summaryrefslogtreecommitdiffstats
path: root/libgo/go/sort/sort.go
blob: c7945d21b612fffe851c19a6b7b9b755c2cae14c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

// The sort package provides primitives for sorting arrays
// and user-defined collections.
package sort

// A type, typically a collection, that satisfies sort.Interface can be
// sorted by the routines in this package.  The methods require that the
// elements of the collection be enumerated by an integer index.
type Interface interface {
	// Len is the number of elements in the collection.
	Len() int
	// Less returns whether the element with index i should sort
	// before the element with index j.
	Less(i, j int) bool
	// Swap swaps the elements with indexes i and j.
	Swap(i, j int)
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

// Insertion sort
func insertionSort(data Interface, a, b int) {
	for i := a + 1; i < b; i++ {
		for j := i; j > a && data.Less(j, j-1); j-- {
			data.Swap(j, j-1)
		}
	}
}

// Quicksort, following Bentley and McIlroy,
// ``Engineering a Sort Function,'' SP&E November 1993.

// Move the median of the three values data[a], data[b], data[c] into data[a].
func medianOfThree(data Interface, a, b, c int) {
	m0 := b
	m1 := a
	m2 := c
	// bubble sort on 3 elements
	if data.Less(m1, m0) {
		data.Swap(m1, m0)
	}
	if data.Less(m2, m1) {
		data.Swap(m2, m1)
	}
	if data.Less(m1, m0) {
		data.Swap(m1, m0)
	}
	// now data[m0] <= data[m1] <= data[m2]
}

func swapRange(data Interface, a, b, n int) {
	for i := 0; i < n; i++ {
		data.Swap(a+i, b+i)
	}
}

func doPivot(data Interface, lo, hi int) (midlo, midhi int) {
	m := lo + (hi-lo)/2 // Written like this to avoid integer overflow.
	if hi-lo > 40 {
		// Tukey's ``Ninther,'' median of three medians of three.
		s := (hi - lo) / 8
		medianOfThree(data, lo, lo+s, lo+2*s)
		medianOfThree(data, m, m-s, m+s)
		medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
	}
	medianOfThree(data, lo, m, hi-1)

	// Invariants are:
	//	data[lo] = pivot (set up by ChoosePivot)
	//	data[lo <= i < a] = pivot
	//	data[a <= i < b] < pivot
	//	data[b <= i < c] is unexamined
	//	data[c <= i < d] > pivot
	//	data[d <= i < hi] = pivot
	//
	// Once b meets c, can swap the "= pivot" sections
	// into the middle of the array.
	pivot := lo
	a, b, c, d := lo+1, lo+1, hi, hi
	for b < c {
		if data.Less(b, pivot) { // data[b] < pivot
			b++
			continue
		}
		if !data.Less(pivot, b) { // data[b] = pivot
			data.Swap(a, b)
			a++
			b++
			continue
		}
		if data.Less(pivot, c-1) { // data[c-1] > pivot
			c--
			continue
		}
		if !data.Less(c-1, pivot) { // data[c-1] = pivot
			data.Swap(c-1, d-1)
			c--
			d--
			continue
		}
		// data[b] > pivot; data[c-1] < pivot
		data.Swap(b, c-1)
		b++
		c--
	}

	n := min(b-a, a-lo)
	swapRange(data, lo, b-n, n)

	n = min(hi-d, d-c)
	swapRange(data, c, hi-n, n)

	return lo + b - a, hi - (d - c)
}

func quickSort(data Interface, a, b int) {
	for b-a > 7 {
		mlo, mhi := doPivot(data, a, b)
		// Avoiding recursion on the larger subproblem guarantees
		// a stack depth of at most lg(b-a).
		if mlo-a < b-mhi {
			quickSort(data, a, mlo)
			a = mhi // i.e., quickSort(data, mhi, b)
		} else {
			quickSort(data, mhi, b)
			b = mlo // i.e., quickSort(data, a, mlo)
		}
	}
	if b-a > 1 {
		insertionSort(data, a, b)
	}
}

func Sort(data Interface) { quickSort(data, 0, data.Len()) }


func IsSorted(data Interface) bool {
	n := data.Len()
	for i := n - 1; i > 0; i-- {
		if data.Less(i, i-1) {
			return false
		}
	}
	return true
}


// Convenience types for common cases

// IntArray attaches the methods of Interface to []int, sorting in increasing order.
type IntArray []int

func (p IntArray) Len() int           { return len(p) }
func (p IntArray) Less(i, j int) bool { return p[i] < p[j] }
func (p IntArray) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// Sort is a convenience method.
func (p IntArray) Sort() { Sort(p) }


// Float64Array attaches the methods of Interface to []float64, sorting in increasing order.
type Float64Array []float64

func (p Float64Array) Len() int           { return len(p) }
func (p Float64Array) Less(i, j int) bool { return p[i] < p[j] }
func (p Float64Array) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// Sort is a convenience method.
func (p Float64Array) Sort() { Sort(p) }


// StringArray attaches the methods of Interface to []string, sorting in increasing order.
type StringArray []string

func (p StringArray) Len() int           { return len(p) }
func (p StringArray) Less(i, j int) bool { return p[i] < p[j] }
func (p StringArray) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }

// Sort is a convenience method.
func (p StringArray) Sort() { Sort(p) }


// Convenience wrappers for common cases

// SortInts sorts an array of ints in increasing order.
func SortInts(a []int) { Sort(IntArray(a)) }
// SortFloat64s sorts an array of float64s in increasing order.
func SortFloat64s(a []float64) { Sort(Float64Array(a)) }
// SortStrings sorts an array of strings in increasing order.
func SortStrings(a []string) { Sort(StringArray(a)) }


// IntsAreSorted tests whether an array of ints is sorted in increasing order.
func IntsAreSorted(a []int) bool { return IsSorted(IntArray(a)) }
// Float64sAreSorted tests whether an array of float64s is sorted in increasing order.
func Float64sAreSorted(a []float64) bool { return IsSorted(Float64Array(a)) }
// StringsAreSorted tests whether an array of strings is sorted in increasing order.
func StringsAreSorted(a []string) bool { return IsSorted(StringArray(a)) }
OpenPOWER on IntegriCloud