %vector. Iteration is done in reverse element order.
*/
reverse_iterator
rbegin() { return reverse_iterator(end()); }
/**
* Returns a read-only (constant) reverse iterator that points to the last
* element in the %vector. Iteration is done in reverse element order.
*/
const_reverse_iterator
rbegin() const { return const_reverse_iterator(end()); }
/**
* Returns a read/write reverse iterator that points to one before the
* first element in the %vector. Iteration is done in reverse element
* order.
*/
reverse_iterator
rend() { return reverse_iterator(begin()); }
/**
* Returns a read-only (constant) reverse iterator that points to one
* before the first element in the %vector. Iteration is done in reverse
* element order.
*/
const_reverse_iterator
rend() const { return const_reverse_iterator(begin()); }
// [23.2.4.2] capacity
/** Returns the number of elements in the %vector. */
size_type
size() const { return size_type(end() - begin()); }
/** Returns the size() of the largest possible %vector. */
size_type
max_size() const { return size_type(-1) / sizeof(value_type); }
/**
* @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
* @param x Data with which new elements should be populated.
*
* This function will %resize the %vector to the specified number of
* elements. If the number is smaller than the %vector's current size the
* %vector is truncated, otherwise the %vector is extended and new elements
* are populated with given data.
*/
void
resize(size_type __new_size, const value_type& __x)
{
if (__new_size < size())
erase(begin() + __new_size, end());
else
insert(end(), __new_size - size(), __x);
}
/**
* @brief Resizes the %vector to the specified number of elements.
* @param new_size Number of elements the %vector should contain.
*
* This function will resize the %vector to the specified number of
* elements. If the number is smaller than the %vector's current size the
* %vector is truncated, otherwise the %vector is extended and new elements
* are default-constructed.
*/
void
resize(size_type __new_size) { resize(__new_size, value_type()); }
/**
* Returns the total number of elements that the %vector can hold before
* needing to allocate more memory.
*/
size_type
capacity() const
{ return size_type(const_iterator(_M_end_of_storage) - begin()); }
/**
* Returns true if the %vector is empty. (Thus begin() would equal end().)
*/
bool
empty() const { return begin() == end(); }
/**
* @brief Attempt to preallocate enough memory for specified number of
* elements.
* @param n Number of elements required.
* @throw std::length_error If @a n exceeds @c max_size().
*
* This function attempts to reserve enough memory for the %vector to hold
* the specified number of elements. If the number requested is more than
* max_size(), length_error is thrown.
*
* The advantage of this function is that if optimal code is a necessity
* and the user can determine the number of elements that will be required,
* the user can reserve the memory in %advance, and thus prevent a possible
* reallocation of memory and copying of %vector data.
*/
void
reserve(size_type __n);
// element access
/**
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read/write reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
*/
reference
operator[](size_type __n) { return *(begin() + __n); }
// XXX do we need to convert to normal_iterator first?
/**
* @brief Subscript access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read-only (constant) reference to data.
*
* This operator allows for easy, array-style, data access.
* Note that data access with this operator is unchecked and out_of_range
* lookups are not defined. (For checked lookups see at().)
*/
const_reference
operator[](size_type __n) const { return *(begin() + __n); }
protected:
/// @if maint Safety check used only from at(). @endif
void
_M_range_check(size_type __n) const
{
if (__n >= this->size())
__throw_out_of_range("vector [] access out of range");
}
public:
/**
* @brief Provides access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read/write reference to data.
* @throw std::out_of_range If @a n is an invalid index.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
*/
reference
at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
/**
* @brief Provides access to the data contained in the %vector.
* @param n The index of the element for which data should be accessed.
* @return Read-only (constant) reference to data.
* @throw std::out_of_range If @a n is an invalid index.
*
* This function provides for safer data access. The parameter is first
* checked that it is in the range of the vector. The function throws
* out_of_range if the check fails.
*/
const_reference
at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
/**
* Returns a read/write reference to the data at the first element of the
* %vector.
*/
reference
front() { return *begin(); }
// XXX do we need to convert to normal_iterator first?
/**
* Returns a read-only (constant) reference to the data at the first
* element of the %vector.
*/
const_reference
front() const { return *begin(); }
/**
* Returns a read/write reference to the data at the last element of the
* %vector.
*/
reference
back() { return *(end() - 1); }
/**
* Returns a read-only (constant) reference to the data at the last
* element of the %vector.
*/
const_reference
back() const { return *(end() - 1); }
// [23.2.4.3] modifiers
/**
* @brief Add data to the end of the %vector.
* @param x Data to be added.
*
* This is a typical stack operation. The function creates an element at
* the end of the %vector and assigns the given data to it.
* Due to the nature of a %vector this operation can be done in constant
* time if the %vector has preallocated space available.
*/
void
push_back(const value_type& __x)
{
if (_M_finish != _M_end_of_storage)
{
_Construct(_M_finish, __x);
++_M_finish;
}
else
_M_insert_aux(end(), __x);
}
/**
* @brief Removes last element.
*
* This is a typical stack operation. It shrinks the %vector by one.
*
* Note that no data is returned, and if the last element's data is
* needed, it should be retrieved before pop_back() is called.
*/
void
pop_back()
{
--_M_finish;
_Destroy(_M_finish);
}
/**
* @brief Inserts given value into %vector before specified iterator.
* @param position An iterator into the %vector.
* @param x Data to be inserted.
* @return An iterator that points to the inserted data.
*
* This function will insert a copy of the given value before the specified
* location.
* Note that this kind of operation could be expensive for a %vector and if
* it is frequently used the user should consider using std::list.
*/
iterator
insert(iterator __position, const value_type& __x);
#ifdef _GLIBCPP_DEPRECATED
/**
* @brief Inserts an element into the %vector.
* @param position An iterator into the %vector.
* @return An iterator that points to the inserted element.
*
* This function will insert a default-constructed element before the
* specified location. You should consider using
* insert(position,value_type()) instead.
* Note that this kind of operation could be expensive for a vector and if
* it is frequently used the user should consider using std::list.
*
* @note This was deprecated in 3.2 and will be removed in 3.3. You must
* define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
* c++config.h.
*/
iterator
insert(iterator __position)
{ return insert(__position, value_type()); }
#endif
/**
* @brief Inserts a number of copies of given data into the %vector.
* @param position An iterator into the %vector.
* @param n Number of elements to be inserted.
* @param x Data to be inserted.
*
* This function will insert a specified number of copies of the given data
* before the location specified by @a position.
*
* Note that this kind of operation could be expensive for a %vector and if
* it is frequently used the user should consider using std::list.
*/
void
insert (iterator __pos, size_type __n, const value_type& __x)
{ _M_fill_insert(__pos, __n, __x); }
/**
* @brief Inserts a range into the %vector.
* @param pos An iterator into the %vector.
* @param first An input iterator.
* @param last An input iterator.
*
* This function will insert copies of the data in the range [first,last)
* into the %vector before the location specified by @a pos.
*
* Note that this kind of operation could be expensive for a %vector and if
* it is frequently used the user should consider using std::list.
*/
template<typename _InputIterator>
void
insert(iterator __pos, _InputIterator __first, _InputIterator __last)
{
// Check whether it's an integral type. If so, it's not an iterator.
typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
_M_insert_dispatch(__pos, __first, __last, _Integral());
}
/**
* @brief Remove element at given position.
* @param position Iterator pointing to element to be erased.
* @return An iterator pointing to the next element (or end()).
*
* This function will erase the element at the given position and thus
* shorten the %vector by one.
*
* Note This operation could be expensive and if it is frequently used the
* user should consider using std::list. The user is also cautioned that
* this function only erases the element, and that if the element is itself
* a pointer, the pointed-to memory is not touched in any way. Managing
* the pointer is the user's responsibilty.
*/
iterator
erase(iterator __position);
/**
* @brief Remove a range of elements.
* @param first Iterator pointing to the first element to be erased.
* @param last Iterator pointing to one past the last element to be erased.
* @return An iterator pointing to the element pointed to by @a last
* prior to erasing (or end()).
*
* This function will erase the elements in the range [first,last) and
* shorten the %vector accordingly.
*
* Note This operation could be expensive and if it is frequently used the
* user should consider using std::list. The user is also cautioned that
* this function only erases the elements, and that if the elements
* themselves are pointers, the pointed-to memory is not touched in any
* way. Managing the pointer is the user's responsibilty.
*/
iterator
erase(iterator __first, iterator __last);
/**
* @brief Swaps data with another %vector.
* @param x A %vector of the same element and allocator types.
*
* This exchanges the elements between two vectors in constant time.
* (Three pointers, so it should be quite fast.)
* Note that the global std::swap() function is specialized such that
* std::swap(v1,v2) will feed to this function.
*/
void
swap(vector& __x)
{
std::swap(_M_start, __x._M_start);
std::swap(_M_finish, __x._M_finish);
std::swap(_M_end_of_storage, __x._M_end_of_storage);
}
/**
* Erases all the elements. Note that this function only erases the
* elements, and that if the elements themselves are pointers, the
* pointed-to memory is not touched in any way. Managing the pointer is
* the user's responsibilty.
*/
void
clear() { erase(begin(), end()); }
protected:
/**
* @if maint
* Memory expansion handler. Uses the member allocation function to
* obtain @a n bytes of memory, and then copies [first,last) into it.
* @endif
*/
template <typename _ForwardIterator>
pointer
_M_allocate_and_copy(size_type __n,
_ForwardIterator __first, _ForwardIterator __last)
{
pointer __result = _M_allocate(__n);
try
{
uninitialized_copy(__first, __last, __result);
return __result;
}
catch(...)
{
_M_deallocate(__result, __n);
__throw_exception_again;
}
}
// Internal constructor functions follow.
// called by the range constructor to implement [23.1.1]/9
template<typename _Integer>
void
_M_initialize_dispatch(_Integer __n, _Integer __value, __true_type)
{
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_fill_n(_M_start, __n, __value);
}
// called by the range constructor to implement [23.1.1]/9
template<typename _InputIter>
void
_M_initialize_dispatch(_InputIter __first, _InputIter __last, __false_type)
{
typedef typename iterator_traits<_InputIter>::iterator_category
_IterCategory;
_M_range_initialize(__first, __last, _IterCategory());
}
// called by the second initialize_dispatch above
template <typename _InputIterator>
void
_M_range_initialize(_InputIterator __first,
_InputIterator __last, input_iterator_tag)
{
for ( ; __first != __last; ++__first)
push_back(*__first);
}
// called by the second initialize_dispatch above
template <typename _ForwardIterator>
void _M_range_initialize(_ForwardIterator __first,
_ForwardIterator __last, forward_iterator_tag)
{
size_type __n = distance(__first, __last);
_M_start = _M_allocate(__n);
_M_end_of_storage = _M_start + __n;
_M_finish = uninitialized_copy(__first, __last, _M_start);
}
// Internal assign functions follow. The *_aux functions do the actual
// assignment work for the range versions.
// called by the range assign to implement [23.1.1]/9
template<typename _Integer>
void
_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
{
_M_fill_assign(static_cast<size_type>(__n),
static_cast<value_type>(__val));
}
// called by the range assign to implement [23.1.1]/9
template<typename _InputIter>
void
_M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
{
typedef typename iterator_traits<_InputIter>::iterator_category
_IterCategory;
_M_assign_aux(__first, __last, _IterCategory());
}
// called by the second assign_dispatch above
template <typename _InputIterator>
void
_M_assign_aux(_InputIterator __first, _InputIterator __last,
input_iterator_tag);
// called by the second assign_dispatch above
template <typename _ForwardIterator>
void
_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
// Called by assign(n,t), and the range assign when it turns out to be the
// same thing.
void
_M_fill_assign(size_type __n, const value_type& __val);
// Internal insert functions follow.
// called by the range insert to implement [23.1.1]/9
template<typename _Integer>
void
_M_insert_dispatch(iterator __pos, _Integer __n, _Integer __val,
__true_type)
{
_M_fill_insert(__pos, static_cast<size_type>(__n),
static_cast<value_type>(__val));
}
// called by the range insert to implement [23.1.1]/9
template<typename _InputIterator>
void
_M_insert_dispatch(iterator __pos, _InputIterator __first,
_InputIterator __last, __false_type)
{
typedef typename iterator_traits<_InputIterator>::iterator_category
_IterCategory;
_M_range_insert(__pos, __first, __last, _IterCategory());
}
// called by the second insert_dispatch above
template <typename _InputIterator>
void
_M_range_insert(iterator __pos,
_InputIterator __first, _InputIterator __last,
input_iterator_tag);
// called by the second insert_dispatch above
template <typename _ForwardIterator>
void
_M_range_insert(iterator __pos,
_ForwardIterator __first, _ForwardIterator __last,
forward_iterator_tag);
// Called by insert(p,n,x), and the range insert when it turns out to be
// the same thing.
void
_M_fill_insert (iterator __pos, size_type __n, const value_type& __x);
// called by insert(p,x)
void
_M_insert_aux(iterator __position, const value_type& __x);
#ifdef _GLIBCPP_DEPRECATED
// unused now (same situation as in deque)
void _M_insert_aux(iterator __position);
#endif
};
/**
* @brief Vector equality comparison.
* @param x A %vector.
* @param y A %vector of the same type as @a x.
* @return True iff the size and elements of the vectors are equal.
*
* This is an equivalence relation. It is linear in the size of the
* vectors. Vectors are considered equivalent if their sizes are equal,
* and if corresponding elements compare equal.
*/
template <typename _Tp, typename _Alloc>
inline bool
operator==(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{
return __x.size() == __y.size() &&
equal(__x.begin(), __x.end(), __y.begin());
}
/**
* @brief Vector ordering relation.
* @param x A %vector.
* @param y A %vector of the same type as @a x.
* @return True iff @a x is lexographically less than @a y.
*
* This is a total ordering relation. It is linear in the size of the
* vectors. The elements must be comparable with @c <.
*
* See std::lexographical_compare() for how the determination is made.
*/
template <typename _Tp, typename _Alloc>
inline bool
operator<(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y)
{
return lexicographical_compare(__x.begin(), __x.end(),
__y.begin(), __y.end());
}
/// Based on operator==
template <typename _Tp, typename _Alloc>
inline bool
operator!=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__x == __y);
}
/// Based on operator<
template <typename _Tp, typename _Alloc>
inline bool
operator>(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return __y < __x;
}
/// Based on operator<
template <typename _Tp, typename _Alloc>
inline bool
operator<=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__y < __x);
}
/// Based on operator<
template <typename _Tp, typename _Alloc>
inline bool
operator>=(const vector<_Tp, _Alloc>& __x, const vector<_Tp, _Alloc>& __y) {
return !(__x < __y);
}
/// See std::vector::swap().
template <typename _Tp, typename _Alloc>
inline void swap(vector<_Tp, _Alloc>& __x, vector<_Tp, _Alloc>& __y)
{
__x.swap(__y);
}
} // namespace std
#endif /* __GLIBCPP_INTERNAL_VECTOR_H */
|