1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
|
/* Polygon.java -- class representing a polygon
Copyright (C) 1999, 2002 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package java.awt;
import java.awt.geom.AffineTransform;
import java.awt.geom.PathIterator;
import java.awt.geom.Point2D;
import java.awt.geom.Rectangle2D;
import java.io.Serializable;
/**
* This class represents a polygon, a closed, two-dimensional region in a
* coordinate space. The region is bounded by an arbitrary number of line
* segments, between (x,y) coordinate vertices. The polygon has even-odd
* winding, meaning that a point is inside the shape if it crosses the
* boundary an odd number of times on the way to infinity.
*
* <p>There are some public fields; if you mess with them in an inconsistent
* manner, it is your own fault when you get NullPointerException,
* ArrayIndexOutOfBoundsException, or invalid results. Also, this class is
* not threadsafe.
*
* @author Aaron M. Renn <arenn@urbanophile.com>
* @author Eric Blake <ebb9@email.byu.edu>
* @since 1.0
* @status updated to 1.4
*/
public class Polygon implements Shape, Serializable
{
/**
* Compatible with JDK 1.0+.
*/
private static final long serialVersionUID = -6460061437900069969L;
/**
* This total number of endpoints.
*
* @serial the number of endpoints, possibly less than the array sizes
*/
public int npoints;
/**
* The array of X coordinates of endpoints. This should not be null.
*
* @see #addPoint(int, int)
* @serial the x coordinates
*/
public int[] xpoints;
/**
* The array of Y coordinates of endpoints. This should not be null.
*
* @see #addPoint(int, int)
* @serial the y coordinates
*/
public int[] ypoints;
/**
* The bounding box of this polygon. This is lazily created and cached, so
* it must be invalidated after changing points.
*
* @see #getBounds()
* @serial the bounding box, or null
*/
protected Rectangle bounds;
/**
* Cached flattened version - condense points and parallel lines, so the
* result has area if there are >= 3 condensed vertices. flat[0] is the
* number of condensed points, and (flat[odd], flat[odd+1]) form the
* condensed points.
*
* @see #condense()
* @see #contains(double, double)
* @see #contains(double, double, double, double)
*/
private transient int[] condensed;
/**
* Initializes an empty polygon.
*/
public Polygon()
{
// Leave room for growth.
xpoints = new int[4];
ypoints = new int[4];
}
/**
* Create a new polygon with the specified endpoints. The arrays are copied,
* so that future modifications to the parameters do not affect the polygon.
*
* @param xpoints the array of X coordinates for this polygon
* @param ypoints the array of Y coordinates for this polygon
* @param npoints the total number of endpoints in this polygon
* @throws NegativeArraySizeException if npoints is negative
* @throws IndexOutOfBoundsException if npoints exceeds either array
* @throws NullPointerException if xpoints or ypoints is null
*/
public Polygon(int[] xpoints, int[] ypoints, int npoints)
{
this.xpoints = new int[npoints];
this.ypoints = new int[npoints];
System.arraycopy(xpoints, 0, this.xpoints, 0, npoints);
System.arraycopy(ypoints, 0, this.ypoints, 0, npoints);
this.npoints = npoints;
}
/**
* Reset the polygon to be empty. The arrays are left alone, to avoid object
* allocation, but the number of points is set to 0, and all cached data
* is discarded. If you are discarding a huge number of points, it may be
* more efficient to just create a new Polygon.
*
* @see #invalidate()
* @since 1.4
*/
public void reset()
{
npoints = 0;
invalidate();
}
/**
* Invalidate or flush all cached data. After direct manipulation of the
* public member fields, this is necessary to avoid inconsistent results
* in methods like <code>contains</code>.
*
* @see #getBounds()
* @since 1.4
*/
public void invalidate()
{
bounds = null;
condensed = null;
}
/**
* Translates the polygon by adding the specified values to all X and Y
* coordinates. This updates the bounding box, if it has been calculated.
*
* @param dx the amount to add to all X coordinates
* @param dy the amount to add to all Y coordinates
* @since 1.1
*/
public void translate(int dx, int dy)
{
int i = npoints;
while (--i >= 0)
{
xpoints[i] += dx;
ypoints[i] += dy;
}
if (bounds != null)
{
bounds.x += dx;
bounds.y += dy;
}
condensed = null;
}
/**
* Adds the specified endpoint to the polygon. This updates the bounding
* box, if it has been created.
*
* @param x the X coordinate of the point to add
* @param y the Y coordiante of the point to add
*/
public void addPoint(int x, int y)
{
if (npoints + 1 > xpoints.length)
{
int[] newx = new int[npoints + 1];
System.arraycopy(xpoints, 0, newx, 0, npoints);
xpoints = newx;
}
if (npoints + 1 > ypoints.length)
{
int[] newy = new int[npoints + 1];
System.arraycopy(ypoints, 0, newy, 0, npoints);
ypoints = newy;
}
xpoints[npoints] = x;
ypoints[npoints] = y;
npoints++;
if (bounds != null)
{
if (npoints == 1)
{
bounds.x = x;
bounds.y = y;
}
else
{
if (x < bounds.x)
{
bounds.width += bounds.x - x;
bounds.x = x;
}
else if (x > bounds.x + bounds.width)
bounds.width = x - bounds.x;
if (y < bounds.y)
{
bounds.height += bounds.y - y;
bounds.y = y;
}
else if (y > bounds.y + bounds.height)
bounds.height = y - bounds.y;
}
}
condensed = null;
}
/**
* Returns the bounding box of this polygon. This is the smallest
* rectangle with sides parallel to the X axis that will contain this
* polygon.
*
* @return the bounding box for this polygon
* @see #getBounds2D()
* @since 1.1
*/
public Rectangle getBounds()
{
return getBoundingBox ();
}
/**
* Returns the bounding box of this polygon. This is the smallest
* rectangle with sides parallel to the X axis that will contain this
* polygon.
*
* @return the bounding box for this polygon
* @see #getBounds2D()
* @deprecated use {@link #getBounds()} instead
*/
public Rectangle getBoundingBox()
{
if (bounds == null)
{
if (npoints == 0)
return bounds = new Rectangle ();
int i = npoints - 1;
int minx = xpoints[i];
int maxx = minx;
int miny = ypoints[i];
int maxy = miny;
while (--i >= 0)
{
int x = xpoints[i];
int y = ypoints[i];
if (x < minx)
minx = x;
else if (x > maxx)
maxx = x;
if (y < miny)
miny = y;
else if (y > maxy)
maxy = y;
}
bounds = new Rectangle (minx, miny, maxx - minx, maxy - miny);
}
return bounds;
}
/**
* Tests whether or not the specified point is inside this polygon.
*
* @param p the point to test
* @return true if the point is inside this polygon
* @throws NullPointerException if p is null
* @see #contains(double, double)
*/
public boolean contains(Point p)
{
return contains(p.getX(), p.getY());
}
/**
* Tests whether or not the specified point is inside this polygon.
*
* @param x the X coordinate of the point to test
* @param y the Y coordinate of the point to test
* @return true if the point is inside this polygon
* @see #contains(double, double)
* @since 1.1
*/
public boolean contains(int x, int y)
{
return contains((double) x, (double) y);
}
/**
* Tests whether or not the specified point is inside this polygon.
*
* @param x the X coordinate of the point to test
* @param y the Y coordinate of the point to test
* @return true if the point is inside this polygon
* @see #contains(double, double)
* @deprecated use {@link #contains(int, int)} instead
*/
public boolean inside(int x, int y)
{
return contains((double) x, (double) y);
}
/**
* Returns a high-precision bounding box of this polygon. This is the
* smallest rectangle with sides parallel to the X axis that will contain
* this polygon.
*
* @return the bounding box for this polygon
* @see #getBounds()
* @since 1.2
*/
public Rectangle2D getBounds2D()
{
// For polygons, the integer version is exact!
return getBounds();
}
/**
* Tests whether or not the specified point is inside this polygon.
*
* @param x the X coordinate of the point to test
* @param y the Y coordinate of the point to test
* @return true if the point is inside this polygon
* @since 1.2
*/
public boolean contains(double x, double y)
{
// First, the obvious bounds checks.
if (! condense() || ! getBounds().contains(x, y))
return false;
// A point is contained if a ray to (-inf, y) crosses an odd number
// of segments. This must obey the semantics of Shape when the point is
// exactly on a segment or vertex: a point is inside only if the adjacent
// point in the increasing x or y direction is also inside. Note that we
// are guaranteed that the condensed polygon has area, and no consecutive
// segments with identical slope.
boolean inside = false;
int limit = condensed[0];
int curx = condensed[(limit << 1) - 1];
int cury = condensed[limit << 1];
for (int i = 1; i <= limit; i++)
{
int priorx = curx;
int priory = cury;
curx = condensed[(i << 1) - 1];
cury = condensed[i << 1];
if ((priorx > x && curx > x) // Left of segment, or NaN.
|| (priory > y && cury > y) // Below segment, or NaN.
|| (priory < y && cury < y)) // Above segment.
continue;
if (priory == cury) // Horizontal segment, y == cury == priory
{
if (priorx < x && curx < x) // Right of segment.
{
inside = ! inside;
continue;
}
// Did we approach this segment from above or below?
// This mess is necessary to obey rules of Shape.
priory = condensed[((limit + i - 2) % limit) << 1];
boolean above = priory > cury;
if ((curx == x && (curx > priorx || above))
|| (priorx == x && (curx < priorx || ! above))
|| (curx > priorx && ! above) || above)
inside = ! inside;
continue;
}
if (priorx == x && priory == y) // On prior vertex.
continue;
if (priorx == curx // Vertical segment.
|| (priorx < x && curx < x)) // Right of segment.
{
inside = ! inside;
continue;
}
// The point is inside the segment's bounding box, compare slopes.
double leftx = curx > priorx ? priorx : curx;
double lefty = curx > priorx ? priory : cury;
double slopeseg = (double) (cury - priory) / (curx - priorx);
double slopepoint = (double) (y - lefty) / (x - leftx);
if ((slopeseg > 0 && slopeseg > slopepoint)
|| slopeseg < slopepoint)
inside = ! inside;
}
return inside;
}
/**
* Tests whether or not the specified point is inside this polygon.
*
* @param p the point to test
* @return true if the point is inside this polygon
* @throws NullPointerException if p is null
* @see #contains(double, double)
* @since 1.2
*/
public boolean contains(Point2D p)
{
return contains(p.getX(), p.getY());
}
/**
* Test if a high-precision rectangle intersects the shape. This is true
* if any point in the rectangle is in the shape. This implementation is
* precise.
*
* @param x the x coordinate of the rectangle
* @param y the y coordinate of the rectangle
* @param w the width of the rectangle, treated as point if negative
* @param h the height of the rectangle, treated as point if negative
* @return true if the rectangle intersects this shape
* @since 1.2
*/
public boolean intersects(double x, double y, double w, double h)
{
// First, the obvious bounds checks.
if (w <= 0 || h <= 0 || npoints == 0 ||
! getBounds().intersects(x, y, w, h))
return false; // Disjoint bounds.
if ((x <= bounds.x && x + w >= bounds.x + bounds.width
&& y <= bounds.y && y + h >= bounds.y + bounds.height)
|| contains(x, y))
return true; // Rectangle contains the polygon, or one point matches.
// If any vertex is in the rectangle, the two might intersect.
int curx = 0;
int cury = 0;
for (int i = 0; i < npoints; i++)
{
curx = xpoints[i];
cury = ypoints[i];
if (curx >= x && curx < x + w && cury >= y && cury < y + h
&& contains(curx, cury)) // Boundary check necessary.
return true;
}
// Finally, if at least one of the four bounding lines intersect any
// segment of the polygon, return true. Be careful of the semantics of
// Shape; coinciding lines do not necessarily return true.
for (int i = 0; i < npoints; i++)
{
int priorx = curx;
int priory = cury;
curx = xpoints[i];
cury = ypoints[i];
if (priorx == curx) // Vertical segment.
{
if (curx < x || curx >= x + w) // Outside rectangle.
continue;
if ((cury >= y + h && priory <= y)
|| (cury <= y && priory >= y + h))
return true; // Bisects rectangle.
continue;
}
if (priory == cury) // Horizontal segment.
{
if (cury < y || cury >= y + h) // Outside rectangle.
continue;
if ((curx >= x + w && priorx <= x)
|| (curx <= x && priorx >= x + w))
return true; // Bisects rectangle.
continue;
}
// Slanted segment.
double slope = (double) (cury - priory) / (curx - priorx);
double intersect = slope * (x - curx) + cury;
if (intersect > y && intersect < y + h) // Intersects left edge.
return true;
intersect = slope * (x + w - curx) + cury;
if (intersect > y && intersect < y + h) // Intersects right edge.
return true;
intersect = (y - cury) / slope + curx;
if (intersect > x && intersect < x + w) // Intersects bottom edge.
return true;
intersect = (y + h - cury) / slope + cury;
if (intersect > x && intersect < x + w) // Intersects top edge.
return true;
}
return false;
}
/**
* Test if a high-precision rectangle intersects the shape. This is true
* if any point in the rectangle is in the shape. This implementation is
* precise.
*
* @param r the rectangle
* @return true if the rectangle intersects this shape
* @throws NullPointerException if r is null
* @see #intersects(double, double, double, double)
* @since 1.2
*/
public boolean intersects(Rectangle2D r)
{
return intersects(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
/**
* Test if a high-precision rectangle lies completely in the shape. This is
* true if all points in the rectangle are in the shape. This implementation
* is precise.
*
* @param x the x coordinate of the rectangle
* @param y the y coordinate of the rectangle
* @param w the width of the rectangle, treated as point if negative
* @param h the height of the rectangle, treated as point if negative
* @return true if the rectangle is contained in this shape
* @since 1.2
*/
public boolean contains(double x, double y, double w, double h)
{
// First, the obvious bounds checks.
if (w <= 0 || h <= 0 || ! contains(x, y)
|| ! bounds.contains(x, y, w, h))
return false;
// Now, if any of the four bounding lines intersects a polygon segment,
// return false. The previous check had the side effect of setting
// the condensed array, which we use. Be careful of the semantics of
// Shape; coinciding lines do not necessarily return false.
int limit = condensed[0];
int curx = condensed[(limit << 1) - 1];
int cury = condensed[limit << 1];
for (int i = 1; i <= limit; i++)
{
int priorx = curx;
int priory = cury;
curx = condensed[(i << 1) - 1];
cury = condensed[i << 1];
if (curx > x && curx < x + w && cury > y && cury < y + h)
return false; // Vertex is in rectangle.
if (priorx == curx) // Vertical segment.
{
if (curx < x || curx > x + w) // Outside rectangle.
continue;
if ((cury >= y + h && priory <= y)
|| (cury <= y && priory >= y + h))
return false; // Bisects rectangle.
continue;
}
if (priory == cury) // Horizontal segment.
{
if (cury < y || cury > y + h) // Outside rectangle.
continue;
if ((curx >= x + w && priorx <= x)
|| (curx <= x && priorx >= x + w))
return false; // Bisects rectangle.
continue;
}
// Slanted segment.
double slope = (double) (cury - priory) / (curx - priorx);
double intersect = slope * (x - curx) + cury;
if (intersect > y && intersect < y + h) // Intersects left edge.
return false;
intersect = slope * (x + w - curx) + cury;
if (intersect > y && intersect < y + h) // Intersects right edge.
return false;
intersect = (y - cury) / slope + curx;
if (intersect > x && intersect < x + w) // Intersects bottom edge.
return false;
intersect = (y + h - cury) / slope + cury;
if (intersect > x && intersect < x + w) // Intersects top edge.
return false;
}
return true;
}
/**
* Test if a high-precision rectangle lies completely in the shape. This is
* true if all points in the rectangle are in the shape. This implementation
* is precise.
*
* @param r the rectangle
* @return true if the rectangle is contained in this shape
* @throws NullPointerException if r is null
* @see #contains(double, double, double, double)
* @since 1.2
*/
public boolean contains(Rectangle2D r)
{
return contains(r.getX(), r.getY(), r.getWidth(), r.getHeight());
}
/**
* Return an iterator along the shape boundary. If the optional transform
* is provided, the iterator is transformed accordingly. Each call returns
* a new object, independent from others in use. This class is not
* threadsafe to begin with, so the path iterator is not either.
*
* @param transform an optional transform to apply to the iterator
* @return a new iterator over the boundary
* @since 1.2
*/
public PathIterator getPathIterator(final AffineTransform transform)
{
return new PathIterator()
{
/** The current vertex of iteration. */
private int vertex;
public int getWindingRule()
{
return WIND_EVEN_ODD;
}
public boolean isDone()
{
return vertex > npoints;
}
public void next()
{
vertex++;
}
public int currentSegment(float[] coords)
{
if (vertex >= npoints)
return SEG_CLOSE;
coords[0] = xpoints[vertex];
coords[1] = ypoints[vertex];
if (transform != null)
transform.transform(coords, 0, coords, 0, 1);
return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
}
public int currentSegment(double[] coords)
{
if (vertex >= npoints)
return SEG_CLOSE;
coords[0] = xpoints[vertex];
coords[1] = ypoints[vertex];
if (transform != null)
transform.transform(coords, 0, coords, 0, 1);
return vertex == 0 ? SEG_MOVETO : SEG_LINETO;
}
};
}
/**
* Return an iterator along the flattened version of the shape boundary.
* Since polygons are already flat, the flatness parameter is ignored, and
* the resulting iterator only has SEG_MOVETO, SEG_LINETO and SEG_CLOSE
* points. If the optional transform is provided, the iterator is
* transformed accordingly. Each call returns a new object, independent
* from others in use. This class is not threadsafe to begin with, so the
* path iterator is not either.
*
* @param transform an optional transform to apply to the iterator
* @param double the maximum distance for deviation from the real boundary
* @return a new iterator over the boundary
* @since 1.2
*/
public PathIterator getPathIterator(AffineTransform transform,
double flatness)
{
return getPathIterator(transform);
}
/**
* Helper for contains, which caches a condensed version of the polygon.
* This condenses all colinear points, so that consecutive segments in
* the condensed version always have different slope.
*
* @return true if the condensed polygon has area
* @see #condensed
* @see #contains(double, double)
*/
private boolean condense()
{
if (npoints <= 2)
return false;
if (condensed != null)
return condensed[0] > 2;
condensed = new int[npoints * 2 + 1];
int curx = xpoints[npoints - 1];
int cury = ypoints[npoints - 1];
double curslope = Double.NaN;
int count = 0;
outer:
for (int i = 0; i < npoints; i++)
{
int priorx = curx;
int priory = cury;
double priorslope = curslope;
curx = xpoints[i];
cury = ypoints[i];
while (curx == priorx && cury == priory)
{
if (++i == npoints)
break outer;
curx = xpoints[i];
cury = ypoints[i];
}
curslope = (curx == priorx ? Double.POSITIVE_INFINITY
: (double) (cury - priory) / (curx - priorx));
if (priorslope == curslope)
{
if (count > 1 && condensed[(count << 1) - 3] == curx
&& condensed[(count << 1) - 2] == cury)
{
count--;
continue;
}
}
else
count++;
condensed[(count << 1) - 1] = curx;
condensed[count << 1] = cury;
}
condensed[0] = count;
return count > 2;
}
} // class Polygon
|