1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
|
/* java.math.BigInteger -- Arbitary precision integers
Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package java.math;
import gnu.java.math.MPN;
import java.util.Random;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.IOException;
/**
* @author Warren Levy <warrenl@cygnus.com>
* @date December 20, 1999.
*/
/**
* Written using on-line Java Platform 1.2 API Specification, as well
* as "The Java Class Libraries", 2nd edition (Addison-Wesley, 1998) and
* "Applied Cryptography, Second Edition" by Bruce Schneier (Wiley, 1996).
*
* Based primarily on IntNum.java BitOps.java by Per Bothner <per@bothner.com>
* (found in Kawa 1.6.62).
*
* Status: Believed complete and correct.
*/
public class BigInteger extends Number implements Comparable
{
/** All integers are stored in 2's-complement form.
* If words == null, the ival is the value of this BigInteger.
* Otherwise, the first ival elements of words make the value
* of this BigInteger, stored in little-endian order, 2's-complement form. */
transient private int ival;
transient private int[] words;
// Serialization fields.
private int bitCount = -1;
private int bitLength = -1;
private int firstNonzeroByteNum = -2;
private int lowestSetBit = -2;
private byte[] magnitude;
private int signum;
private static final long serialVersionUID = -8287574255936472291L;
/** We pre-allocate integers in the range minFixNum..maxFixNum. */
private static final int minFixNum = -100;
private static final int maxFixNum = 1024;
private static final int numFixNum = maxFixNum-minFixNum+1;
private static final BigInteger[] smallFixNums = new BigInteger[numFixNum];
static {
for (int i = numFixNum; --i >= 0; )
smallFixNums[i] = new BigInteger(i + minFixNum);
}
// JDK1.2
public static final BigInteger ZERO = smallFixNums[-minFixNum];
// JDK1.2
public static final BigInteger ONE = smallFixNums[1 - minFixNum];
/* Rounding modes: */
private static final int FLOOR = 1;
private static final int CEILING = 2;
private static final int TRUNCATE = 3;
private static final int ROUND = 4;
/** When checking the probability of primes, it is most efficient to
* first check the factoring of small primes, so we'll use this array.
*/
private static final int[] primes =
{ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,
109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181,
191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251 };
private BigInteger()
{
}
/* Create a new (non-shared) BigInteger, and initialize to an int. */
private BigInteger(int value)
{
ival = value;
}
public BigInteger(String val, int radix)
{
BigInteger result = valueOf(val, radix);
this.ival = result.ival;
this.words = result.words;
}
public BigInteger(String val)
{
this(val, 10);
}
/* Create a new (non-shared) BigInteger, and initialize from a byte array. */
public BigInteger(byte[] val)
{
if (val == null || val.length < 1)
throw new NumberFormatException();
words = byteArrayToIntArray(val, val[0] < 0 ? -1 : 0);
BigInteger result = make(words, words.length);
this.ival = result.ival;
this.words = result.words;
}
public BigInteger(int signum, byte[] magnitude)
{
if (magnitude == null || signum > 1 || signum < -1)
throw new NumberFormatException();
if (signum == 0)
{
int i;
for (i = magnitude.length - 1; i >= 0 && magnitude[i] == 0; --i)
;
if (i >= 0)
throw new NumberFormatException();
return;
}
// Magnitude is always positive, so don't ever pass a sign of -1.
words = byteArrayToIntArray(magnitude, 0);
BigInteger result = make(words, words.length);
this.ival = result.ival;
this.words = result.words;
if (signum < 0)
setNegative();
}
public BigInteger(int numBits, Random rnd)
{
if (numBits < 0)
throw new IllegalArgumentException();
init(numBits, rnd);
}
private void init(int numBits, Random rnd)
{
int highbits = numBits & 31;
if (highbits > 0)
highbits = rnd.nextInt() >>> (32 - highbits);
int nwords = numBits / 32;
while (highbits == 0 && nwords > 0)
{
highbits = rnd.nextInt();
--nwords;
}
if (nwords == 0 && highbits >= 0)
{
ival = highbits;
}
else
{
ival = highbits < 0 ? nwords + 2 : nwords + 1;
words = new int[ival];
words[nwords] = highbits;
while (--nwords >= 0)
words[nwords] = rnd.nextInt();
}
}
public BigInteger(int bitLength, int certainty, Random rnd)
{
this(bitLength, rnd);
// Keep going until we find a probable prime.
while (true)
{
if (isProbablePrime(certainty))
return;
init(bitLength, rnd);
}
}
/** Return a (possibly-shared) BigInteger with a given long value. */
private static BigInteger make(long value)
{
if (value >= minFixNum && value <= maxFixNum)
return smallFixNums[(int)value - minFixNum];
int i = (int) value;
if ((long)i == value)
return new BigInteger(i);
BigInteger result = alloc(2);
result.ival = 2;
result.words[0] = i;
result.words[1] = (int) (value >> 32);
return result;
}
// FIXME: Could simply rename 'make' method above as valueOf while
// changing all instances of 'make'. Don't do this until this class
// is done as the Kawa class this is based on has 'make' methods
// with other parameters; wait to see if they are used in BigInteger.
public static BigInteger valueOf(long val)
{
return make(val);
}
/** Make a canonicalized BigInteger from an array of words.
* The array may be reused (without copying). */
private static BigInteger make(int[] words, int len)
{
if (words == null)
return make(len);
len = BigInteger.wordsNeeded(words, len);
if (len <= 1)
return len == 0 ? ZERO : make(words[0]);
BigInteger num = new BigInteger();
num.words = words;
num.ival = len;
return num;
}
/** Convert a big-endian byte array to a little-endian array of words. */
private static int[] byteArrayToIntArray(byte[] bytes, int sign)
{
// Determine number of words needed.
int[] words = new int[bytes.length/4 + 1];
int nwords = words.length;
// Create a int out of modulo 4 high order bytes.
int bptr = 0;
int word = sign;
for (int i = bytes.length % 4; i > 0; --i, bptr++)
word = (word << 8) | (((int) bytes[bptr]) & 0xff);
words[--nwords] = word;
// Elements remaining in byte[] are a multiple of 4.
while (nwords > 0)
words[--nwords] = bytes[bptr++] << 24 |
(((int) bytes[bptr++]) & 0xff) << 16 |
(((int) bytes[bptr++]) & 0xff) << 8 |
(((int) bytes[bptr++]) & 0xff);
return words;
}
/** Allocate a new non-shared BigInteger.
* @param nwords number of words to allocate
*/
private static BigInteger alloc(int nwords)
{
if (nwords <= 1)
return new BigInteger();
BigInteger result = new BigInteger();
result.words = new int[nwords];
return result;
}
/** Change words.length to nwords.
* We allow words.length to be upto nwords+2 without reallocating.
*/
private void realloc(int nwords)
{
if (nwords == 0)
{
if (words != null)
{
if (ival > 0)
ival = words[0];
words = null;
}
}
else if (words == null
|| words.length < nwords
|| words.length > nwords + 2)
{
int[] new_words = new int [nwords];
if (words == null)
{
new_words[0] = ival;
ival = 1;
}
else
{
if (nwords < ival)
ival = nwords;
System.arraycopy(words, 0, new_words, 0, ival);
}
words = new_words;
}
}
private final boolean isNegative()
{
return (words == null ? ival : words[ival - 1]) < 0;
}
public int signum()
{
int top = words == null ? ival : words[ival-1];
if (top == 0 && words == null)
return 0;
return top < 0 ? -1 : 1;
}
private static int compareTo(BigInteger x, BigInteger y)
{
if (x.words == null && y.words == null)
return x.ival < y.ival ? -1 : x.ival > y.ival ? 1 : 0;
boolean x_negative = x.isNegative();
boolean y_negative = y.isNegative();
if (x_negative != y_negative)
return x_negative ? -1 : 1;
int x_len = x.words == null ? 1 : x.ival;
int y_len = y.words == null ? 1 : y.ival;
if (x_len != y_len)
return (x_len > y_len) != x_negative ? 1 : -1;
return MPN.cmp(x.words, y.words, x_len);
}
// JDK1.2
public int compareTo(Object obj)
{
if (obj instanceof BigInteger)
return compareTo(this, (BigInteger) obj);
throw new ClassCastException();
}
public int compareTo(BigInteger val)
{
return compareTo(this, val);
}
public BigInteger min(BigInteger val)
{
return compareTo(this, val) < 0 ? this : val;
}
public BigInteger max(BigInteger val)
{
return compareTo(this, val) > 0 ? this : val;
}
private final boolean isOdd()
{
int low = words == null ? ival : words[0];
return (low & 1) != 0;
}
private final boolean isZero()
{
return words == null && ival == 0;
}
private final boolean isOne()
{
return words == null && ival == 1;
}
private final boolean isMinusOne()
{
return words == null && ival == -1;
}
/** Calculate how many words are significant in words[0:len-1].
* Returns the least value x such that x>0 && words[0:x-1]==words[0:len-1],
* when words is viewed as a 2's complement integer.
*/
private static int wordsNeeded(int[] words, int len)
{
int i = len;
if (i > 0)
{
int word = words[--i];
if (word == -1)
{
while (i > 0 && (word = words[i - 1]) < 0)
{
i--;
if (word != -1) break;
}
}
else
{
while (word == 0 && i > 0 && (word = words[i - 1]) >= 0) i--;
}
}
return i + 1;
}
private BigInteger canonicalize()
{
if (words != null
&& (ival = BigInteger.wordsNeeded(words, ival)) <= 1)
{
if (ival == 1)
ival = words[0];
words = null;
}
if (words == null && ival >= minFixNum && ival <= maxFixNum)
return smallFixNums[(int) ival - minFixNum];
return this;
}
/** Add two ints, yielding a BigInteger. */
private static final BigInteger add(int x, int y)
{
return BigInteger.make((long) x + (long) y);
}
/** Add a BigInteger and an int, yielding a new BigInteger. */
private static BigInteger add(BigInteger x, int y)
{
if (x.words == null)
return BigInteger.add(x.ival, y);
BigInteger result = new BigInteger(0);
result.setAdd(x, y);
return result.canonicalize();
}
/** Set this to the sum of x and y.
* OK if x==this. */
private void setAdd(BigInteger x, int y)
{
if (x.words == null)
{
set((long) x.ival + (long) y);
return;
}
int len = x.ival;
realloc(len + 1);
long carry = y;
for (int i = 0; i < len; i++)
{
carry += ((long) x.words[i] & 0xffffffffL);
words[i] = (int) carry;
carry >>= 32;
}
if (x.words[len - 1] < 0)
carry--;
words[len] = (int) carry;
ival = wordsNeeded(words, len + 1);
}
/** Destructively add an int to this. */
private final void setAdd(int y)
{
setAdd(this, y);
}
/** Destructively set the value of this to a long. */
private final void set(long y)
{
int i = (int) y;
if ((long) i == y)
{
ival = i;
words = null;
}
else
{
realloc(2);
words[0] = i;
words[1] = (int) (y >> 32);
ival = 2;
}
}
/** Destructively set the value of this to the given words.
* The words array is reused, not copied. */
private final void set(int[] words, int length)
{
this.ival = length;
this.words = words;
}
/** Destructively set the value of this to that of y. */
private final void set(BigInteger y)
{
if (y.words == null)
set(y.ival);
else if (this != y)
{
realloc(y.ival);
System.arraycopy(y.words, 0, words, 0, y.ival);
ival = y.ival;
}
}
/** Add two BigIntegers, yielding their sum as another BigInteger. */
private static BigInteger add(BigInteger x, BigInteger y, int k)
{
if (x.words == null && y.words == null)
return BigInteger.make((long) k * (long) y.ival + (long) x.ival);
if (k != 1)
{
if (k == -1)
y = BigInteger.neg(y);
else
y = BigInteger.times(y, BigInteger.make(k));
}
if (x.words == null)
return BigInteger.add(y, x.ival);
if (y.words == null)
return BigInteger.add(x, y.ival);
// Both are big
int len;
if (y.ival > x.ival)
{ // Swap so x is longer then y.
BigInteger tmp = x; x = y; y = tmp;
}
BigInteger result = alloc(x.ival + 1);
int i = y.ival;
long carry = MPN.add_n(result.words, x.words, y.words, i);
long y_ext = y.words[i - 1] < 0 ? 0xffffffffL : 0;
for (; i < x.ival; i++)
{
carry += ((long) x.words[i] & 0xffffffffL) + y_ext;;
result.words[i] = (int) carry;
carry >>>= 32;
}
if (x.words[i - 1] < 0)
y_ext--;
result.words[i] = (int) (carry + y_ext);
result.ival = i+1;
return result.canonicalize();
}
public BigInteger add(BigInteger val)
{
return add(this, val, 1);
}
public BigInteger subtract(BigInteger val)
{
return add(this, val, -1);
}
private static final BigInteger times(BigInteger x, int y)
{
if (y == 0)
return ZERO;
if (y == 1)
return x;
int[] xwords = x.words;
int xlen = x.ival;
if (xwords == null)
return BigInteger.make((long) xlen * (long) y);
boolean negative;
BigInteger result = BigInteger.alloc(xlen + 1);
if (xwords[xlen - 1] < 0)
{
negative = true;
negate(result.words, xwords, xlen);
xwords = result.words;
}
else
negative = false;
if (y < 0)
{
negative = !negative;
y = -y;
}
result.words[xlen] = MPN.mul_1(result.words, xwords, xlen, y);
result.ival = xlen + 1;
if (negative)
result.setNegative();
return result.canonicalize();
}
private static final BigInteger times(BigInteger x, BigInteger y)
{
if (y.words == null)
return times(x, y.ival);
if (x.words == null)
return times(y, x.ival);
boolean negative = false;
int[] xwords;
int[] ywords;
int xlen = x.ival;
int ylen = y.ival;
if (x.isNegative())
{
negative = true;
xwords = new int[xlen];
negate(xwords, x.words, xlen);
}
else
{
negative = false;
xwords = x.words;
}
if (y.isNegative())
{
negative = !negative;
ywords = new int[ylen];
negate(ywords, y.words, ylen);
}
else
ywords = y.words;
// Swap if x is shorter then y.
if (xlen < ylen)
{
int[] twords = xwords; xwords = ywords; ywords = twords;
int tlen = xlen; xlen = ylen; ylen = tlen;
}
BigInteger result = BigInteger.alloc(xlen+ylen);
MPN.mul(result.words, xwords, xlen, ywords, ylen);
result.ival = xlen+ylen;
if (negative)
result.setNegative();
return result.canonicalize();
}
public BigInteger multiply(BigInteger y)
{
return times(this, y);
}
private static void divide(long x, long y,
BigInteger quotient, BigInteger remainder,
int rounding_mode)
{
boolean xNegative, yNegative;
if (x < 0)
{
xNegative = true;
if (x == Long.MIN_VALUE)
{
divide(BigInteger.make(x), BigInteger.make(y),
quotient, remainder, rounding_mode);
return;
}
x = -x;
}
else
xNegative = false;
if (y < 0)
{
yNegative = true;
if (y == Long.MIN_VALUE)
{
if (rounding_mode == TRUNCATE)
{ // x != Long.Min_VALUE implies abs(x) < abs(y)
if (quotient != null)
quotient.set(0);
if (remainder != null)
remainder.set(x);
}
else
divide(BigInteger.make(x), BigInteger.make(y),
quotient, remainder, rounding_mode);
return;
}
y = -y;
}
else
yNegative = false;
long q = x / y;
long r = x % y;
boolean qNegative = xNegative ^ yNegative;
boolean add_one = false;
if (r != 0)
{
switch (rounding_mode)
{
case TRUNCATE:
break;
case CEILING:
case FLOOR:
if (qNegative == (rounding_mode == FLOOR))
add_one = true;
break;
case ROUND:
add_one = r > ((y - (q & 1)) >> 1);
break;
}
}
if (quotient != null)
{
if (add_one)
q++;
if (qNegative)
q = -q;
quotient.set(q);
}
if (remainder != null)
{
// The remainder is by definition: X-Q*Y
if (add_one)
{
// Subtract the remainder from Y.
r = y - r;
// In this case, abs(Q*Y) > abs(X).
// So sign(remainder) = -sign(X).
xNegative = ! xNegative;
}
else
{
// If !add_one, then: abs(Q*Y) <= abs(X).
// So sign(remainder) = sign(X).
}
if (xNegative)
r = -r;
remainder.set(r);
}
}
/** Divide two integers, yielding quotient and remainder.
* @param x the numerator in the division
* @param y the denominator in the division
* @param quotient is set to the quotient of the result (iff quotient!=null)
* @param remainder is set to the remainder of the result
* (iff remainder!=null)
* @param rounding_mode one of FLOOR, CEILING, TRUNCATE, or ROUND.
*/
private static void divide(BigInteger x, BigInteger y,
BigInteger quotient, BigInteger remainder,
int rounding_mode)
{
if ((x.words == null || x.ival <= 2)
&& (y.words == null || y.ival <= 2))
{
long x_l = x.longValue();
long y_l = y.longValue();
if (x_l != Long.MIN_VALUE && y_l != Long.MIN_VALUE)
{
divide(x_l, y_l, quotient, remainder, rounding_mode);
return;
}
}
boolean xNegative = x.isNegative();
boolean yNegative = y.isNegative();
boolean qNegative = xNegative ^ yNegative;
int ylen = y.words == null ? 1 : y.ival;
int[] ywords = new int[ylen];
y.getAbsolute(ywords);
while (ylen > 1 && ywords[ylen - 1] == 0) ylen--;
int xlen = x.words == null ? 1 : x.ival;
int[] xwords = new int[xlen+2];
x.getAbsolute(xwords);
while (xlen > 1 && xwords[xlen-1] == 0) xlen--;
int qlen, rlen;
int cmpval = MPN.cmp(xwords, xlen, ywords, ylen);
if (cmpval < 0) // abs(x) < abs(y)
{ // quotient = 0; remainder = num.
int[] rwords = xwords; xwords = ywords; ywords = rwords;
rlen = xlen; qlen = 1; xwords[0] = 0;
}
else if (cmpval == 0) // abs(x) == abs(y)
{
xwords[0] = 1; qlen = 1; // quotient = 1
ywords[0] = 0; rlen = 1; // remainder = 0;
}
else if (ylen == 1)
{
qlen = xlen;
// Need to leave room for a word of leading zeros if dividing by 1
// and the dividend has the high bit set. It might be safe to
// increment qlen in all cases, but it certainly is only necessary
// in the following case.
if (ywords[0] == 1 && xwords[xlen-1] < 0)
qlen++;
rlen = 1;
ywords[0] = MPN.divmod_1(xwords, xwords, xlen, ywords[0]);
}
else // abs(x) > abs(y)
{
// Normalize the denominator, i.e. make its most significant bit set by
// shifting it normalization_steps bits to the left. Also shift the
// numerator the same number of steps (to keep the quotient the same!).
int nshift = MPN.count_leading_zeros(ywords[ylen - 1]);
if (nshift != 0)
{
// Shift up the denominator setting the most significant bit of
// the most significant word.
MPN.lshift(ywords, 0, ywords, ylen, nshift);
// Shift up the numerator, possibly introducing a new most
// significant word.
int x_high = MPN.lshift(xwords, 0, xwords, xlen, nshift);
xwords[xlen++] = x_high;
}
if (xlen == ylen)
xwords[xlen++] = 0;
MPN.divide(xwords, xlen, ywords, ylen);
rlen = ylen;
MPN.rshift0 (ywords, xwords, 0, rlen, nshift);
qlen = xlen + 1 - ylen;
if (quotient != null)
{
for (int i = 0; i < qlen; i++)
xwords[i] = xwords[i+ylen];
}
}
if (ywords[rlen-1] < 0)
{
ywords[rlen] = 0;
rlen++;
}
// Now the quotient is in xwords, and the remainder is in ywords.
boolean add_one = false;
if (rlen > 1 || ywords[0] != 0)
{ // Non-zero remainder i.e. in-exact quotient.
switch (rounding_mode)
{
case TRUNCATE:
break;
case CEILING:
case FLOOR:
if (qNegative == (rounding_mode == FLOOR))
add_one = true;
break;
case ROUND:
// int cmp = compareTo(remainder<<1, abs(y));
BigInteger tmp = remainder == null ? new BigInteger() : remainder;
tmp.set(ywords, rlen);
tmp = shift(tmp, 1);
if (yNegative)
tmp.setNegative();
int cmp = compareTo(tmp, y);
// Now cmp == compareTo(sign(y)*(remainder<<1), y)
if (yNegative)
cmp = -cmp;
add_one = (cmp == 1) || (cmp == 0 && (xwords[0]&1) != 0);
}
}
if (quotient != null)
{
quotient.set(xwords, qlen);
if (qNegative)
{
if (add_one) // -(quotient + 1) == ~(quotient)
quotient.setInvert();
else
quotient.setNegative();
}
else if (add_one)
quotient.setAdd(1);
}
if (remainder != null)
{
// The remainder is by definition: X-Q*Y
remainder.set(ywords, rlen);
if (add_one)
{
// Subtract the remainder from Y:
// abs(R) = abs(Y) - abs(orig_rem) = -(abs(orig_rem) - abs(Y)).
BigInteger tmp;
if (y.words == null)
{
tmp = remainder;
tmp.set(yNegative ? ywords[0] + y.ival : ywords[0] - y.ival);
}
else
tmp = BigInteger.add(remainder, y, yNegative ? 1 : -1);
// Now tmp <= 0.
// In this case, abs(Q) = 1 + floor(abs(X)/abs(Y)).
// Hence, abs(Q*Y) > abs(X).
// So sign(remainder) = -sign(X).
if (xNegative)
remainder.setNegative(tmp);
else
remainder.set(tmp);
}
else
{
// If !add_one, then: abs(Q*Y) <= abs(X).
// So sign(remainder) = sign(X).
if (xNegative)
remainder.setNegative();
}
}
}
public BigInteger divide(BigInteger val)
{
if (val.isZero())
throw new ArithmeticException("divisor is zero");
BigInteger quot = new BigInteger();
divide(this, val, quot, null, TRUNCATE);
return quot.canonicalize();
}
public BigInteger remainder(BigInteger val)
{
if (val.isZero())
throw new ArithmeticException("divisor is zero");
BigInteger rem = new BigInteger();
divide(this, val, null, rem, TRUNCATE);
return rem.canonicalize();
}
public BigInteger[] divideAndRemainder(BigInteger val)
{
if (val.isZero())
throw new ArithmeticException("divisor is zero");
BigInteger[] result = new BigInteger[2];
result[0] = new BigInteger();
result[1] = new BigInteger();
divide(this, val, result[0], result[1], TRUNCATE);
result[0].canonicalize();
result[1].canonicalize();
return result;
}
public BigInteger mod(BigInteger m)
{
if (m.isNegative() || m.isZero())
throw new ArithmeticException("non-positive modulus");
BigInteger rem = new BigInteger();
divide(this, m, null, rem, FLOOR);
return rem.canonicalize();
}
/** Calculate power for BigInteger exponents.
* @param y exponent assumed to be non-negative. */
private BigInteger pow(BigInteger y)
{
if (isOne())
return this;
if (isMinusOne())
return y.isOdd () ? this : ONE;
if (y.words == null && y.ival >= 0)
return pow(y.ival);
// Assume exponent is non-negative.
if (isZero())
return this;
// Implemented by repeated squaring and multiplication.
BigInteger pow2 = this;
BigInteger r = null;
for (;;) // for (i = 0; ; i++)
{
// pow2 == x**(2**i)
// prod = x**(sum(j=0..i-1, (y>>j)&1))
if (y.isOdd())
r = r == null ? pow2 : times(r, pow2); // r *= pow2
y = BigInteger.shift(y, -1);
if (y.isZero())
break;
// pow2 *= pow2;
pow2 = times(pow2, pow2);
}
return r == null ? ONE : r;
}
/** Calculate the integral power of a BigInteger.
* @param exponent the exponent (must be non-negative)
*/
public BigInteger pow(int exponent)
{
if (exponent <= 0)
{
if (exponent == 0)
return ONE;
else
throw new ArithmeticException("negative exponent");
}
if (isZero())
return this;
int plen = words == null ? 1 : ival; // Length of pow2.
int blen = ((bitLength() * exponent) >> 5) + 2 * plen;
boolean negative = isNegative() && (exponent & 1) != 0;
int[] pow2 = new int [blen];
int[] rwords = new int [blen];
int[] work = new int [blen];
getAbsolute(pow2); // pow2 = abs(this);
int rlen = 1;
rwords[0] = 1; // rwords = 1;
for (;;) // for (i = 0; ; i++)
{
// pow2 == this**(2**i)
// prod = this**(sum(j=0..i-1, (exponent>>j)&1))
if ((exponent & 1) != 0)
{ // r *= pow2
MPN.mul(work, pow2, plen, rwords, rlen);
int[] temp = work; work = rwords; rwords = temp;
rlen += plen;
while (rwords[rlen - 1] == 0) rlen--;
}
exponent >>= 1;
if (exponent == 0)
break;
// pow2 *= pow2;
MPN.mul(work, pow2, plen, pow2, plen);
int[] temp = work; work = pow2; pow2 = temp; // swap to avoid a copy
plen *= 2;
while (pow2[plen - 1] == 0) plen--;
}
if (rwords[rlen - 1] < 0)
rlen++;
if (negative)
negate(rwords, rwords, rlen);
return BigInteger.make(rwords, rlen);
}
private static final int[] euclidInv(int a, int b, int prevDiv)
{
// Storage for return values, plus one slot for a temp int (see below).
int[] xy;
if (b == 0)
throw new ArithmeticException("not invertible");
else if (b == 1)
{
// Success: values are indeed invertible!
// Bottom of the recursion reached; start unwinding.
xy = new int[3];
xy[0] = -prevDiv;
xy[1] = 1;
return xy;
}
xy = euclidInv(b, a % b, a / b); // Recursion happens here.
// xy[2] is just temp storage for intermediate results in the following
// calculation. This saves us a bit of space over having an int
// allocated at every level of this recursive method.
xy[2] = xy[0];
xy[0] = xy[2] * -prevDiv + xy[1];
xy[1] = xy[2];
return xy;
}
private static final BigInteger[]
euclidInv(BigInteger a, BigInteger b, BigInteger prevDiv)
{
// FIXME: This method could be more efficient memory-wise and should be
// modified as such since it is recursive.
// Storage for return values, plus one slot for a temp int (see below).
BigInteger[] xy;
if (b.isZero())
throw new ArithmeticException("not invertible");
else if (b.isOne())
{
// Success: values are indeed invertible!
// Bottom of the recursion reached; start unwinding.
xy = new BigInteger[3];
xy[0] = neg(prevDiv);
xy[1] = ONE;
return xy;
}
// Recursion happens in the following conditional!
// If a just contains an int, then use integer math for the rest.
if (a.words == null)
{
int[] xyInt = euclidInv(b.ival, a.ival % b.ival, a.ival / b.ival);
xy = new BigInteger[3];
xy[0] = new BigInteger(xyInt[0]);
xy[1] = new BigInteger(xyInt[1]);
}
else
{
BigInteger rem = new BigInteger();
BigInteger quot = new BigInteger();
divide(a, b, quot, rem, FLOOR);
xy = euclidInv(b, rem, quot);
}
// xy[2] is just temp storage for intermediate results in the following
// calculation. This saves us a bit of space over having a BigInteger
// allocated at every level of this recursive method.
xy[2] = xy[0];
xy[0] = add(xy[1], times(xy[2], prevDiv), -1);
xy[1] = xy[2];
return xy;
}
public BigInteger modInverse(BigInteger y)
{
if (y.isNegative() || y.isZero())
throw new ArithmeticException("non-positive modulo");
// Degenerate cases.
if (y.isOne())
return ZERO;
else if (isOne())
return ONE;
// Use Euclid's algorithm as in gcd() but do this recursively
// rather than in a loop so we can use the intermediate results as we
// unwind from the recursion.
// Used http://www.math.nmsu.edu/~crypto/EuclideanAlgo.html as reference.
BigInteger result = new BigInteger();
int xval = ival;
int yval = y.ival;
boolean swapped = false;
if (y.words == null)
{
// The result is guaranteed to be less than the modulus, y (which is
// an int), so simplify this by working with the int result of this
// modulo y. Also, if this is negative, make it positive via modulo
// math. Note that BigInteger.mod() must be used even if this is
// already an int as the % operator would provide a negative result if
// this is negative, BigInteger.mod() never returns negative values.
if (words != null || isNegative())
xval = mod(y).ival;
// Swap values so x > y.
if (yval > xval)
{
int tmp = xval; xval = yval; yval = tmp;
swapped = true;
}
// Normally, the result is in the 2nd element of the array, but
// if originally x < y, then x and y were swapped and the result
// is in the 1st element of the array.
result.ival =
euclidInv(yval, xval % yval, xval / yval)[swapped ? 0 : 1];
// Result can't be negative, so make it positive by adding the
// original modulus, y.ival (not the possibly "swapped" yval).
if (result.ival < 0)
result.ival += y.ival;
}
else
{
BigInteger x = this;
// As above, force this to be a positive value via modulo math.
if (isNegative())
x = mod(y);
// Swap values so x > y.
if (x.compareTo(y) < 0)
{
BigInteger tmp = x; x = y; y = tmp;
swapped = true;
}
// As above (for ints), result will be in the 2nd element unless
// the original x and y were swapped.
BigInteger rem = new BigInteger();
BigInteger quot = new BigInteger();
divide(x, y, quot, rem, FLOOR);
result = euclidInv(y, rem, quot)[swapped ? 0 : 1];
// Result can't be negative, so make it positive by adding the
// original modulus, y (which is now x if they were swapped).
if (result.isNegative())
result = add(result, swapped ? x : y, 1);
}
return result;
}
public BigInteger modPow(BigInteger exponent, BigInteger m)
{
if (m.isNegative() || m.isZero())
throw new ArithmeticException("non-positive modulo");
if (exponent.isNegative())
return modInverse(m);
if (exponent.isOne())
return mod(m);
// To do this naively by first raising this to the power of exponent
// and then performing modulo m would be extremely expensive, especially
// for very large numbers. The solution is found in Number Theory
// where a combination of partial powers and modulos can be done easily.
//
// We'll use the algorithm for Additive Chaining which can be found on
// p. 244 of "Applied Cryptography, Second Edition" by Bruce Schneier.
BigInteger s, t, u;
int i;
s = ONE;
t = this;
u = exponent;
while (!u.isZero())
{
if (u.and(ONE).isOne())
s = times(s, t).mod(m);
u = u.shiftRight(1);
t = times(t, t).mod(m);
}
return s;
}
/** Calculate Greatest Common Divisor for non-negative ints. */
private static final int gcd(int a, int b)
{
// Euclid's algorithm, copied from libg++.
if (b > a)
{
int tmp = a; a = b; b = tmp;
}
for(;;)
{
if (b == 0)
return a;
else if (b == 1)
return b;
else
{
int tmp = b;
b = a % b;
a = tmp;
}
}
}
public BigInteger gcd(BigInteger y)
{
int xval = ival;
int yval = y.ival;
if (words == null)
{
if (xval == 0)
return BigInteger.abs(y);
if (y.words == null
&& xval != Integer.MIN_VALUE && yval != Integer.MIN_VALUE)
{
if (xval < 0)
xval = -xval;
if (yval < 0)
yval = -yval;
return BigInteger.make(BigInteger.gcd(xval, yval));
}
xval = 1;
}
if (y.words == null)
{
if (yval == 0)
return BigInteger.abs(this);
yval = 1;
}
int len = (xval > yval ? xval : yval) + 1;
int[] xwords = new int[len];
int[] ywords = new int[len];
getAbsolute(xwords);
y.getAbsolute(ywords);
len = MPN.gcd(xwords, ywords, len);
BigInteger result = new BigInteger(0);
result.ival = len;
result.words = xwords;
return result.canonicalize();
}
public boolean isProbablePrime(int certainty)
{
/** We'll use the Rabin-Miller algorithm for doing a probabilistic
* primality test. It is fast, easy and has faster decreasing odds of a
* composite passing than with other tests. This means that this
* method will actually have a probability much greater than the
* 1 - .5^certainty specified in the JCL (p. 117), but I don't think
* anyone will complain about better performance with greater certainty.
*
* The Rabin-Miller algorithm can be found on pp. 259-261 of "Applied
* Cryptography, Second Edition" by Bruce Schneier.
*/
// First rule out small prime factors and assure the number is odd.
for (int i = 0; i < primes.length; i++)
{
if (words == null && ival == primes[i])
return true;
if (remainder(make(primes[i])).isZero())
return false;
}
// Now perform the Rabin-Miller test.
// NB: I know that this can be simplified programatically, but
// I have tried to keep it as close as possible to the algorithm
// as written in the Schneier book for reference purposes.
// Set b to the number of times 2 evenly divides (this - 1).
// I.e. 2^b is the largest power of 2 that divides (this - 1).
BigInteger pMinus1 = add(this, -1);
int b = pMinus1.getLowestSetBit();
// Set m such that this = 1 + 2^b * m.
BigInteger m = pMinus1.divide(make(2L << b - 1));
Random rand = new Random();
while (certainty-- > 0)
{
// Pick a random number greater than 1 and less than this.
// The algorithm says to pick a small number to make the calculations
// go faster, but it doesn't say how small; we'll use 2 to 1024.
int a = rand.nextInt();
a = (a < 0 ? -a : a) % 1023 + 2;
BigInteger z = make(a).modPow(m, this);
if (z.isOne() || z.equals(pMinus1))
continue; // Passes the test; may be prime.
int i;
for (i = 0; i < b; )
{
if (z.isOne())
return false;
i++;
if (z.equals(pMinus1))
break; // Passes the test; may be prime.
z = z.modPow(make(2), this);
}
if (i == b && !z.equals(pMinus1))
return false;
}
return true;
}
private void setInvert()
{
if (words == null)
ival = ~ival;
else
{
for (int i = ival; --i >= 0; )
words[i] = ~words[i];
}
}
private void setShiftLeft(BigInteger x, int count)
{
int[] xwords;
int xlen;
if (x.words == null)
{
if (count < 32)
{
set((long) x.ival << count);
return;
}
xwords = new int[1];
xwords[0] = x.ival;
xlen = 1;
}
else
{
xwords = x.words;
xlen = x.ival;
}
int word_count = count >> 5;
count &= 31;
int new_len = xlen + word_count;
if (count == 0)
{
realloc(new_len);
for (int i = xlen; --i >= 0; )
words[i+word_count] = xwords[i];
}
else
{
new_len++;
realloc(new_len);
int shift_out = MPN.lshift(words, word_count, xwords, xlen, count);
count = 32 - count;
words[new_len-1] = (shift_out << count) >> count; // sign-extend.
}
ival = new_len;
for (int i = word_count; --i >= 0; )
words[i] = 0;
}
private void setShiftRight(BigInteger x, int count)
{
if (x.words == null)
set(count < 32 ? x.ival >> count : x.ival < 0 ? -1 : 0);
else if (count == 0)
set(x);
else
{
boolean neg = x.isNegative();
int word_count = count >> 5;
count &= 31;
int d_len = x.ival - word_count;
if (d_len <= 0)
set(neg ? -1 : 0);
else
{
if (words == null || words.length < d_len)
realloc(d_len);
MPN.rshift0 (words, x.words, word_count, d_len, count);
ival = d_len;
if (neg)
words[d_len-1] |= -2 << (31 - count);
}
}
}
private void setShift(BigInteger x, int count)
{
if (count > 0)
setShiftLeft(x, count);
else
setShiftRight(x, -count);
}
private static BigInteger shift(BigInteger x, int count)
{
if (x.words == null)
{
if (count <= 0)
return make(count > -32 ? x.ival >> (-count) : x.ival < 0 ? -1 : 0);
if (count < 32)
return make((long) x.ival << count);
}
if (count == 0)
return x;
BigInteger result = new BigInteger(0);
result.setShift(x, count);
return result.canonicalize();
}
public BigInteger shiftLeft(int n)
{
return shift(this, n);
}
public BigInteger shiftRight(int n)
{
return shift(this, -n);
}
private void format(int radix, StringBuffer buffer)
{
if (words == null)
buffer.append(Integer.toString(ival, radix));
else if (ival <= 2)
buffer.append(Long.toString(longValue(), radix));
else
{
boolean neg = isNegative();
int[] work;
if (neg || radix != 16)
{
work = new int[ival];
getAbsolute(work);
}
else
work = words;
int len = ival;
int buf_size = len * (MPN.chars_per_word(radix) + 1);
if (radix == 16)
{
if (neg)
buffer.append('-');
int buf_start = buffer.length();
for (int i = len; --i >= 0; )
{
int word = work[i];
for (int j = 8; --j >= 0; )
{
int hex_digit = (word >> (4 * j)) & 0xF;
// Suppress leading zeros:
if (hex_digit > 0 || buffer.length() > buf_start)
buffer.append(Character.forDigit(hex_digit, 16));
}
}
}
else
{
int i = buffer.length();
for (;;)
{
int digit = MPN.divmod_1(work, work, len, radix);
buffer.append(Character.forDigit(digit, radix));
while (len > 0 && work[len-1] == 0) len--;
if (len == 0)
break;
}
if (neg)
buffer.append('-');
/* Reverse buffer. */
int j = buffer.length() - 1;
while (i < j)
{
char tmp = buffer.charAt(i);
buffer.setCharAt(i, buffer.charAt(j));
buffer.setCharAt(j, tmp);
i++; j--;
}
}
}
}
public String toString()
{
return toString(10);
}
public String toString(int radix)
{
if (words == null)
return Integer.toString(ival, radix);
else if (ival <= 2)
return Long.toString(longValue(), radix);
int buf_size = ival * (MPN.chars_per_word(radix) + 1);
StringBuffer buffer = new StringBuffer(buf_size);
format(radix, buffer);
return buffer.toString();
}
public int intValue()
{
if (words == null)
return ival;
return words[0];
}
public long longValue()
{
if (words == null)
return ival;
if (ival == 1)
return words[0];
return ((long)words[1] << 32) + ((long)words[0] & 0xffffffffL);
}
public int hashCode()
{
// FIXME: May not match hashcode of JDK.
return words == null ? ival : (words[0] + words[ival - 1]);
}
/* Assumes x and y are both canonicalized. */
private static boolean equals(BigInteger x, BigInteger y)
{
if (x.words == null && y.words == null)
return x.ival == y.ival;
if (x.words == null || y.words == null || x.ival != y.ival)
return false;
for (int i = x.ival; --i >= 0; )
{
if (x.words[i] != y.words[i])
return false;
}
return true;
}
/* Assumes this and obj are both canonicalized. */
public boolean equals(Object obj)
{
if (obj == null || ! (obj instanceof BigInteger))
return false;
return BigInteger.equals(this, (BigInteger) obj);
}
private static BigInteger valueOf(String s, int radix)
throws NumberFormatException
{
int len = s.length();
// Testing (len < MPN.chars_per_word(radix)) would be more accurate,
// but slightly more expensive, for little practical gain.
if (len <= 15 && radix <= 16)
return BigInteger.make(Long.parseLong(s, radix));
int byte_len = 0;
byte[] bytes = new byte[len];
boolean negative = false;
for (int i = 0; i < len; i++)
{
char ch = s.charAt(i);
if (ch == '-')
negative = true;
else if (ch == '_' || (byte_len == 0 && (ch == ' ' || ch == '\t')))
continue;
else
{
int digit = Character.digit(ch, radix);
if (digit < 0)
break;
bytes[byte_len++] = (byte) digit;
}
}
return valueOf(bytes, byte_len, negative, radix);
}
private static BigInteger valueOf(byte[] digits, int byte_len,
boolean negative, int radix)
{
int chars_per_word = MPN.chars_per_word(radix);
int[] words = new int[byte_len / chars_per_word + 1];
int size = MPN.set_str(words, digits, byte_len, radix);
if (size == 0)
return ZERO;
if (words[size-1] < 0)
words[size++] = 0;
if (negative)
negate(words, words, size);
return make(words, size);
}
public double doubleValue()
{
if (words == null)
return (double) ival;
if (ival <= 2)
return (double) longValue();
if (isNegative())
return BigInteger.neg(this).roundToDouble(0, true, false);
else
return roundToDouble(0, false, false);
}
public float floatValue()
{
return (float) doubleValue();
}
/** Return true if any of the lowest n bits are one.
* (false if n is negative). */
private boolean checkBits(int n)
{
if (n <= 0)
return false;
if (words == null)
return n > 31 || ((ival & ((1 << n) - 1)) != 0);
int i;
for (i = 0; i < (n >> 5) ; i++)
if (words[i] != 0)
return true;
return (n & 31) != 0 && (words[i] & ((1 << (n & 31)) - 1)) != 0;
}
/** Convert a semi-processed BigInteger to double.
* Number must be non-negative. Multiplies by a power of two, applies sign,
* and converts to double, with the usual java rounding.
* @param exp power of two, positive or negative, by which to multiply
* @param neg true if negative
* @param remainder true if the BigInteger is the result of a truncating
* division that had non-zero remainder. To ensure proper rounding in
* this case, the BigInteger must have at least 54 bits. */
private double roundToDouble(int exp, boolean neg, boolean remainder)
{
// Compute length.
int il = bitLength();
// Exponent when normalized to have decimal point directly after
// leading one. This is stored excess 1023 in the exponent bit field.
exp += il - 1;
// Gross underflow. If exp == -1075, we let the rounding
// computation determine whether it is minval or 0 (which are just
// 0x0000 0000 0000 0001 and 0x0000 0000 0000 0000 as bit
// patterns).
if (exp < -1075)
return neg ? -0.0 : 0.0;
// gross overflow
if (exp > 1023)
return neg ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
// number of bits in mantissa, including the leading one.
// 53 unless it's denormalized
int ml = (exp >= -1022 ? 53 : 53 + exp + 1022);
// Get top ml + 1 bits. The extra one is for rounding.
long m;
int excess_bits = il - (ml + 1);
if (excess_bits > 0)
m = ((words == null) ? ival >> excess_bits
: MPN.rshift_long(words, ival, excess_bits));
else
m = longValue() << (- excess_bits);
// Special rounding for maxval. If the number exceeds maxval by
// any amount, even if it's less than half a step, it overflows.
if (exp == 1023 && ((m >> 1) == (1L << 53) - 1))
{
if (remainder || checkBits(il - ml))
return neg ? Double.NEGATIVE_INFINITY : Double.POSITIVE_INFINITY;
else
return neg ? - Double.MAX_VALUE : Double.MAX_VALUE;
}
// Normal round-to-even rule: round up if the bit dropped is a one, and
// the bit above it or any of the bits below it is a one.
if ((m & 1) == 1
&& ((m & 2) == 2 || remainder || checkBits(excess_bits)))
{
m += 2;
// Check if we overflowed the mantissa
if ((m & (1L << 54)) != 0)
{
exp++;
// renormalize
m >>= 1;
}
// Check if a denormalized mantissa was just rounded up to a
// normalized one.
else if (ml == 52 && (m & (1L << 53)) != 0)
exp++;
}
// Discard the rounding bit
m >>= 1;
long bits_sign = neg ? (1L << 63) : 0;
exp += 1023;
long bits_exp = (exp <= 0) ? 0 : ((long)exp) << 52;
long bits_mant = m & ~(1L << 52);
return Double.longBitsToDouble(bits_sign | bits_exp | bits_mant);
}
/** Copy the abolute value of this into an array of words.
* Assumes words.length >= (this.words == null ? 1 : this.ival).
* Result is zero-extended, but need not be a valid 2's complement number.
*/
private void getAbsolute(int[] words)
{
int len;
if (this.words == null)
{
len = 1;
words[0] = this.ival;
}
else
{
len = this.ival;
for (int i = len; --i >= 0; )
words[i] = this.words[i];
}
if (words[len - 1] < 0)
negate(words, words, len);
for (int i = words.length; --i > len; )
words[i] = 0;
}
/** Set dest[0:len-1] to the negation of src[0:len-1].
* Return true if overflow (i.e. if src is -2**(32*len-1)).
* Ok for src==dest. */
private static boolean negate(int[] dest, int[] src, int len)
{
long carry = 1;
boolean negative = src[len-1] < 0;
for (int i = 0; i < len; i++)
{
carry += ((long) (~src[i]) & 0xffffffffL);
dest[i] = (int) carry;
carry >>= 32;
}
return (negative && dest[len-1] < 0);
}
/** Destructively set this to the negative of x.
* It is OK if x==this.*/
private void setNegative(BigInteger x)
{
int len = x.ival;
if (x.words == null)
{
if (len == Integer.MIN_VALUE)
set(- (long) len);
else
set(-len);
return;
}
realloc(len + 1);
if (BigInteger.negate(words, x.words, len))
words[len++] = 0;
ival = len;
}
/** Destructively negate this. */
private final void setNegative()
{
setNegative(this);
}
private static BigInteger abs(BigInteger x)
{
return x.isNegative() ? neg(x) : x;
}
public BigInteger abs()
{
return abs(this);
}
private static BigInteger neg(BigInteger x)
{
if (x.words == null && x.ival != Integer.MIN_VALUE)
return make(- x.ival);
BigInteger result = new BigInteger(0);
result.setNegative(x);
return result.canonicalize();
}
public BigInteger negate()
{
return BigInteger.neg(this);
}
/** Calculates ceiling(log2(this < 0 ? -this : this+1))
* See Common Lisp: the Language, 2nd ed, p. 361.
*/
public int bitLength()
{
if (words == null)
return MPN.intLength(ival);
else
return MPN.intLength(words, ival);
}
public byte[] toByteArray()
{
// Determine number of bytes needed. The method bitlength returns
// the size without the sign bit, so add one bit for that and then
// add 7 more to emulate the ceil function using integer math.
byte[] bytes = new byte[(bitLength() + 1 + 7) / 8];
int nbytes = bytes.length;
int wptr = 0;
int word;
// Deal with words array until one word or less is left to process.
// If BigInteger is an int, then it is in ival and nbytes will be <= 4.
while (nbytes > 4)
{
word = words[wptr++];
for (int i = 4; i > 0; --i, word >>= 8)
bytes[--nbytes] = (byte) word;
}
// Deal with the last few bytes. If BigInteger is an int, use ival.
word = (words == null) ? ival : words[wptr];
for ( ; nbytes > 0; word >>= 8)
bytes[--nbytes] = (byte) word;
return bytes;
}
/** Return the boolean opcode (for bitOp) for swapped operands.
* I.e. bitOp(swappedOp(op), x, y) == bitOp(op, y, x).
*/
private static int swappedOp(int op)
{
return
"\000\001\004\005\002\003\006\007\010\011\014\015\012\013\016\017"
.charAt(op);
}
/** Do one the the 16 possible bit-wise operations of two BigIntegers. */
private static BigInteger bitOp(int op, BigInteger x, BigInteger y)
{
switch (op)
{
case 0: return ZERO;
case 1: return x.and(y);
case 3: return x;
case 5: return y;
case 15: return make(-1);
}
BigInteger result = new BigInteger();
setBitOp(result, op, x, y);
return result.canonicalize();
}
/** Do one the the 16 possible bit-wise operations of two BigIntegers. */
private static void setBitOp(BigInteger result, int op,
BigInteger x, BigInteger y)
{
if (y.words == null) ;
else if (x.words == null || x.ival < y.ival)
{
BigInteger temp = x; x = y; y = temp;
op = swappedOp(op);
}
int xi;
int yi;
int xlen, ylen;
if (y.words == null)
{
yi = y.ival;
ylen = 1;
}
else
{
yi = y.words[0];
ylen = y.ival;
}
if (x.words == null)
{
xi = x.ival;
xlen = 1;
}
else
{
xi = x.words[0];
xlen = x.ival;
}
if (xlen > 1)
result.realloc(xlen);
int[] w = result.words;
int i = 0;
// Code for how to handle the remainder of x.
// 0: Truncate to length of y.
// 1: Copy rest of x.
// 2: Invert rest of x.
int finish = 0;
int ni;
switch (op)
{
case 0: // clr
ni = 0;
break;
case 1: // and
for (;;)
{
ni = xi & yi;
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
if (yi < 0) finish = 1;
break;
case 2: // andc2
for (;;)
{
ni = xi & ~yi;
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
if (yi >= 0) finish = 1;
break;
case 3: // copy x
ni = xi;
finish = 1; // Copy rest
break;
case 4: // andc1
for (;;)
{
ni = ~xi & yi;
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
if (yi < 0) finish = 2;
break;
case 5: // copy y
for (;;)
{
ni = yi;
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
break;
case 6: // xor
for (;;)
{
ni = xi ^ yi;
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
finish = yi < 0 ? 2 : 1;
break;
case 7: // ior
for (;;)
{
ni = xi | yi;
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
if (yi >= 0) finish = 1;
break;
case 8: // nor
for (;;)
{
ni = ~(xi | yi);
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
if (yi >= 0) finish = 2;
break;
case 9: // eqv [exclusive nor]
for (;;)
{
ni = ~(xi ^ yi);
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
finish = yi >= 0 ? 2 : 1;
break;
case 10: // c2
for (;;)
{
ni = ~yi;
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
break;
case 11: // orc2
for (;;)
{
ni = xi | ~yi;
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
if (yi < 0) finish = 1;
break;
case 12: // c1
ni = ~xi;
finish = 2;
break;
case 13: // orc1
for (;;)
{
ni = ~xi | yi;
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
if (yi >= 0) finish = 2;
break;
case 14: // nand
for (;;)
{
ni = ~(xi & yi);
if (i+1 >= ylen) break;
w[i++] = ni; xi = x.words[i]; yi = y.words[i];
}
if (yi < 0) finish = 2;
break;
default:
case 15: // set
ni = -1;
break;
}
// Here i==ylen-1; w[0]..w[i-1] have the correct result;
// and ni contains the correct result for w[i+1].
if (i+1 == xlen)
finish = 0;
switch (finish)
{
case 0:
if (i == 0 && w == null)
{
result.ival = ni;
return;
}
w[i++] = ni;
break;
case 1: w[i] = ni; while (++i < xlen) w[i] = x.words[i]; break;
case 2: w[i] = ni; while (++i < xlen) w[i] = ~x.words[i]; break;
}
result.ival = i;
}
/** Return the logical (bit-wise) "and" of a BigInteger and an int. */
private static BigInteger and(BigInteger x, int y)
{
if (x.words == null)
return BigInteger.make(x.ival & y);
if (y >= 0)
return BigInteger.make(x.words[0] & y);
int len = x.ival;
int[] words = new int[len];
words[0] = x.words[0] & y;
while (--len > 0)
words[len] = x.words[len];
return BigInteger.make(words, x.ival);
}
/** Return the logical (bit-wise) "and" of two BigIntegers. */
public BigInteger and(BigInteger y)
{
if (y.words == null)
return and(this, y.ival);
else if (words == null)
return and(y, ival);
BigInteger x = this;
if (ival < y.ival)
{
BigInteger temp = this; x = y; y = temp;
}
int i;
int len = y.isNegative() ? x.ival : y.ival;
int[] words = new int[len];
for (i = 0; i < y.ival; i++)
words[i] = x.words[i] & y.words[i];
for ( ; i < len; i++)
words[i] = x.words[i];
return BigInteger.make(words, len);
}
/** Return the logical (bit-wise) "(inclusive) or" of two BigIntegers. */
public BigInteger or(BigInteger y)
{
return bitOp(7, this, y);
}
/** Return the logical (bit-wise) "exclusive or" of two BigIntegers. */
public BigInteger xor(BigInteger y)
{
return bitOp(6, this, y);
}
/** Return the logical (bit-wise) negation of a BigInteger. */
public BigInteger not()
{
return bitOp(12, this, ZERO);
}
public BigInteger andNot(BigInteger val)
{
return and(val.not());
}
public BigInteger clearBit(int n)
{
if (n < 0)
throw new ArithmeticException();
return and(ONE.shiftLeft(n).not());
}
public BigInteger setBit(int n)
{
if (n < 0)
throw new ArithmeticException();
return or(ONE.shiftLeft(n));
}
public boolean testBit(int n)
{
if (n < 0)
throw new ArithmeticException();
return !and(ONE.shiftLeft(n)).isZero();
}
public BigInteger flipBit(int n)
{
if (n < 0)
throw new ArithmeticException();
return xor(ONE.shiftLeft(n));
}
public int getLowestSetBit()
{
if (isZero())
return -1;
if (words == null)
return MPN.findLowestBit(ival);
else
return MPN.findLowestBit(words);
}
// bit4count[I] is number of '1' bits in I.
private static final byte[] bit4_count = { 0, 1, 1, 2, 1, 2, 2, 3,
1, 2, 2, 3, 2, 3, 3, 4};
private static int bitCount(int i)
{
int count = 0;
while (i != 0)
{
count += bit4_count[i & 15];
i >>>= 4;
}
return count;
}
private static int bitCount(int[] x, int len)
{
int count = 0;
while (--len >= 0)
count += bitCount(x[len]);
return count;
}
/** Count one bits in a BigInteger.
* If argument is negative, count zero bits instead. */
public int bitCount()
{
int i, x_len;
int[] x_words = words;
if (x_words == null)
{
x_len = 1;
i = bitCount(ival);
}
else
{
x_len = ival;
i = bitCount(x_words, x_len);
}
return isNegative() ? x_len * 32 - i : i;
}
private void readObject(ObjectInputStream s)
throws IOException, ClassNotFoundException
{
s.defaultReadObject();
words = byteArrayToIntArray(magnitude, signum < 0 ? -1 : 0);
BigInteger result = make(words, words.length);
this.ival = result.ival;
this.words = result.words;
}
private void writeObject(ObjectOutputStream s)
throws IOException, ClassNotFoundException
{
signum = signum();
magnitude = toByteArray();
s.defaultWriteObject();
}
}
|